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Abstract
A new effective approach to solving the three-dimensional radiative transport
equation with an arbitrary phase function is proposed. The solution depends
on eigenvectors and eigenvalues of several symmetrical tridiagonal matrices
of infinite size. The matrices must be truncated and diagonalized numerically.
Then, given eigenvectors and eigenvalues of these matrices, the dependence of
the solution on position and direction is found analytically. The approach is
based on expanding the angular part of the specific intensity in q-dependent
spherical functions for each spatial Fourier component characterized by the
vector q. Apart from the truncation of the matrices, no other approximations
are made.

The radiative transport equation (RTE) is widely used to describe propagation of waves and
particles in random scattering media. Applications include biomedical imaging of tissues with
near-IR light [1, 2], propagation of waves in atmosphere and oceans and astrophysics [3–5],
and nuclear reactor theory [6]. However, analytical solutions to the RTE cannot be obtained
even in very simple cases. In fact, the only known analytical solution to the three-dimensional
RTE is for the case of an infinite homogeneous medium and a constant phase function (isotropic
scattering) [5, 7]. Even in this case the solution is expressed as a quadrature which must be
evaluated numerically. Therefore, current research into methods of solving the RTE is mainly
focused on numerical or approximate methods (see, for example, [8–10]).

When analytical solutions are unavailable, a number of numerical methods can be applied,
such as the discrete ordinate method or the method of spherical harmonics [6]. In particular, the
method of spherical harmonics can be effectively used in the cases with special symmetry, such
as an isotropic source in the infinite medium (spherical symmetry) or a plane wave incident
on a slab or half-space (cylindrical symmetry). In a more general situation, when none of
the above symmetries are present, the mathematical formulation of the standard spherical
harmonics method is very complicated and hardly usable, except in conjunction with the Pl

approximation [6]. In this letter, I derive a modification of the spherical harmonics method. The
modification leads to significant mathematical simplifications and can be used to calculate the
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Green’s function of the RTE for a point unidirectional source in infinite homogeneous medium.
The obtained solutions depend on eigenvectors and eigenvalues of certain tridiagonal matrices
which, in turn, depend only on the form of the phase function. After these quantities are
computed numerically, the dependence of solutions on the position and direction of propagation
is found analytically.

The approach developed below can be applied to the Boltzmann equation describing
transport of any waves or particles that move with a fixed absolute velocity c but can change
direction as a result of collisions or scattering events. To be more specific, we will assume that
the RTE describes propagation of light in a multiply scattering medium. In this case c is the
average velocity of light in this medium (set to unity everywhere below) and the quantity of
interest is the specific intensity I (r, ŝ) at the point r and in the direction specified by the unit
vector ŝ. The RTE has the form

ŝ · ∇ I + (µa + µs)I = µs Â I + ε. (1)

Here µa and µs are the absorption and scattering coefficients, respectively, Â is an integral
operator defined by

Â I (r, ŝ) =
∫

A(ŝ, ŝ′)I (r, ŝ′) d2ŝ′, (2)

A(ŝ, ŝ′) is the phase function and,finally, ε = ε(r, ŝ) is the source. We limit consideration to the
case when the phase function depends only on the angle between ŝ and ŝ′: A(ŝ, ŝ′) = f (ŝ · ŝ′).
This fundamental assumption is often used and corresponds to scattering by spherically
symmetrical particles. We also require that the phase function is normalized by the condition∫

A(ŝ, ŝ′) d2ŝ′ = 1.
We start with expressing all position-dependent functions as Fourier integrals, according

to

I (r, ŝ) =
∫

Ĩ (q, ŝ) exp(iq · r) d3q, (3)

ε(r, ŝ) =
∫

ε̃(q, ŝ) exp(iq · r) d3q. (4)

Substituting (3) and (4) into (1), we obtain

(iq · ŝ + µt) Ĩ = µs Â Ĩ + ε̃, (5)

where we have introduced the notation µt = µa + µs.
Next we expand all angular-dependentquantities in spherical harmonics which are defined

in the reference frame whose z-axis coincides with the direction of the vector q. We denote
such functions as Ylm(ŝ; q̂) and write

Ĩ (q, ŝ) =
∑
lm

Flm(q)Ylm(ŝ; q̂), (6)

ε̃(q, ŝ) =
∑
lm

Elm(q)Ylm(ŝ; q̂), (7)

A(ŝ, ŝ′) =
∞∑

l=0

l∑
m=−l

AlYlm(ŝ; q̂)Y ∗
lm(ŝ′; q̂). (8)

This expansion is crucial to the theoretical development presented in this letter. It differs from
the usual spherical harmonic expansion in the fact that the spherical harmonics used here are
defined not in the laboratory reference frame but in a frame which is rotated so that the z-axis
is always aligned with the vector q. This approach will lead to significant simplifications as
shown below.
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Note that there are infinitely many rotations of the laboratory frame that result in the new
(rotated) z-axis being aligned with q. It is sufficient to choose the Euler angles of the rotation,
α, β and γ , so that α = φ, β = θ and γ = 0, where φ and θ are the polar angles of the
vector q in the laboratory frame. Then the functions Ylm(ŝ; q̂) can be expressed as linear
combinations of spherical harmonics Ylm(ŝ) defined in the laboratory frame with the use of
Wigner D-functions according to Ylm(ŝ; q̂) = ∑l

m′=−l Dl
m′m(φ, θ, 0)Ylm′ (ŝ).

Note also that the coefficients Al in (8) do not depend on q. From the normalization
condition

∫
A(ŝ, ŝ′) d2ŝ′ = 1 it follows that A0 = 1. In the case of isotropic scattering,

the phase function is constant and Al = δl0 where δll′ is the Kronecker delta. It is in
this case that the analytical solution mentioned above can be obtained. In general, since
Al = ∫

Pl(ŝ · ŝ′)A(ŝ, ŝ′) d2ŝ′ where Pl(x) are Legendre polynomials, and taking into account
that |Pl(x)| � 1, it can be shown that |Al | � 1 ∀l. Our goal is to obtain the solution to the
RTE for coefficients Al satisfying the above inequality, but otherwise arbitrary.

Upon substitution of expansions (6)–(8) into (5), we find that the coefficients Flm(q)

satisfy

iq
∑
l′m′

Rlm,l′ m′ Fl′m′(q) + σl Flm(q) = Elm(q), (9)

where

σl = µa + µs(1 − Al), (10)

Rlm,l′ m′ =
∫

ŝ · q̂Y ∗
lm(ŝ; q̂)Yl′m′(ŝ; q̂) d2ŝ. (11)

Integration according to (11) results in

Rlm,l′ m′ = δmm′ [bl(m)δl′=l−1 + bl+1(m)δl′=l+1], (12)

where

bl(m) = bl(|m|) = √
(l + m)(l − m)/(2l + 1)(2l − 1). (13)

Now we make use of the fact that the matrix R defined in (12) is diagonal in m and m ′. For
every value of q and every value of m = 0,±1,±2, . . . we define infinite-dimensional vectors
|F(q, m)〉 and |E(q, m)〉 with components 〈l|F(q, m)〉 = Flm(q) and 〈l|E(q, m)〉 = Elm(q),
l � |m|. We also define q-independent matrices R(m) and S(m) with elements 〈l|R(m)|l ′〉 =
Rlm,l′ m and 〈l|S(m)|l ′〉 = σlδll′ , l, l ′ � |m| and rewrite (9) in operator form as

iq R(m)|F(q, m)〉 + S(m)|F(q, m)〉 = |E(q, m)〉. (14)

It can be seen that (14) is a set of independent equations parametrized by the variables m and
q.

Because of the specific choice of the basis functions Ylm(ŝ; q̂), equation (14) has a simple
form. This is manifested in the fact that the matrices R(m) are q independent and tridiagonal.
Now we use these simplifications to find a solution to (14) which is based on diagonalization
of several q-independent matrices. It is important to emphasize that the numerical part must be
carried out only once, rather than for every value of q involved in integration according to (3).
We notice that the matrix S is non-singular and positive-definite, which follows directly from
|Al | � 1 and µa > 0, and introduce the ‘square root’ of S, T = √

S. Here T is a diagonal
matrix satisfying T T = S with diagonal elements

√
σl , l � |m|. Then we can rewrite (14)

equivalently as

iqW (m)|F ′(q, m)〉 + |F ′(q, m)〉 = T −1(m)|E(q, m)〉, (15)

where |F ′〉 = T |F〉 and W = T −1 RT −1. Now we can solve (15) for |F ′〉 by diagonalizing the
tridiagonal symmetrical matrix W , after which |F〉 can be found from |F〉 = T −1|F ′〉. Let |yn〉



L16 Letter to the Editor

and λn be the eigenvectors and eigenvalues of W , respectively. Following the procedure briefly
outlined above, we find that the solution to (14) is given by

|F(q, m)〉 =
∑

n

T −1|yn(m)〉〈yn(m)|T −1(m)|E(q, m)〉
1 + iqλn(m)

, (16)

or, in components,

Flm(q) =
∑

n

∞∑
l′=|m|

〈l|yn(m)〉〈yn(m)|l ′〉El′m(q)√
σlσl′ [1 + iqλn(m)]

. (17)

Equations (16) and (17) together with (6) and (3) present the general solution to the RTE
with an arbitrary source and phase function. In the important case of a point source the
Fourier transformation according to (3) can be carried out analytically. The integration is
facilitated by the following fact. If λ is an eigenvalue of W corresponding to the eigenvector
with components 〈l|y〉, then −λ is also an eigenvalue corresponding to the eigenvector with
components (−1)l〈l|y〉 (a similar property of eigenvalues was found in [10] for a slab geometry
and a normally incident plane wave). This can be easily proven by considering the characteristic
equation for W which has the form

βl〈l − 1|y〉 + βl+1〈l + 1|y〉 = λ〈l|y〉, (18)

where βl = bl(m)/
√

σl−1σl (l = 1, 2, . . .) are the elements of the first superdiagonal of W .
Consider a unidirectional point source of the form ε = δ(r−r0)δ(ŝ− ŝ0). The coefficients

Elm(q) are given for the source defined above by Elm(q) = (2π)−3 exp(−iq·r0)Y ∗
lm(ŝ0; q̂). We

substitute this expression into (17) and use the property of the eigenvalues and the symmetry of
the eigenvectors described above, as well as the properties of Wigner D-functions, to perform
integration according to (6) and (3) (details of integration omitted). The result for I (r, ŝ) is

I (r, ŝ) =
∞∑

m=−∞

∞∑
l,l′=|m|

χm
ll′ (R)Ylm(ŝ; R̂)Y ∗

l′m(ŝ0; R̂), (19)

where

χm
ll′ (R) = χm

l′l(R) = (−1)m

2π
√

σlσl′

l̄∑
M=−l̄

(−1)M
∑

n

′ 〈l|yn(M)〉〈yn(M)|l ′〉
λ3

n(M)

×
l̄∑

j=0

C |l−l′ |+2 j,0
l,M,l′ ,−M C |l−l′ |+2 j,0

l,m,l′ ,−m k|l−l′ |+2 j

[
R

λn(M)

]
, (20)

R = r − r0, l̄ = min(l, l ′). (21)

Here kn(x) = −inh(1)
n (ix) is the modified spherical Hankel function of the first kind,C j3,m3

j1,m1, j2,m2

are the Clebsch–Gordan coefficients and
∑′ denotes summation over only positive values of λn.

Equations (19) and (20) constitute the main result of this letter. The function I (r, ŝ)
coincides with the Green’s function of the RTE, G(r, ŝ; r0, ŝ0), while the functions χm

ll′ (R) can
be viewed as the matrix elements of the Green’s function in the basis of spherical harmonics
Ylm(ŝ; R̂):

〈lm|G(r; r0)|l ′m ′〉 ≡
∫

Y ∗
lm(ŝ; R̂)G(r, ŝ; r0, ŝ0)Yl′m′(ŝ0; R̂) d2s d2s0 = χm

ll′ (R)δmm′ , (22)

where we must extend the definition of χm
ll′ to all values of indices with the understanding that

χm
ll′ = 0 if |m| > min(l, l ′).

A few comments on the obtained solutions are necessary. First, the functions Ylm(ŝ; R̂)

in (19) are spherical harmonics defined in the q-independent laboratory frame with the z axis
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coinciding with the direction of vector R. The directions of x and y axes are arbitrary. Second,
the terms in the summation over M in (20) do not depend on the sign of M (which is also
true for the matrix W (M)). Third, the diagonality of the matrix element (22) reflects the
fact that the Green’s function is symmetrical with respect to simultaneous rotation of vectors
ŝ and ŝ0 around the axis connecting the points r and r0. Note that this is not equivalent to
cylindrical symmetry since the solution (19) depends, in general, on three spatial coordinates.
Finally, the eigenvaluesλn(M) are bounded. It can be verified using Gershgorin’s disc theorem
that λmax � max∞

M=0 max∞
l=|M|[βl−1(M) + βl(M)] � 1/µa. For Rµa 
 1 we can use

k j(x) ≈ exp(−x)/x and obtain the asymptotic expression

lim
µa R
1

[χm
ll′ (R)] = (−1)m

2π
√

σlσl′ R

l̄∑
M=−l̄

(−1)M K mM
ll′

∑
n

′ 〈l|yn(M)〉〈yn(M)|l ′〉
λ2

n(M)
exp

[ −R

λn(M)

]
,

(23)

where

K mM
ll′ =

l̄∑
j=0

C |l−l′ |+2 j,0
l,M,l′ ,−M C |l−l′ |+2 j,0

l,m,l′ ,−m . (24)

Now we consider a few special cases of the obtained formulae. Note that these special
cases can be obtained independently of the method developed in this letter and are already
known (see, for example, [2] for the spherically symmetrical problem of an isotropic source);
they are adduced to validate the obtained formulae and to provide connection to the previous
work. First, if R̂ = ±ŝ0 (‘forward’ or ‘backward’ propagation), we have

I (r, ŝ) =
∞∑

l,l′=0

(±1)l′χ0
ll′ (R)

√
(2l + 1)(2l ′ + 1)

4π
Pl(ŝ · R̂). (25)

Further simplifications can be obtained if the source is isotropic, i.e., ε = δ(r − r0).
Straightforward calculation shows that in this case

I (r, ŝ) =
∞∑

l=0

√
2l + 1χ0

l0(R)Pl(ŝ · R̂), (26)

where χ0
l0(R) has a very simple form

χ0
l0(R) = 1

2π
√

σ0σl

∑
n

′ 〈l|yn(0)〉〈yn(0)|0〉
λ3

n(0)
kl

[
R

λn(0)

]
. (27)

Only one matrix, namely W (0), must be diagonalized in order to compute χ0
l0. Note that

the diffusion approximation (DA) corresponds to leaving only two terms (l = 0 and 1) in
equation (26).

One can be interested in the energy density and flux, u(r) and J(r), defined as u(r) =∫
I (r, ŝ) d2ŝ and J(r) = ∫

ŝI (r, ŝ) d2ŝ, respectively. For these two quantities and for the
isotropic source, we find

u(r) = 2

σ0 R

∑
n

′ 〈0|yn(0)〉〈yn(0)|0〉
λ2

n(0)
exp

[
− R

λn(0)

]
, (28)

J(r) = R̂
2

R

∑
n

′ 〈0|yn(0)〉〈yn(0)|0〉
λn(0)

[
1 +

λn(0)

R

]
exp

[
− R

λn(0)

]
, (29)

where we have also taken into account that 〈1|yn(0)〉 = √
3σ0σ1λn(0)〈0|yn(0)〉, which follows

directly from the characteristic equation (18).
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Figure 1. Dimensionless quantity Ru(R)/µt as a function of µt R for different values of L;
µa/µs = 1 and g = 0.99.

Now we briefly discuss implementation of the method. Generally, all infinite series
appearing in (19), (25) and (26) must be truncated so that l, l ′ � lmax. The value of lmax is
determined by the desired angular resolution of the calculated specific intensity. For example,
in equations (25) and (26), lmax is the maximum order of Legendre polynomials which enter the
expansion of the angular dependence of I (r, ŝ). In practice, more terms are required close to
the source where the specific intensity is highly peaked, while far from the source the radiation
becomes diffuse and account of only a few lower terms may suffice.

The expression for χm
ll′ (20) contains only finite sums (for finite values of l and l ′).

However, the coefficients in these sums depend on eigenvectors and eigenvalues of infinite
matrices. The latter must be also truncated; we denote the size of truncated matrices as L.
As a rough rule, the convergence of results with L can be expected when the elements of the
first superdiagonal of W , βL(m), approach their limiting value of liml→∞ βl(m) = 1/2µt .
However, slower convergence is expected close to the source because, for small values of R,
expressions (19), (25) and (26) are more sensitive to small eigenvalues. The convergence of
the method is illustrated using the Henyey–Greenstein phase function (figure 1). For this phase
function, Al = gl where 0 < g < 1. If g is close to unity (strong forward scattering), the
condition that βL(m) approaches its limiting value takes the form L 
 1/(1 − g).

We have plotted the dimensionless function Ru(R)/µt calculated according to
expression (26) for an isotropic source for µa = µs and g = 0.99 and different values of L.
It can be seen that good convergence is obtained for L = 256, which is in agreement with
the convergence criterion formulated above. It should be emphasized that the computational
complexity of diagonalizing tridiagonal matrices W (M) scales as L rather than L3. Therefore,
diagonalization for L up to 10 000 is a relatively simple task on any modern computer.

Fully converged results for the dimensionless combination Ru(R)/µt as a function of
µt R and different ratios of µa/µs and values of g are plotted in figure 2. Here we have
used again expression (26) for an isotropic source, the Henyey–Greenstein phase function
and the matrix size L = 1000 (even though convergence is reached for significantly smaller
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Figure 2. Dimensionless quantity Ru(R)/µt as a function of µt R for different values of µa/µs
and g. The dashed curves show DA and the solid curves BA.

values of L). We also plot in this figure the DA result (dashed curves) and the ballistic
approximation (BA) result (solid curve). The DA is given by u(R) = exp(−kdiff R)/DR
where kdiff = √

3µa[µa + (1 − A1)µs] and D = 1/3[µa + (1 − A1)µs]. Note that for the
Henyey–Greenstein phase function A1 = g. The BA is obtained by setting µs = 0 or,
equivalently, Al = 1 ∀l, in which cases the solution is given by u(R) = exp(−µa R)/R2.
It can be seen that for small values of µt R the propagation is always ballistic. In the cases
µa/µs = 0.01 and 0.1 the cross-over to the diffusion regime is clearly manifested. In the cases
µa/µs = 1 and 10 there is no such cross-over and the DA curves are not shown.

In conclusion, we have presented a general numerically efficient method for solving
the RTE in an infinite macroscopically homogeneous medium. The method allows one to
solve the RTE for arbitrary phase functions A(ŝ, ŝ′) = f (ŝ · ŝ′) by numerically diagonalizing
several tridiagonal matrices. Once eigenvalues and eigenvalues of these matrices are found,
the solution is obtained analytically. This fact, together with the relatively low computational
complexity, distinguish the suggested method from other approaches. Boundary conditions
and interfaces have not been discussed in this letter and will be considered elsewhere.
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