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New freely available FORTRAN
library for evaluating
Sommerfeld integrals
George Y. Panasyuk, John C. Schotland, and Vadim A. Markel

Recent work focused on simplifying the computation of the electro-
magnetic Green’s tensor may be of interest to researchers in the areas
of near-field optics and nanophotonics.

Computing the electromagnetic fields produced by an above-
ground radiating antenna has been one of the most basic prob-
lems in radioengineering for the past century. If the antenna in
question is a dipole (i.e., it can be thought of as a pair of elec-
tric charges of equal magnitude but opposite sign, separated by
some relatively small time-varying distance), the radiated fields
are given by the so-called Green’s tensor. Apart from the obvi-
ous applications in radiocommunications, the Green’s tensor is
also used in geophysical exploration of Earth and in near-field
imaging and spectroscopy.

Unfortunately, the Green’s tensor is not easy to compute even
in the simple half-space geometry. A rather general analytical so-
lution to the problem was given by Sommerfeld about 100 years
ago.1 A contemporary exposition of the subject can be found
in a paper by Maradudin and Mills.2 However, Sommerfeld’s
solution is expressed in terms of oscillatory integrals. (The term
‘oscillatory’ means that the integrated functions change sign or
oscillate many times over the domain of integration.) To com-
pute an oscillatory integral numerically, one must sample the
integrand at a very large number of points. In some instances,
this may become computationally inefficient. Evaluation of
Sommerfeld integrals is confounded by the fact that the func-
tions in question are not only oscillatory but also complex, singu-
lar (i.e., they diverge at some points in the complex plane), and
are otherwise difficult to handle. Still, it may seem that, given the
power of modern computers, numerical evaluation of the Som-
merfeld integrals should not be a serious problem. However,
this is not so. To quote from a paper by Jimenez, Cabrera, and
Cuevas del Rio,3 who in 1996 wrote a (now apparently no longer

Figure 1. Various tensor components of the reflected (R) part of the
Green’s tensor, GR

αβ, normalized by the free-space wave number k =
ω/c, as functions of the free-space wavelength, λ = 2π/k. (a, b) Imag-
inary (Im) parts and (c, d) real (Re) parts of GR . The geometry is as fol-
lows: The source and the point of observation are located 40nm above a
transparent dielectric substrate and 40nm apart. The substrate dielec-
tric permittivity is ε = 2.5 and assumed to be constant in the spectral
range considered. The x-axis of the laboratory frame coincides with the
line connecting the two points. The indices α and β label the tensor
components and can take the values x, y, or z. In this geometry, the
tensor components GR

xy and GR
yz are identically zero. The results were

obtained using the numerical integration capability of the GF pack-
age (centered symbols) and the analytical approximation, which is also
implemented in the package (lines). The imaginary part of the Green’s
tensor is very accurately reproduced by the analytical approximation—
a result not obtainable from the electrostatic method of images.

available) FORTRAN library for computing the integrals: “Eval-
uating Sommerfeld integrals used to be a standard nightmare for
many electromagnetic engineers due to the singular, oscillating,
and divergent behavior of their integrands.”
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In any case, if the electromagnetic Green’s tensor must be
found in the half-space geometry, there is no other way but to
confront the Sommerfeld integrals, and one would hope that a
numerical package that handles all the difficulties mentioned
above would be available by now. Yet, when faced with the prob-
lem ourselves, we could find neither a package nor a clearly
defined analytical approximation appropriate for our problem!
This has moved us to create such a package and to place it as
a compressed file GF.tar.gz in a freely accessible depository.4

The package (referred to as GF below) can be also obtained in
the supplementary material to our recent article in the Journal of
Physics A.5 It is written in Fortran-77 and can be compiled with
a freely available compiler, such as g77. Apart from a purely
numerical procedure, which is quite general, the GF package
contains a set of novel approximations that are applicable in the
near field.

We became interested in the Sommerfeld integrals because we
wanted to know how the presence of an interface influences
various radiative processes, such as spontaneous emission, in
aggregates of molecules or nanoparticles placed on a substrate.
The above is an important question in near-field sensing and
spectroscopy, and to answer it, one needs to know the imagi-
nary part of the Green’s tensor with high precision. The simplest
approximation that one can attempt to use is the electrostatic
method of images. This approximation, however, fails to cap-
ture radiative effects. Indeed, radiation appears to be third order
in the dimensionless parameter ωL/c, where c is the speed of
light in vacuum and L is a characteristic length of the problem. It
can be, for example, the distance between two molecules placed
above a substrate.

For the problem briefly stated above, it is desirable to know
the Green’s tensor as an analytical function of the frequency,
ω. Therefore, in addition to a purely numerical integrator, the
GF package contains an implementation of a novel analytical
approximation which we recently developed.5 In this approx-
imation, the reflected part of the Green’s tensor is expanded
in powers of ωL/c. The zeroth-order term in this expansion
gives the result otherwise obtainable by the electrostatic method
of images. The first-order terms are identically zero, and the
higher-order terms give corrections to the electrostatic limit. The
radiative effects, however, appear only in the third order. Thus, if
the half-space is nonabsorbing, the zero- and second-order terms
are purely real. The nonvanishing imaginary part of the Green’s
tensor is obtained only when the third-order terms are accounted
for. The expansion can be useful in a variety of physical prob-
lems when direct numerical integration is inadequate. Figure 1
illustrates its accuracy for a physical situation that is typical in
near-field optics.

One interesting area to which the GF package can be ap-
plied is the study of surface plasmon polaritons (SPPs) in metal
nanostructures placed above a substrate. SPPs are localized
electronic excitations which can propagate along conducting
and nonconducting interfaces. The SPPs can be confined to spa-
tial areas much smaller than the wavelength, λ, at the carry-
ing frequency. This feature favorably distinguishes SPPs from
the modes of conventional optical fibers. In fact, SPPs can prop-
agate not only along smooth interfaces but also in chains of
metal nanoparticles. One potential application of such chains
is nanowaveguides, which has attracted considerable recent
attention6–8 and was also of interest to us.9, 10 The nanoparticle
chains are typically placed on a substrate. However, accounting
for this fact in theory or simulations proved to be difficult, as it
requires knowledge of the half-space Green’s tensor. The numer-
ical integrator of the GF package is a useful tool for tackling this
difficulty.

In summary, we have created a Fortran-77 package for eval-
uating the half-space electromagnetic Green’s tensor. This GF
package contains a numerical integrator of general applicability
and an implementation of a novel analytical expansion that is
applicable in the near field. The GF package is quite flexible and
has many tunable input parameters, as well as a detailed user’s
guide. We would be glad to provide support to all potential aca-
demic users. In the near future, we plan to use the GF package in
a study of SPP propagation in metal nanoparticle chains placed
on a substrate.
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