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Abstract
We describe a new data collection scheme for optical diffusion tomography in
which plane wave illumination is combined with multiple projections in the
slab imaging geometry. Multiple projection measurements are performed by
rotating the slab around the sample. The advantage of the proposed method is
that the measured data are more compatible with the dynamic range of most
commonly used detectors. At the same time, multiple projections improve
image quality by mutually interchanging the depth and transverse directions,
and the scanned (detection) and integrated (illumination) surfaces. Inversion
methods are derived for image reconstructions with extremely large data sets.
Numerical simulations are performed for fixed and rotated slabs.

1. Introduction

Tomographic imaging with diffuse light, often referred to as optical diffusion tomography
(ODT), is a novel biomedical imaging modality (Arridge 1999, Boas et al 2001). Although
ODT was introduced more than a decade ago, efforts to bring it into the clinical environment are
hampered by relatively low quality and spatial resolution of images. Therefore, optimization
of image reconstruction algorithms for high-resolution ODT is of fundamental importance. In
this paper we study the image reconstruction problem of ODT by combining three novel
approaches. First, we employ analytic image reconstruction methods which allow the
utilization of extremely large data sets (Markel and Schotland 2002a, 2003). Second, we
make use of multiple projections (Markel and Schotland 2004a). Here by multiple projections
we mean multiple orientations of the measurement apparatus with respect to the medium.
Finally, we utilize the recently proposed plane wave illumination scheme (Xu et al 2001).
Each of these methods provides an advantage which is not lost when the techniques are
combined. We begin by briefly reviewing the approaches to ODT imaging mentioned above.
Note that throughout this paper we consider the slab imaging geometry which is often used in
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mammography and small-animal imaging (Franceschini et al 1997, Ntziachristos et al 1999).
In order to obtain multiple projection measurements, a pair of parallel plates are rotated around
the medium to be imaged which is assumed to be stationary and unperturbed.

There is a direct relationship between the spatial resolution of images and the number of
data points used for reconstruction (Markel and Schotland 2002a). Indeed, the reconstruction
of an image with N voxels, in principle, requires at least N measurements. In practice, the
ill-posedness of the image reconstruction problem and the presence of noise require that
this number be larger than N. Measurements with up to 1010 data points are feasible with
CCD camera-based instruments. However, many previous studies of the image reconstruction
problem in ODT have been limited to relatively small data sets (e.g., 256 data points in
Pogue (1999), 900 data points in Culver et al (2001)). This can be explained by the
high computational complexity of algebraic image reconstruction algorithms which scales
as O(N3). To ameliorate this difficulty, we have recently introduced a family of analytic
image reconstruction algorithms that can utilize extremely large data sets (Schotland 1997,
Schotland and Markel 2001, Markel and Schotland 2001, 2002b, 2004b). These methods
allow a dramatic reduction in computational complexity which, in turn, leads to a significant
improvement of spatial resolution of images. However, these methods have certain limitations.

First, the data collection method described in Markel and Schotland (2002b) requires
that measurements are taken for source-detector pairs separated by a distance which is much
larger than the slab thickness. In practice, such measurements are technically difficult to
perform. Reduction of the required dynamic range of the detectors can be achieved by using
plane wave illumination (Xu et al 2001). Note that due to the general theoretical reciprocity
of sources and detectors, plane wave illumination and scanned detection are equivalent to
integrated detection and scanned narrow beam illumination. However, in a practical situation,
the different nature of illuminating and detecting devices must be taken into account. For
the sake of definitiveness, we consider below plane wave illumination and combine it with
analytic image reconstruction methods. Note that plane wave illumination requires time-
or frequency-resolved measurements. However, it can be seen that the number of degrees
of freedom in the data is still insufficient for unique, simultaneous reconstruction of the
absorption and diffusion (or reduced scattering) coefficients. This situation is similar to the
nonuniqueness demonstrated in Arridge and Lionhart (1998). Therefore, we focus here on
the reconstruction of absorbing inhomogeneities assuming that the diffusion coefficient of the
medium is constant. Reconstruction of purely absorbing inhomogeneities has been employed,
for example, in breast imaging (Colak et al 1999, Hawrysz and Sevick-Muraca 2000, Culver
et al 2003a, Intes et al 2003) or blood oxygenation level imaging (van Houten et al 1996,
Culver et al 2003b).

Second, it was shown in Markel and Schotland (2002a) that in the slab imaging geometry
the depth resolution (in the direction perpendicular to the slab) is fundamentally different
from the transverse resolution (in the direction parallel to the slab surface). The depth
resolution is much more sensitive to noise and the point-spread functions (PSFs) in the
depth direction strongly depend on the location of the inhomogeneity. This results in image
artefacts. In general, the non-uniformity of the PSF can be a serious problem if more than
one inhomogeneity is present. To correct this situation, we have recently proposed multi-
projection image reconstruction methods (Markel and Schotland 2004a, 2004b). Multiple
projections render the depth and transverse directions mutually interchangeable. As a result,
the PSF becomes more uniform and less position dependent, and also more sharply peaked.
Note that multiple projections have been used in x-ray imaging for some time. However,
an important difference between ODT and x-ray computed tomography is that, in the first
case, tomographic imaging is possible in principle with a single projection while in the
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second case it is not. Perhaps, due to this fact, multiple projections in optical tomography
have not been investigated until recently, except for the case of ballistic propagation without
scattering (e.g. in Brown et al (1992)), or in conjunction with a modified version of x-ray
backprojection tomography with phenomenological corrections introduced to compensate for
scattering (Colak et al 1997, Matson and Liu 1999). In Markel and Schotland (2004b) we have
developed a general theoretical formalism for inverting measurements obtained from multiple
projections. In Markel snd Schotland (2004a) image reconstruction with two orthogonal
projections was numerically implemented.

In this paper we implement the more general image reconstruction algorithm of Markel
and Schotland (2004b) for treatment of more than two projections in conjunction with plane
wave illumination. Note that the plane wave illumination is advantageous when measurement
is limited by the dynamic range of the detectors. If the dynamic range is not an important
experimental factor, the traditional measurement scheme with point sources and point detectors
is expected to provide superior image quality. We combine the advantageous features of these
two approaches with the computational efficiency of analytic image reconstruction methods.

2. Theory

2.1. Single projection

We assume that the propagation of multiply scattered light in tissue is described by the diffusion
equation. In addition, we will work in the frequency domain with sources harmonically
modulated at the frequency ω and detectors which yield the oscillatory part of the transmitted
intensity. Then the density of electromagnetic energy in the medium u(r) obeys the diffusion
equation

−D0∇2u(r) + [α(r) − iω]u(r) = S(r), (1)

where α(r) is the position-dependent absorption coefficients, S(r) is the source function and
the D0 is the diffusion coefficient.

Consider a slab of thickness L with the plane of incidence located at x = −L/2 and
the detection plane at x = L/2. The medium is located in the region −L/2 < x < L/2.
If point-like sources and detectors are used (typically, thin optical fibres), the data can be
expressed as a function φ(ω, ρs , ρd), where ρs and ρd are two-dimensional vectors specifying
the location of the sources and detectors, respectively, on the slab surfaces. Using the first
Born approximation, we linearize the forward model by decomposing the absorption function
α(r) into a constant background and a small fluctuating part, α(r) = α0 + δα(r). We
seek to reconstruct the values of δα(r) from the data φ(ω, ρs , ρd). The usual mathematical
formulation of the ODT inverse problem is based on the integral equation (Gonatas et al 1995)

φ(ω, ρs , ρd) =
∫

�(ω, ρs , ρd; r)δα(r) d3r, (2)

where

�(ω, ρs , ρd; r) =
∫

d2qs d2qd

(2π)4
κ(ω, qs , qd; x) exp[iqs · (ρ − ρs) + iqd · (ρd − ρ)], (3)

ρ is the transverse part of the vector r (r = (x, ρ)) and the form of κ(ω, qs , qd; x) is
determined from the boundary conditions on the surfaces of the slab and the expression which
relates the measurable intensity to the energy density u(r). The derivation of (2), (3) and
explicit expressions for κ are given in Markel and Schotland (2002a). Note that the general
form of (2), (3) follows from the symmetry of the problem and is independent of the diffusion
approximation.
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Next, we introduce the plane wave illumination scheme. Instead of using point sources
located at points ρs , we illuminate the slab with a normally incident wide homogeneous beam
of sufficiently large diameter (compared to transverse dimensions of the slab). At the same
time we utilize point detectors. This ensures that the new data function ψ(ω, ρd) defined by

ψ(ω, ρd) =
∫

φ(ω, ρs , ρd) d2ρs (4)

has the same number of degrees of freedom as the unknown δα(r) (two spatial directions and
the frequency ω). Thus, the inverse problem is well determined. The integral equation (2) can
now be transformed to

ψ(ω, ρd) =
∫

d2q

(2π)2
κ(ω, 0, q; x) exp[iq · (ρd − ρ)]δα(r) d3r. (5)

If ψ is measured for N different modulation frequencies and the sources are placed on a square
lattice with step size h, equation (5) can be inverted using the methods described in Markel
and Schotland (2002b). The SVD pseudo-inverse solution is given by

δα(r) = h2
∫

FBZ

d2u

(2π)2
exp(−iu · ρ)

∑
ω,ω′

P ∗(ω,u; r)〈ω|M−1(u)|ω′〉ψ̃(ω′,u). (6)

Here the vector u is in the first Brillouin zone (FBZ) of the lattice of sources, namely,
−π/h < uy,z � π/h and

P(ω,u; r) =
∑

v

κ(ω, 0,u + v; x) exp(iv · ρ), (7)

where v are reciprocal lattice vectors of the form v = (2π/h)(ny ŷ + nzẑ). The elements of
matrix the M(u) are given by

〈ω|M(u)|ω′〉 =
∑

v

M1(u + v), (8)

where

〈ω|M1(q)|ω′〉 =
∫ L/2

−L/2
κ(ω, 0, q; x)κ∗(ω′, 0, q; x) dx (9)

(the inverse matrix M−1(u) must be appropriately regularized (Natterer 1986)) and the Fourier
transformed data function ψ̃(ω,u) is defined as

ψ̃(ω,u) =
∑
ρd

ψ(ω, ρd) exp(iu · ρd). (10)

Note that, if δα is reconstructed only at points which are commensurate with the lattice of
sources, the factor exp(iv · ρ) is equal to unity and the function P becomes independent of
ρ. Note also that κ and M1 can be calculated in terms of elementary functions (Markel and
Schotland 2004b).

2.2. Multiple projections

We now consider inclusion of multiple projections. Let the sources and detectors be rotated
around the sample as illustrated in figure 1. We assume that the rotations do not disturb
the medium inside the cylinder

√
x2 + y2 < L/2 and that the unknown function δα vanishes

outside the same region. The space inside the slab but outside the above cylindrical region
is assumed to have the background values of the coefficients α0 and D0. Experimentally,
this can be implemented, for example, by rotating an imaging apparatus around a sample
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θ

Figure 1. A sketch of the experimental set up with rotating slab. The axis of rotations (Oz)

is perpendicular to the plane of the figure and coincides with the axis of the cylinder R < L/2
inside which reconstructions are performed. Locations of sources and detectors are given in a local
reference frame which rotates together with the slab.

suspended in matching fluid. We introduce cylindrical coordinates r = (R, z, ϕ) with the
z-axis being the axis of rotation. If the data are measured for Nθ different orientations, where
the respective angles θn are equally spaced and given by θn = 2π(n − 1)/Nθ , n = 1, . . . , Nθ ,
the reconstruction formula (6) can be generalized to Markel and Schotland (2004b)

δα(r) = 2πh2

Nθ

Nθ∑
n=1

∫ π/h

−π/h

duz

2π
exp[−i(uzz + nϕ)]

∑
ω,ω′

∫ π/h

−π/h

duy

∫ π/h

−π/h

du′
yP

∗(ω,u, n; r)

×〈ω, uy |M−1(uz, n)|ω′, u′
y〉ψ̃(ω′, u′

y, uz, n). (11)

Here

P(ω,u, n; r) =
∞∑

k=−∞

∑
v

a(ω,u + v, n + Nθk;R) exp[i(Nθkϕ + vzz)], (12)

a(ω, q,m;R) =
∫ 2π

0
κ(ω, 0, q;R cos ϕ) exp[i(qyR sin ϕ − mϕ)] dϕ, (13)

the elements of the matrix M(uz, n) are given by

〈ω, uy |M(uz, n)|ω′, u′
y〉 =

∞∑
k=−∞

∑
vy ,v′

y

∑
vz

〈ω, uy + vy |M1(uz + vz, n + Nθk)|ω′, u′
y + v′

y〉,

(14)

〈ω, qy |M1(qz,m)|ω′, q ′
y〉 =

∫ L/2

0
a(ω, qy, qz,m;R)a∗(ω′, q ′

y, qz,m;R)R dR (15)

and the Fourier-transformed data function is

ψ̃(ω,u, n) =
∑
ρd ,θ

ψ(ω, ρd , θ) exp[i(u · ρd + nθ)]. (16)

Note that in (16) we have explicitly included the dependence of the data function on the angle
of orientation θ . The functions a(ω, q,m;R) and 〈ω, qy |M1(qz,m)|ω′, q ′

y〉 can be, in general,
expressed in terms of modified Bessel functions. The corresponding integrals (13) and (15)
are calculated in the appendix for the case of purely absorbing boundaries.

A few comments on the reconstruction formula (11) are necessary. First, there is an
apparent difference between the variables uz, n and uy, ω. The first set of variables correspond
(after Fourier transformation of the data) to the variables z, θ . These are the variables with
respect to which the unperturbed medium is translationally invariant, and they can be referred
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to as ‘external’ variables. The variables ω, uy are ‘internal’ variables: they do not correspond
to any translational invariance of the system. Second, the reconstruction algorithm (16)
involves integration over the continuous variables uy and u′

y and inversion of the operator
M(uz, n) whose matrix elements depend on continuous indices. However, if the variables
uy, u

′
y are discretized and the corresponding integration in (16) is replaced by a summation,

then M(uz, n) becomes a discrete matrix. The resulting reconstruction formula is no longer
an SVD pseudo-inverse on the whole set of data ψ(ω, ρd , θ). However, it is a pseudo-
inverse solution on the set of the Fourier-transformed data ψ̃(ω, uy, uz, θ) where uy takes
only discrete values. Third, it can be verified that in the case Nθ = 1, the reconstruction
formula (16) reduces to (6). Fourth, we note that the number of degrees of freedom in the
data-function ψ̃ is four (ω, uy, uz and n). Thus, when the number of rotations is large, it is
sufficient to use only one or a few values of the variable uy , in which case the inverse problem
is still well determined. It can be argued that the reconstruction algorithm is then ‘numerical’
in one dimension and ‘analytic’ in two1. However, when only a small number of projections is
taken, we must use a relatively large number of discrete values of uy . By doing so, we increase
the size of the matrix M whose SVD must be found numerically. The inverse solution (11)
is then ‘numerical’ in two dimensions and ‘analytic’ in one. A similar algorithm (numerical
in two dimensions and analytic in one dimension) was proposed and implemented in Markel
and Schotland (2004ba), where the image reconstruction area was rectangular rather than
cylindrical, but only two orthogonal projections were allowed. In contrast, the full potential
of the image reconstruction algorithm proposed here is realized when Nθ is large.

3. Numerical results

3.1. Single projection

We have implemented the proposed reconstruction algorithm using computer-generated data
and the following parameters: the slab thickness was chosen to be the same as the cw diffuse
wavelength, L = 2π

√
D0/α0 (for most biological tissues, this corresponds to L ∼ 6 cm);

the lattice step was chosen to be h = L/40 and we have used N = 25 different modulation
frequencies which range from ω = 0 to ω = 10α0 (the maximum frequency corresponds to
∼1.6 GHz); the field of view was chosen to be L × L and, finally, we have generated forward
data for a single point (delta-function) absorber which is located in the centre of the field of
view but at different depths. Absorbing boundary conditions were imposed on the surface of
the slab. The corresponding expression for the function κ(ω, 0, q; x) is given in the appendix.

The results of reconstructions are shown in figure 2. The density plots represent
tomographic slices of the medium drawn at different depths d (the distance from the plane of
scanned detection) parallel to the slab surfaces. The depth of the absorbing inhomogeneity,
d0, was in each case equal to d; thus the slices represent the depth-dependent y −z PSFs. Each
density plot has a linear colour scale and is normalized to its own maximum. As expected,
the PSFs become broader when the point absorber approaches the illuminated plane. The
last two panels (a), (b) show the PSFs in the depth direction (x) for point absorbers located
at d0 = 0.25L, d0 = 0.5L and d0 = 0.75L. Note that the approximate half-widths of these
curves are 0.06L, 0.09L and 0.09L, respectively.

The analysis of figure 2 suggests that the PSFs are depth dependent. Moreover, the PSFs
have different integral weights. Thus, the point absorbers which are closer to the plane of

1 If the number of rotations and the number of discrete values of uy are both large, it should be possible to recover
the absorption and scattering coefficients uniquely and simultaneously. This theoretical possibility is not discussed
in this paper.
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d=d0=0.875L

-0.5 0 0.5

(a)

x /L

δα [a.u.]

-0.5 0 0.5

(b)

x /L

d=d0=0.5L d=d0=0.625L d=d0=0.75L

d=d0=0.125L d=d0=0.25L d=d0=0.375L

Figure 2. Tomographic slices parallel to the slab surface drawn through the medium at different
depths d (from the plane of scanned detection) with the small absorber lying in the centre of the
field of view at the same depth d0 = d, and the point-spread functions representing depth resolution
(a), (b). The curves are plotted on the same scale (a) and normalized to their own maxima (b). For
curves (a), (b), the point absorber depth is d0 = 0.25L (solid line), d0 = 0.5L (short dash) and
d0 = 0.75L (long dash).

scanned detection result in higher peaks in the reconstructed images. The width of the PSFs
also depends on depth of the point absorber. This potentially constitutes a serious problem for
three-dimensional tomographic imaging.

3.2. Multiple projections

We have implemented numerically the multi-projection image reconstruction formula (11).
Note that in the multi-projection case there are two choices for graphically representing the
tomographic slices. In one case, the slices are perpendicular to the axis of rotation. The
image then is reconstructed in a circle. This choice is convenient for studying the radial and
angular resolutions. Another possibility is to construct cylindrical slices R = Rimage = const,
and map them onto rectangles. The image is then reconstructed in the rectangular area
2πRimage × (zmax − zmin), where zmax and zmin are the maximum and minimum values of z,
chosen arbitrarily.

We start with the discussion of circular slices. The results of numerical implementation
of the reconstruction formula (16) are shown in figure 3 for four different orientations of the
slab, namely θ = 0, π/2, π, 3π/2. We have used 23 equally spaced values of uy ranging
from −π/h to π/h and 15 equally spaced modulation frequencies ranging from 0 to 10α0;
otherwise, the parameters are the same as in figure 2. The inhomogeneity was located as
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-0.5 0 0.5

(a)

x /L

-0.5 0 0.5

(b)

x /L

z=0.1L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0.05L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

Figure 3. Circular slices illustrating radial, angular and z resolution. All point absorbers are in the
z = 0 plane, and the point-spread functions representing depth (R) resolution (a), (b). The radial
and angular coordinates of the point absorber, R0 and ϕ0, are specified in the figure legends. First
row of images: slices at z = 0; second row: slices at z = 0.05L; third row: slices at z = 0.1L.
Images (a), (b): reconstruction along the diameter that crosses all three inhomogeneities. In (a),
(b) solid line corresponds to R0 = 0.375L and ϕ0 = π , short dash to R0 = 0 and long dash to
R0 = 0.25L and ϕ0 = 0 Four projections, 15 modulation frequencies and 23 discrete values of uy

are used.

specified in the figure legend. The white spots in the density plots illustrate the depth PSFs.
The graphs (a), (b) show the same PSFs in a more quantitative way by plotting δα along the
diameter of the cylinder which intersects all three inhomogeneities.

As expected, using four different projections improves the image quality by interchanging
the source and detector planes, and the depth and transverse directions. Moreover, using more
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-0.5 0 0.5

(a)

x /L

δα[a.u.]

-0.5 0 0.5

(b)

x /L

z=0.1L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0.05L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

Figure 4. Same as in figure 3 but 20 projections are used.

projections than four does not change the results substantially, as is illustrated in figures 4 and
5. However, when a large number of projections is taken, the inverse problem becomes well
determined even when a relatively small number of ‘internal’ degrees of freedom uy is used.
This makes the reconstruction formulae computationally efficient. Thus, the computation time
required for producing data for figure 5 is more than an order of magnitude less than that for
figure 3, yet the image quality is similar. We have verified that three discrete values of uy are
also sufficient for Nθ = 20 (taking a single value uy = 0 results in a slight decrease in image
quality; data not shown).

Although the images shown in figures 3–5 are similar, the best image quality is, in fact,
attained in figure 4. Here the approximate half-widths of the PSF in the R direction are 0.05L

for the inhomogeneity located at R0 = 0, 0.04L for the inhomogeneity at R0 = 0.25L, ϕ0 = 0
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-0.5 0 0.5

(a)

x /L

δα [a.u.]

-0.5 0 0.5

(b)

x /L

z=0.1L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0.05L
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

z=0
R0=0 R0=0.25L, ϕ0=0 R0=0.375L, ϕ0=π

Figure 5. Same as in figure 3 but 40 projections and only three discrete values of uy are used.

and 0.03L for the inhomogeneity at R0 = 0.375L, ϕ0 = π . These values should be compared
to the respective values given in the discussion of figure 2. In particular, the inhomogeneity
located at h0 = 0.5L in figure 2 corresponds to the inhomogeneity at R0 = 0 in figures 3–5
and is the most ‘difficult’ to reconstruct since it is located deep inside the medium. It can
be seen that the PSF half-width in the image of this particular inhomogeneity is reduced by
approximately the factor of 2 due to the use of multiple projections. In addition, the relative
heights of the maxima of the PSFs in figures 3–5 do not differ as much as in figure 2. This is
expected to reduce image artefacts.

Now we consider the cylindrical slices. From the computational point of view, the use
of cylindrical slices is a more natural way to display reconstructed images. This is evident
from the inversion formulae (11), (12). Indeed, it can be seen that when the reconstructed
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image is rasterized so that the variables z and ϕ are placed on lattices with steps h and 2π/Nθ ,
respectively, the function P(ω,u, n;R, z, ϕ) becomes independent of z and ϕ. Then the
dependence of reconstructed images on these two variables is only due to the exponent in
integral (11) and the reconstruction formula, with respect to these two variables, is reduced
to a Fourier transform. In figure 6 we have used three discrete values of uy with 40 different
projections and slices are drawn as described in the figure caption. figure 6(a) illustrates image
reconstruction with noiseless data. It can be directly compared to slices shown in figure 2. To
demonstrate the stability of image reconstruction, we have added random Gaussian noise to
the data function at the level of 1% of the average absolute value of the data. The result is
shown in figure 6(b). As is well known, inclusion of noise tends to decrease spatial resolution.
It can be seen that this effect is stronger for inhomogeneities that are deeper inside the medium.
We have demonstrated earlier that multi-projection imaging is more stable in the presence of
noise than the single projection technique (Markel and Schotland 2004ba).

4. Summary

In summary, we have presented a new experimental modality and computationally efficient
image reconstruction algorithms for optical diffusion tomography employing plane wave
illumination with multiple projections. Note that due to reciprocity, plane wave illumination
and scanned detection are equivalent to illumination by a scanned narrow beam and integrated
detection (e.g., with the use of a time-resolved CCD camera). The following specific
conclusions can be drawn

• Use of plane wave illumination may be simpler experimentally than the traditional
approach in which point-like sources and detectors are scanned because measurements
with a much smaller dynamic range are required.

• In a single projection experiment, the image quality is relatively good when the point
absorber is close to the scanned surface and deteriorates as it approaches the plane of
illumination. This situation should be contrasted with the traditional point source/point
detector modality (Markel and Schotland 2002b), where the image quality is low for
inhomogeneities located in the centre of a slab and improves when the inhomogeneity
approaches either of the imaging surfaces. For a point inhomogeneity in the centre of a
slab, the image quality is slightly better for the traditional (point source/point detector)
modality (cf Markel and Schotland 2002b).

• Rotating the slab around the sample removes many of the deficiencies of the plane wave
illumination scheme by interchanging the scanned and integrated detection surfaces and
depth and transverse directions. A minimum of four projections is required for such an
interchange.

• When only four rotations are used, a large number of discrete values of the ‘internal’
variable uy must be utilized in the reconstruction. Alternatively, a large number of
projections can be used with a small number of discrete values of uy . The second approach
is much more computationally efficient but requires more complicated measurements. The
quality of images is similar in both cases.

• The plane wave illumination approach allows one to significantly simplify reconstruction
formulae, both in single- and multiple-projection imaging.

• If only a small number of projections is used (two or four) an alternative approach
may be used, which is purely numerical in two dimensions and analytic in one dimension
(Markel and Schotland 2004ba). For a large number of projections, the algorithm reported
here is computationally more efficient.
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R=R0=0.6(L/2)

R=R0=0.5(L/2)

R=R0=0.4(L/2)

R=R0=0.3(L/2)

R=R0=0.7(L/2)

R=R0=0.8(L/2)

R=R0=0.9(L/2)

R=R0=0.6(L/2)

R=R0=0.5(L/2)
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R=R0=0.7(L/2)

R=R0

0

=0.8(L/2)

R=R =0.9(L/2)

(a) (b)

Figure 6. Cylindrical slices illustrating z and ϕ-resolution for zero noise level (a) and for 1%
noise-to-signal ratio (b). The point absorbers are located in the z = 0 plane at radial depths R0 as
indicated. The cylindrical surfaces with radii R = R0 (directly intersecting the inhomogeneity)
are shown as projections onto a plane; the length of the vertical side of each rectangle is equal to
L and of the horizontal side to 2πR. Forty projections, 25 modulation frequencies and 9 discrete
values of uy are used for reconstruction.
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Appendix. Calculation of the functions a(ω, q, m; R) and M1(qz , m)

The function a(ω, q,m;R) is defined by (13). To evaluate the integral, we must specify the
function κ(ω, 0, q; x). Explicit expressions for κ are given in Markel and Schotland (2002a)
for general boundary conditions. In this paper we consider absorbing boundaries for which κ

is given by the expression

κ(ω, 0, q; x) =
(

�∗

D0

)2 sinh[k(L/2 − x)] sinh[Q(L/2 + x)]

sinh(kL) sinh(QL)
, (A.1)

where �∗ = 3D0/c is the transport mean free path, c is the average speed of light in the medium,
k = √

(α0 − iω)/D0 is the complex diffuse wavenumber, Q =
√

q2 + k2 and q = (qy, qz).
Generalization to mixed boundaries of Robin type is straightforward and is not discussed here.
Then, the expression for a(ω, q,m;R) becomes

a(ω, q,m;R) =
(

�∗

D0

)2 1

sinh(kL) sinh(QL)

∫ 2π

0
sinh[k(L/2 − R cos ϕ)]

× sinh[Q(L/2 + R cos ϕ)] exp[i(qyR sin ϕ − mϕ)] dϕ. (A.2)

This can be equivalently rewritten as

a(ω, q,m;R) =
(

�∗

D0

)2 1

4 sinh(kL) sinh(QL)
{exp[(Q + k)L/2]Fm[(Q − k)R, iqyR]

− exp[(−Q + k)L/2]Fm[(−Q − k)R, iqyR]

− exp[(Q − k)L/2]Fm[(Q + k)R, iqyR]

+ exp[(−Q − k)L/2]Fm[(−Q + k)R, iqyR]} (A.3)

where

Fm(u, v) =
∫ 2π

0
exp[u cos ϕ + v sin ϕ − imϕ] dϕ = 2π

(√
u2 + v2

u + iv

)m

Im(
√

u2 + v2),

(A.4)

and Im(x) is the modified Bessel function of the first kind. Note that (A.4) is well defined,
including the case v = iu.

Expressions (A.3) and (A.4) define a(q,m;R). Next, we need to calculate the matrix
elements of M1(qz,m). This integral contains 16 terms of the form

s1s2s3s4π
2(�∗/D0)

2

4 sinh(kL) sinh(QL) sinh(k′L) sinh(Q′L)
exp[(s1k + s2Q + s3k

′ + s4Q
′)L/2]

×



√[
(−s1k + s2Q)2 − q2

y

][
(−s3k′ + s4Q′)2 − (q ′

y)
2
]

(−s1k + s2Q − qy)(−s3k′ + s4Q′ − q ′
y)




m

×
∫ L/2

0
Im

[
R

√
(−s1k + s2Q)2 − q2

y

]
Im

[
R

√
(−s3k′ + s4Q′)2 − (q ′

y)
2
]
R dR

(A.5)

where sk = ±1, the 16 terms correspond to 16 possible permutations of the signs of
sk and the primed variables should be understood as follows: k′ = √

(α0 − iω′)/D0 and

Q′ =
√

(q ′
y)

2 + q2
z + (k′)2. The integral in (A.5) is evaluated with the use of

∫ c

0
xIn(ax)In(bx) dx =




c

a2 − b2
[aIn+1(ac)In(bc) − bIn(ac)In+1(bc)], a �= b,

−c2

2
[I ′

n(ac)]2 +
1

2

(
c2 +

n2

a2

)
I 2
n (ac), a = b.

(A.6)
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This completely defines all the functions necessary for implementation of the multi-projection
reconstruction algorithm.
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