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Radiative relaxation times of optical states in small dielectric particles of arbitrary shape are
calculated in the quasistatic limit up to the second order of perturbation theory, assuming that the
polarization distribution for the optical states is known. The concept of antisymmetrical optical
states, previously developed for a system of discrete dipoles, is generalized for the case of a bulk
dielectric particle. We use the integral form of Maxwell’s equations to obtain a general expansion
of solutions for the polarization function inside a particle in terms of eigenfunctions of the integral
interaction operator. Then we calculate imaginary parts of corresponding eigenvalues, which
determine the radiative relaxation times of optical excitations, treating the non-Hermitian part of
the interaction operator as a perturbation. The imaginary parts of eigenvalues are expanded in
terms of total multipole momenta of corresponding eigenmodes. Particles with special properties
of symmetry can possess polarization modes with very large radiative relaxation time. We also
discuss a possibility of application of the eigenfunction decomposition to numerical calculations of
optical cross-sections for some particles of non-spherical shape.
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I. INTRODUCTION

The problem of radiative relaxation time of optical excitations in bulk dielec-
tric particles or microcavities received much attention in the recent few years
(Ching, Leung and Young 1996; Brorson and Skovgaard 1996; Leung, Liu, Tong
and Young 1993a-c). Relaxation of optical excitation in dielectric particles has
two major reasons. First, energy dissipation into heat can occur in the volume
if the imaginary part of dielectric constant is positive. When the latter is very
small (mathematically, it can be equal to zero), relaxation due to radiative reac-
tion becomes important. In this paper, we consider only the radiative part of the
relaxation time. As a result of the radiative reaction, any optical excitation in a
dielectrical particle is inevitably “leaky” (Ching et al. 1996), and the correspond-
ing interaction operator (an analog of Hamiltonian) is non-Hermitian. As a result,
the excitation modes of a “leaky” particle do not form, in general, an orthonor-
mal basis of states. Due to this reason, such excitation modes were referred to as
“quasi-normal modes” (Ching, et al. 1996; Leung, et al. 1993a-c).

Leung et al. (1993) considered the quasi-normal modes for scalar waves in a one-
dimensional leaky cavity. Ching et al. (1996) presented a perturbation technique
to calculate frequency shifts and quality factors (proportional to inverse radiative
relaxation times) of quasi-normal modes of a slightly distorted microsphere (the
results for a perfect sphere are known from the exact Mie solution). But the
general problem of radiative relaxation time of optical excitations in particles of
arbitrary shape is very complicated and has not been solved completely, due to
the fact that calculation of electromagnetic modes inside an irregular particle is a
difficult problem itself.

However, if the linear size of a particle R is much smaller than the radiation
wavelength in vacuum λ, corresponding to some specific frequency ω (λ = 2πc/ω),
the problem is somewhat simplified and separated into two independent parts.
First, we can find the eigenmodes (in the zero approximation, in the frame of
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pure electrostatics), e.g., numerically. Then we can calculate relaxation time for
a given eigenmode treating the non-Hermitian part of interaction operator as a
perturbation. In the present paper, the latter problem is solved up to the second
order of the perturbation theory. Since the electromagnetic modes are supposed
to be known, we do not consider any specific particle geometry. Our main goal is
to calculate radiative relaxation time for an electromagnetic mode with a known
distribution of electric field (or, equivalently, polarization) inside the particle.
Note that in the zero approximation of the quasi-static limit the modes are ω-
independent.

Intuitively, it is clear that an eigenmode with maximum possible total dipole
moment would have the smallest relaxation time. On the other hand, eigenmodes
with zero total dipole moment can have anomalously large relaxation times. The
dependence of relaxation time on dipole configuration for quantum transitions
between collective states of ensembles of particles (atoms) coupled by electro-
magnetic dipole-dipole interaction has been intensively studied (see, for example,
Rehler and Eberly 1971; Bonifacio, Schwendimann and Haake 1971a-b; Zaitsev,
Malyshev and Trifonov 1983; Avetisyan, Zaitsev and Malyshev 1985) since Dicke
(1954) introduced the phenomenon of superradiance. One of the main results of
the theory of superradiance is that the rate of spontaneous radiation of a collective
state of N atoms can be, under certain conditions, N times larger than that of an
isolated atom. If the radiating system is small compared to λ, the superradiant
transitions are characterized by a huge total transitional dipole moment.

A phenomenon wherein the collective relaxation time is significantly increased
compared to that of an isolated atom was first discussed by Sipe and Van Kranen-
donk (1974) for a pair of polarizable atoms separated by a distance much smaller
than λ in and excited by a plane monochromatic wave propagating along the line
connecting the atoms, and by Sipe and Van Kranendonk (1975) for a spatially
dispersive slab of polarizable atoms. This phenomenon was referred to by Sipe
and Van Kranendonk as antiresonance. A general solution for a pair of polarazi-
ble particles excited by a plane wave with arbitrary wavelength, polarization and
direction of propagation was also obtain by Markel (1992); this solution demon-
strated existence of antiresonances polarized both parallel and perpendicular to
the line connecting the particles. Since the increase of relaxation time due to co-
herent dipole-dipole interaction of atoms is analogous to the superradiance effect
with respect to its physical origin, but directly opposite to it with respect to the
outcome, we will call this effect “antisuperradiance”.

In a recent paper (Markel, 1995) the antisuperradiance effect was considered for
ensembles of discrete polarizable particles; this system was assumed to be small
compared to λ, but otherwise arbitrary. It was shown that the antisuperradiance
can occur in ensembles with special properties of symmetry, and the radiative re-
laxation time was calculated in the first order of perturbation theory with respect
to the small parameter R/λ, where R is the characteristic linear size of the sys-
tem. It was also shown that the characteristic factor of increasing of the radiative
relaxation time is (λ/R)2 for resonances with zero total dipole moment, and can
be, in principle, even larger for resonances with higher order of antisymmetricity.
Note that the requirement λ ≫ R is not a principal one for observing the antisu-
perradiance. It allows, however, to obtain results which are not restricted to some
specific geometry. The antisuperradiance, as well as the superradiance, can be ob-
served in systems not small compared to the wavelength, such as an infinite slab
(Sipe et al. 1975) and a finite (Freedhoff and Van Kranendonk 1967) or an infinite
chain (Markel 1993) of polarizable atoms. But the parameter characterizing the
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collective relaxation time is different in this case from (λ/R)2.
The theory developed in (Markel 1995) was based on analysis of the coupled-

dipole equation which was first proposed by Purcell and Pennypacker (1973) and
extensively used in different contexts after that (see, for instance, Singham and
Salzman 1986; Singham and Bohren 1988; Draine 1988; Taubenblatt and Tran
1993; Markel, Shalaev, Stechel, Kim and Armstrong 1996; Shalaev, Poliakov,
Markel 1996). This equation couples linearly transitional dipole momenta of all
the particles to each other and to the external field. It can be viewed as a linear
operator equation of the form

|d〉 = χ[|E〉+ W|d〉] , (1)

where |d〉 is the vector of dipole momenta, |E〉 is the vector of the incident field, W is
a non-Hermitian interaction operator and χ is the polarizability of an individual
particle. The non-Hermitian part of W can be considered as a perturbation if
R ≪ λ. In (Markel 1995) the perturbation theory was built to the first order.
This allowed to relate the radiative relaxation time of an excitation to its total
dipole moment.
It is important, that equation (1) is essentially analogous to the Maxwell equa-

tions (written in the integral form) for the excitation of a bulk particle with a
scalar and uniform dielectric permittivity ǫ. The specific form of the interaction
operator is, of course, different in these two cases, but the structure of the equa-
tions, and some properties of eigenfunctions and eigenvalues which allow us to
build the perturbation theory and to relate imaginary parts of eigenvalues to the
multipole momenta of excitations stay the same.
Based on the above observation, we show in this paper that the antisymmetrical

optical states and the antisuperradiance are not exclusive properties of discrete
systems; such states can be adequately introduced for optical excitations of bulk
dielectric particles. Moreover, the continuous description developed below allows
to identify the physical origin of the higher-order corrections to the eigenvalues,
and is somewhat simpler and more straightforward.
In Section II we review the integral form of Maxwell equations and the ex-

pressions for optical cross-sections. In Section III we derive the eigenfunction
expansion of solutions for the polarization function and for optical cross-sections.
In this Section we also discuss a possibility of application of the eigenfunction
expansion to numerical calculations of optical cross-sections for light scattering
from some non-spherical particles. In Section IV we discuss time evolution in
order to relate the relaxation time of excitations to the eigenvalues introduced in
the previous Section. In Section V we build the perturbation theory for eigen-
values considering the non-Hermitian part of the interaction operator as a small
perturbation. In this Section we obtain our main results concerning the collective
relaxation time of optical excitations and their relation to multipole momenta
and symmetry properties of excitations. Finally, Section VI contains concluding
remarks.

II. BASIC EQUATIONS

Let us consider the general problem of interaction of an incident monochromatic
plane wave,

Einc(r, t) = E0 exp(ik · r− iωt) (2)



4

with a material (dielectric) particle occupying some fixed volume V in space and
surrounded by vacuum. We do not make any assumptions regarding V at this
point except that it is finite; in particular, V can be discontinuous. The dielectric
permittivity of the particle, ǫ = ǫ(ω), is assumed to be scalar and uniform in V
and equal to unity outside V . The time dependence factor, exp(−iωt), will be
omitted everywhere below, except Section IV, where we consider time evolution.
The integral form of Maxwell equations for polarization function P(r) in the

frequency domain is (see, for example, Keller and Bustmante 1986):

P(r) = κ

[

Einc(r) +

∫

V

Ĝ(r− r′)P(r′)dr′
]

, r ∈ V , (3)

κ = (3/4π)[(ǫ− 1)/(ǫ+ 2)] , (4)

where dr is an element of volume and P(r) = 0 outside the region V . The tensor

Ĝ in (3) is the regular part of the Green’s function of the vector wave equation.
It is a tensor of second rank defined by the general relations for dipole radiation
(see, for example, Jackson 1975):

Gαβ = k3[A(kr)δαβ +B(kr)rαrβ/r
2] , (5)

A(x) = [x−1 + ix−2 − x−3] exp(ix) , (6)

B(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix) , (7)

where the Greek indices denote the Cartesian components and k = ω/c.
Equation (3) is an integral analog of the coupled-dipole equation, studied

in (Markel 1995), except for the fact that the polarizability constant has been
changed for the coupling constant κ defined by (4). Note that although the
polarizability of a particle should be always complex, even for an absolutely
nonabsorbing particle (Van Kranendonk and Sipe 1977; Draine 1988; Draine and
Goodman 1993), there is no such a requirement for κ. A purely real κ corresponds
to the case of no absorption, which we will be mostly concerned with.
Given the polarization function P(r), the scattering amplitude f(s) is expressed

as

f(s) = k2

∫

V

[P(r) − (P(r) · s)s] exp(−iks · r)dr , (8)

s being a unit vector in the direction of scattering.
The extinction, scattering, and absorption cross sections, σe, σs, and σa respec-

tively, can be found from the optical theorem:

σe =
4πIm[f(k/k) ·E0]

k |E0|2
, (9)

σs =
1

|E0|2
∫

V

|f(s)|2dΩ , (10)

σa = σe − σs , (11)

where we have assumed excitation by the plane wave of the form (2) and dΩ is an
element of solid angle in the direction of scattering s.
The expression for the extinction cross-section follows readily from (9) and (8):

σe =
4πk

|E0|2
Im

∫

V

P(r) · E∗
inc

(r)dr . (12)
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For the scattering cross-section we have from (10,8):

σs =
k4

|E0|2
∫

V

dr

∫

V

dr′
∫

4π

dΩ [P(r)− (P(r) · s)s] · [P(r′)− (P(r′) · s)s]∗

× exp(−iks · (r− r′)) . (13)

The integration over Ω can be performed directly (see Markel 1995 for the details)
and yields

σs =
4πk

|E0|2
Im

∫

V

dr

∫

V

dr′ P∗(r) · Ĝ(r− r′)P(r′) , (14)

where Ĝ is the operator defined by (5-7) and we have moved the sign of complex

conjugation from P(r′) to P(r) (which is valid because Ĝ(r−r′) = Ĝ(r′−r).) The
integral over dr′ in (14) can be expressed in terms of the incident field Einc and the
polarization function P through equation (3). The final result for the scattering
cross-section follows readily from (14) and (3), but it is more convenient to adduce
the final result for the absorption cross-section, instead of the scattering, using
expressions (11) and (12):

σa =
4πky

(c)
a

|E0|2
∫

V

P∗(r) ·P(r)dr , (15)

y(c)
a = −Im(1/κ) ≡ 4πImǫ

|ǫ− 1|2 . (16)

The constant y
(c)
a appearing in (15) is a positively defined quantity for any phys-

ically reasonable permittivity ǫ (that is, if Imǫ > 0.) Following (Markel 1995),

we can call y
(c)
a the absorption strength parameter. The superscript (c) re-

lates this constant to the continuous medium and distinguishes it from the ab-
sorption strength parameter for a discrete system defined in (Markel 1995) as
ya = −Im(1/χ)− 2k3/3, where χ is the polarizability of a point-like particle. Ex-
pression (15) for the absorption is equivalent to its counterpart in the discrete case

with ya being replaced by y
(c)
a and summation by integration. The parameter y

(c)
a

is dimensionless, while ya has the dimension of inverse volume. This is explained
by the fact that the integration according to (15), compared to the summation of
the form

∑

P∗
i ·Pi, contains the additional factor dr which has the dimensionality

of volume.

III. EIGENFUNCTION EXPANSION

Let us rewrite integral equation (3) in the operator form. First, we introduce
an infinite-dimensional Hilbert space L2(V ) of vector functions, which are square-
integrable in the (finite) region V . All physically reasonable polarization functions
P(r) must be elements of this space (according to (15), divergence of the integral
of |P(r)|2 would mean an infinite rate of absorption.) We denote the element of
L2(V ) that corresponds to P(r) as |P〉 and the element of L2(V ) that corresponds
to Einc(r) as |E〉. Also we define a linear integral operator H, which maps L2(V )
onto itself according to the rule

H|f〉 =
∫

V

Ĝ(r− r′)f(r′)dr′ , r ∈ V . (17)
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We can easily verify that if |f〉 is an element of L2(V ), then H|f〉 is also an element
of L2(V ) by considering the convergence of the integral of |f |2 and using the

slowest-decaying term in the definition (5-7) of Ĝ.
Further, we can define a scalar product of two vectors |f〉 and |g〉 and a norm

in L2(V ) as

〈g|f〉 =
∫

V

g∗(r) · f(r)dr , (18)

||f|| = [〈f|f〉]1/2 , (19)

respectively.
Using the above notations, we can rewrite (3) as

|P〉 = κ[|E〉+ H|P〉] . (20)

The expressions for the optical cross-sections take the following forms:

σe =
4πk

|E0|2
Im〈E|P〉 , σa =

4πky
(c)
a

|E0|2
〈P|P〉 . (21)

The operator H is an infinite-dimensional symmetrical operator. It is a “mixed”
operator in the sense that it is both tensorial and integral. The symmetricity of
H should be understood as the following property of the kernel Ĝ:

Ĝ(r) = Ĝ(−r), Gαβ(r) = Gβα(r) . (22)

These two equalities provide that for two arbitrary elements of L2(V ), |f〉 and |g〉,

〈f∗|H|g〉 = 〈g∗|H|f〉 , (23)

where the star denotes complex conjugation of the corresponding function 1. Equa-
tion (23) can be viewed as a generalized symmetricity condition for H. It can be
used to prove that if |f〉 and |g〉 are two different (linear independent) eigenfunc-
tions of H, they obey 〈f∗|g〉 = 0 (Markel 1995), which is an analog of the orthog-
onality condition for eigenfunctions of Hermitian operators (which is 〈f|g〉 = 0.)
This property, in turn, will be used below to expand the solution of equation (20)
in terms of eigenfunctions of the operator H.
Let us denote the infinite set of eigenfunctions of H as |Pn〉, n = 1, 2..., and the

corresponding eigenvalues as hn:

H|Pn〉 = hn|Pn〉 , (24)

〈P∗n|Pm〉 = 0 if n 6= m . (25)

It is natural to assume that the set of |Pn〉 covers the whole space L2(V ) and
constitutes its basis. This can be not so only if H has defective eigenvalue(s) (i.e.,
the geometrical multiplicity of an eigenvalue is less than its algebraic multiplicity
(Chatelin 1993).) However, if we make a physically reasonable assumption, that
the only possible source of degeneracy is spatial symmetry of the volume V , the

1 In our notations the symbol 〈f| stands for the complex conjugate of the function f , and hence,
〈f∗| is, in fact, the function f itself. This system of notations may seem to be artificial, but
we have decided to follow the standard Dirac notations, though they are more appropriate for
Hermitian operators, while the operator H defined by (17),(5-7) is not Hermitian in general.
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eigenvalues of H can not be defective. In the latter case all the eigenfunctions
associated with a degenerate eigenvalue can be obtained one from another by
different rotations and reflections in space, and, evidently, are linear independent.
Note that the orthogonality condition (25) can be satisfied even if both |Pm〉 and
|Pn〉 belong to the same degenerate eigenvalue but are linearly independent.
In order to define the eigenfunctions completely, one must specify some normal-

ization rule. We will use here the following normalization:

〈Pn|Pn〉 = 〈E|E〉 = |E0|2V . (26)

We emphasize, that 〈P∗n|Pn〉 6= 〈Pn|Pn〉, and the former value can be, in general,
complex. Normalization (26) provides the correct dimensionality of the function
Pn(r) (the counterpart of |Pn〉), which is the dimensionality of polarization, or,
equivalently, of the electric field.
Now we can use the general decomposition of |P〉 in terms of the eigenfunctions

|Pn〉, which, with the account of the orthogonality rule (25), takes the form

|P〉 =
∞
∑

n=1

|Pn〉〈P∗n|P〉
〈P∗n|Pn〉

, (27)

and substitute it into the main equation (20) to obtain

|P〉 =
∞
∑

n=1

|Pn〉〈P∗n|E〉
〈P∗n|Pn〉[1/κ− hn]

. (28)

Finally, the expressions for the optical cross-sections, which follow from (28) and
(21), are quite similar to those obtained in (Markel 1995) for the discrete case:

σe =
4πk

|E0|2
Im

∞
∑

n=1

〈E|Pn〉〈P∗n|E〉
〈P∗n|Pn〉[1/κ− hn]

, (29)

σa =
4πky

(c)
a

|E0|2
∞
∑

m 6=n

〈E|P∗m〉〈Pm|Pn〉〈P∗n|E〉
〈Pm|P∗m〉〈P∗n|Pn〉[1/κ− hn][1/κ− hm]∗

. (30)

In conclusion of this Section let us consider a possibility of employing the decom-
position (28) for numerical calculations. In many cases (especially, if the volume V
is “geometrically regular”, i.e., it can be described by one of many well-known geo-
metrical 3-dimensional figures) some orthonormal basis of functions |ξn〉 is known
or can be easily found. Of course, these functions would be different for different
shapes of V , because the orthonormality condition 〈ξm|ξn〉 = δmn involves an
integration over the volume V . Note also, that the basis of |ξn〉 can be chosen to
be orthonormal in the usual sense, unlike the basis of eigenfunctions of H.
In some approximation one can assume that the first N basis functions are

enough to expand the actual polarization function |P〉 with a sufficient precision.
For example, the basis functions of higher order can oscillate too fast, while the
space derivatives of polarization are anticipated to be limited. Then one can build
a square matrix 〈ξm|H|ξn〉 of the order N × N . The elements of this matrix can
be obtained by analytical or, if that is not possible, by numerical integration.
Now, that we have a matrix representation of the operator H, the problem of
finding its eigenvalues and eigenfunctions is reduced to diagonalization of the
square matrix 〈ξm|H|ξn〉, which can be done by the methods of linear algebra.
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After that, the polarization function can be found according to (28) and any
physically measurable quantity can be found from the polarization function.
The virtue of this method is that the matrix elements 〈ξm|H|ξn〉 depend, in gen-

eral, only on the shape of the particle and the frequency of the incident light, but
do not depend on polarization of the incident light and the value of dielectric per-
mittivity ǫ. Therefore, once the matrix 〈ξm|H|ξn〉 is found and diagonalized (this
is the most computationally intensive part), the solution can be found for different
materials (different values of ǫ) and different polarizations of the incident light by
a simple summation. Moreover, in the quasi-static case, when the wavelength of
the incident light is much larger than the size of the particle, the elements of this
matrix do not depend on the frequency ω as well. They also become real 2, which,
in addition, simplifies the numerical procedure for diagonalization.

IV. TIME DEPENDENCE

In order to establish the relation between the radiative relaxation time of an
excitation and the imaginary parts of eigenvalues hn of the operator H, let us
consider the time evolution of the polarization function in the case when the
incident field is turned off abruptly at some moment of time. Namely, consider
the incident wave of the form

Einc(x, t) =

{

E0 exp(ik0x− iω0t+ αt) if t < x/c
0 if t ≥ x/c

. (31)

Here we have assumed that the incident beam propagates along the x direction,
α is some small positive constant, which indicates that the field has been “turned
on” sometimes in the past (and later it was “turned off”), and k0 = ω0/c.
The Fourier transformation of (31) gives

Einc(x, ω) =
−i E0√

2π

exp(iωx/c+ αx/c)

ω − (ω0 + iα)
. (32)

Note that the positive value of α allows to make the inverse Fourier transformation
correctly. The pole ω = ω0 + iα lies in the upper complex semi-plane, and for
t > x/c we must close the integration contour of the inverse transformation in
the lower semi-plane, so that the integration gives zero, in accordance with (31).
Analogously, for t < x/c we must close the integration contour in the upper semi-
plane, which returns us the original function (31).
The solution (28) is, in fact, the ω-dependent Fourier component of the time-

dependent polarization function. The dependence of the free term |E〉 on ω is
defined by the Fourier transformation of the time-dependent incident field (in our
case, by formula (32)), so that we can write

|E(ω)〉 = −i |E0(ω)〉√
2π

1

ω − (ω0 + iα)
, (33)

2 As we will see in Section V (equation (59)), the scattering cross-section is determined by the
imaginary parts of eigenvalues and, eventually, by the imaginary parts of the elements of the
matrix 〈ξm|H|ξn〉. The latter are non-zero and depend on ω even in the quasi-static approxi-
mation. However, this dependence is trivial (see expressions (48),(54) for the matrix elements
below) and does not require actual diagonalization of the ω-dependent matrix. Instead, one
can use only the real parts of 〈ξm|H|ξn〉 (which are ω-independent in the quasi-static case)
for the diagonalization procedure, and then use the calculated eigenvectors and the relations
quoted above to obtain the imaginary parts of the eigenvalues.
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where |E0(ω)〉 has no singularities in the complex ω-plane. Now the time-
dependent solution can be obtained by the inverse Fourier transformation:

|P(t)〉 = −i

2π

∞
∑

n=1

∞
∫

−∞

|Pn(ω)〉〈P∗n(ω)|E0(ω)〉
〈P∗n(ω)|Pn(ω)〉

exp(−iωt)dω

[ω − (ω0 + iα)][ 1
κ(ω) − hn(ω)]

. (34)

Note that the eigenfunctions |Pn(ω)〉 depend on ω, since the operator H depends
on ω itself. However, it is reasonable to assume that the factor

|Pn(ω)〉〈P∗n(ω)|E0(ω)〉
〈P∗n(ω)|Pn(ω)〉

has no singularities because 〈P∗n(ω)|Pn(ω)〉 never turns to zero 3.
Further, we can conclude that the factor [1/κ(ω)− hn(ω)]

−1 can not have sin-
gularities in the upper complex semi-plane. Otherwise, it would mean that the
turn-off of the excitation at the moment t = xl/c (let xl be the x coordinate of
the “most left” point of the particle) affects the polarization at t < xl/c. On the
other hand, the polarization must have some “inertia” and can not become zero
exactly at the moment t = xl/c. This means that the above factor must have at
least one pole in the lower semi-plane.
Strictly speaking, the concept of the relaxation time is valid only if the exci-

tation decays slowly compared to the characteristic time scale of its oscillations.
Therefore, we will adopt at this point the resonance approximation. Namely, we
will assume, that κ(ω) is purely real (since we do not want to consider the relax-
ation time related to the absorption in the volume, but only its radiative part)
and define the shifted resonance frequency ωn of the nth eigenmode as a solution
of the equation

1/κ(ωn)− Re (hn(ωn)) = 0 . (35)

For simplicity, we assume that this equation has a unique solution for every n. Fur-
ther, the prevailing contributions to the integrals in (34) are given by the intervals
of ω that are close to the corresponding resonance frequency ωn, so that we can
use the first term of the Taylor expansion of the resonance denominator to obtain
1/κ(ω)− hn(ω) ∼= β(ωn − ω)− i Im (hn(ωn)), where β is some positive constant.
Now the integrated functions in (34) possess poles at ω = ωn − i Im (hn(ωn)) /β.
The value of Im (hn(ωn)) /β must be small compared to ωn in order the relax-
ation to be slow. Therefore, we can use only the real part of the poles everywhere,
except for the exponent and the denominator, as shown below:

−i

2π

∞
∫

−∞

|Pn(ω)〉〈P∗n(ω)|E0(ω)〉
〈P∗n(ω)|Pn(ω)〉

exp(−iωt)dω

[ω − (ω0 + iα)][β(ωn − ω)− i Im (hn(ωn))]

=
|Pn(ωn)〉〈P∗n(ωn)|E0(ωn)〉

〈P∗n(ωn)|Pn(ωn)〉
exp [−iωnt− Im (hn(ωn)) t/β]

β(ω0 − ωn) + i Im (hn(ωn))
. (36)

The value of α was set to zero in the right-hand part of this equation, since it has
no significance except the indication of the direction of bypassing the poles. The

3 There is a special case of the so-called isotropic eigenfunction, i.e. |Pn〉 6= 0 and
〈P∗

n
(ω)|Pn(ω)〉 = 0. However, as is known from the theory of linear operators, an eigenfunction

can not be isotropic if it is not degenerate.
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factor iImhn(ωn) ensures that the denominator in the right-hand part does not
turn to zero if ω0 coincides with one of the resonance frequencies ωn.

By analyzing the exponential factor in (36), we find that the relaxation time of
nth eigenmode can be defined as

τn =
β

Im (hn(ωn))
. (37)

The constant β is common for all the eigenmodes, and can be found if the spe-
cific form of ǫ(ω) is known. The relaxation time depends on the nth resonance
frequency ωn, but not on ω0. In our simplified consideration we assumed, that
there is only one (unshifted) resonance frequency, but in practice there might be
several of them.

In this Section we have made an attempt to make the derivation as general as
possible. One can always employ some theoretical model for molecular polarizabil-
ity and obtain some specific form of ǫ(ω) and κ(ω) (or use experimental data for
ǫ(ω)). However, it is important to keep in mind that the famous Clausius-Mossotti
relation in its usual form does not take into account the radiative reaction and will
lead to incorrect results. For example, it follows from χmol = (3/4πρ)(ǫ−1)/(ǫ+2),
that, if ǫ is purely real, the molecular polarizability χmol is also purely real. But
it is clear, that an isolated molecule will always scatter light and, therefore, χmol

must have a nonzero imaginary part. In order to overcome this difficulty, one can
use the modified Clausius-Mossotti relation which reads (Van Kranendonk et al.
1977; Draine 1988; Draine et al. 1993):

3

4πρ

ǫ − 1

ǫ + 2
=

1

1/χmol + i2k3/3
. (38)

The last relation is self-consistent, because the case of no absorption corresponds
to Im(1/χmol) = −2k3/3 and Imǫ = 0.

V. PERTURBATION OF EIGENVALUES

If the wavelength of the incident radiation is much larger than the linear di-
mensions of region V we can treat the imaginary part of the operator H as a
perturbation and expand H according to

H = HR + i HI , (39)

HI = H
(1)
I + H

(2)
I + H

(3)
I + ... , (40)

where HR and HI are real symmetrical (and, hence, Hermitian) operators, and H
(l)
I

is the lth term in the Taylor expansion of HI . The first two terms of this expansion
are defined by the following relations, which can be derived from (5-7) and (17):

H
(1)
I |f〉 = 2k3

3

∫

V

f(r′)dr′ , (41)

H
(2)
I |f〉 = 2k3

3

∫

V

(k |r− r′|)2
10

[

−2f(r′) +
(r− r′)[(r− r′) · f(r′)]

|r− r′|2
]

dr′ . (42)
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Now we can build the usual perturbation theory, starting from the orthonormal

basis |P(0)n 〉 of the (unperturbed) eigenfunctions of HR and expanding the eigen-
functions and eigenvalues of H in the usual manner:

|Pn〉 = |P(0)n 〉+ |P(1)n 〉+ |P(2)n 〉+ ... , (43)

hn = h(0)
n + h(1)

n + h(2)
n + ... , (44)

where h
(0)
n are the purely real eigenvalues of the Hermitian operator HR (HR|P(0)n 〉 =

h
(0)
n |P(0)n 〉), and the upper indices indicate the order of correction.
Since we are interested in the imaginary parts of eigenvalues, which govern the

relaxation times according to (37), we do not need to know the values of h
(0)
n . The

higher corrections follow from the perturbation theory 4, with the account of the
normalization rule (26):

h(1)
n = i

〈P(0)n |H(1)I |P(0)n 〉
|E0|2V

, (45)

h(2)
n =

1

|E0|2V



−
∞
∑

m 6=n

|〈P(0)m |H(1)I |P(0)n 〉|2

h
(0)
n − h

(0)
m

+ i〈P(0)n |H(2)I |P(0)n 〉



 , (46)

so that

Imhn =
1

|E0|2V
[〈P(0)n |H(1)I |P(0)n 〉+ 〈P(0)n |H(2)I |P(0)n 〉+ ...] . (47)

In order to identify physical meaning of these matrix elements, let us consider

polarization function P
(0)
n (r) corresponding to the nth unperturbed eigenvector

|P(0)n 〉. From the definition of H
(1)
I (41) we have

〈P(0)n |H(1)I |Pn〉 =
2k3

3

∫

V

dr

∫

V

dr′ P(0)∗
n (r) ·P(0)

n (r′) ≡ 2k3

3
|Dn|2 , (48)

where we have introduced the total dipole moment of the nth eigenmode Dn,
according to the rule

Dn =

∫

V

P(0)
n (r)dr . (49)

An antisymmetrical state by its definition, is the state with Dn = 0. If such a
state exists, we must calculate the second-order correction to hn in order to find
the relaxation time. It is clear, that the second-order correction is much smaller,
than the first order one. The parameter which is characteristic to the ratio of the
second-order and the first-order corrections can be easily seen from comparison
of (41) and (42) and is equal to (R/λ)2, where R is the characteristic linear
dimension of the particle. Thus the relaxation time in an antisymmetrical state
can be (λ/R)2 times larger than in a typical state with nonzero dipole moment.

4 For simplicity we consider only the non-degenerate perturbation theory. However, as was
shown in (Markel 1995), degeneracy does not change the results for the antisymmetrical states.
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We can assert that a particle with special properties of symmetry must always
possess antisymmetrical eigenstate(s) (see footnote 1).
It should be noted, that the matrix element (48) depends on frequency. In order

to obtain the relaxation time according to (37) one needs to set ω = ωn. If we
use the quasi-static expression for HR (by omitting the terms proportional to x−1

and x−2 and setting exp(ix) = 1 in (6,7)), Dn is frequency independent, so that
the relaxation time becomes proportional to ω−3

n .
Since the first order correction to Imhn is determined by the total dipole moment

of the eigenmode, it is natural to anticipate that the second order correction should
be governed by quadrupole and magneto-dipole momenta. In order to verify this

assumption we analyze the expression for the matrix element 〈P(0)n |H(2)I |P(0)n 〉,

〈P(0)n |H(2)I |P(0)n 〉 = 2k3

3

∫

V

dr

∫

V

dr′
(k |r− r′|)2

10

×
[

−2P(0)∗
n (r) ·P(0)

n (r′) +
[(r− r′) ·P(0)∗

n (r)][(r − r′) ·P(0)
n (r′)]

|r− r′|2

]

, (50)

and the expressions for quadrupole and magneto-dipole momenta of the nth eigen-

mode in terms of polarization function P
(0)
n (r). The components of the quadrupole

moment tensor Qn,αβ are given by

Qn,αβ = −
∫

V

[∇ ·P(0)
n (r)][3rαrβ − δαβr

2]dr . (51)

Integrating (51) by parts, we obtain:

Qn,αβ = −
∫

V

[

3
(

rαP
(0)
n,β(r) + rβP

(0)
n,α(r)

)

− 2δαβ

(

P(0)
n (r) · r

)]

dr . (52)

The magneto-dipole moment Mn is expressed with the use of the continuity equa-
tion as

Mn =
ik

2

∫

V

[r×P(0)
n (r)]dr . (53)

Comparing (52,53) with (50), we find that the matrix element 〈P(0)n |H(2)I |P(0)n 〉 can
be expressed as

〈P(0)n |H(2)I |P(0)n 〉 = 2k3

3

[

|Mn|2 + (k2/120)|Qn|2 + (k2/5)Re [D∗
n ·On]

]

, (54)

where

|Mn|2 =
∑

α

Mn,αM
∗
n,α , (55)

|Qn|2 =
∑

α,β

Qn,αβQ
∗
n,βα , (56)

On =

∫

V

[(

r ·P(0)
n (r)

)

r− 2r2P(0)
n (r)

]

dr . (57)

The first two terms in (54) are convolutions of the elements of the magneto-dipole
and quadrupole momenta of the nth eigenmode. The third term is, in general, the
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same order of magnitude as the first two, but it disappears in an antisymmetrical
state. It would be logically to assume, that the value On is a convolution of the
elements of the electrical octupole moment of the nth eigenmode.

As one can see from (50), the matrix element 〈P(0)n |H(2)I |P(0)n 〉 does not depend on
the choice of the origin of the coordinate system, i.e., it is invariant with respect
to the transformation r → r+a where a is a constant vector. The expression (54)
is also invariant with respect to this transformation, but the individual terms in
(54) can depend on a. However, if Dn = 0, both Qn and Mn do not depend on a,
as it can be seen from their definitions (51-53). It corresponds to the well-known
fact that quadrupole and magneto-dipole momenta of a system of charges do not
depend on the choice of the origin of coordinates if the total dipole moment is
equal to zero. The vector On still depends on a, even if Dn = 0. But, in this

case, it does not influence the value of matrix element 〈P(0)n |H(2)I |P(0)n 〉. As one can
expect, On becomes invariant if both Qn and Mn are equal to zero.
If not only Dn, but also Mn and Qn are equal to zero, we have a state of a

higher order of antisymmetricity. In this case one needs to calculate the third-order
correction to hn in order to find the relaxation time. Obviously, the third-order
correction is proportional to the small factor (R/λ)4, so that the relaxation time
in such an eigenstate becomes proportional to (λ/R)4. We can generalize this
dependence and state that if an eigenstate is of lth order of antisymmetricity,
which means that the electric 2l-pole and magnetic (2l− 2)-pole momenta of the
eigenstate are equal to zero, the relaxation time is proportional to (λ/R)2l.
Now let us turn to the situation, when the dipole moment of an excitation

is large, contrary to the case of antisymmetrical states. As it can be easily seen
from (49) and the normalization rule (26), the maximum possible value of |Dn|2 is
|E0|2V 2 and, consequently, the maximum possible value of Imhn is 2(k3V )/3. The
corresponding relaxation time becomes proportional to 1/V . This is in agreement
with the result of the theory of superradiance, which states that the relaxation
time is proportional to the inverse number of atoms (if we assume that the number
of atoms is proportional to the volume V .) Note that in order to achieve the
maximum value of |Dn|2, the polarization inside the volume must be uniform.
This is the analog of the requirement, that the density matrix of all atoms is the
same, which is used in the quantum theory of superradiance (Zaitsev, Malyshev
and Trifonov 1983).
Finally, the zero-order expressions for the absorption and scattering cross-

sections follow from (29), (30), (11) and the orthogonality of the set of |P(0)n 〉
(the exact eigenvectors are not orthogonal in the usual sense, see equation (25).)
These expressions are similar to their counterparts in the discrete case that are
found in (Markel 1995):

σ(0)
a =

4πk

|E0|2
∞
∑

n=1

|〈E|P(0)n 〉|2 y
(c)
a

|1/κ− hn|2
, (58)

σ(0)
s =

4πk

|E0|2
∞
∑

n=1

|〈E|P(0)n 〉|2 Imhn

|1/κ− hn|2
. (59)

In the stationary regime of excitation by the incident wave (2) all the quantities in
the right-hand sides of these equations should be taken at the frequency ω. Note
that we have left the exact eigenvalues in the zero-order expressions for the cross-
sections. This was done because the terms in the expansion for the scattering
cross-section are proportional to the imaginary parts of eigenvalues, Imhn. These
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values are equal to zero in the zero order of the perturbation theory, and in the
first order of the perturbation theory if the state is antisymmetrical.

VI. DISCUSSION

The main result of this paper is expression for radiative relaxation time of an
optical excitation in a bulk dielectric particle. The relaxation time is defined by
the imaginary part of the corresponding eigenvalue hn according to (37). The
constant β appearing in (37) can be found for any specific geometry and material
if the dielectric constant ǫ(ω) and the resonance frequency ωn for this excitation
mode are known. The expressions for the imaginary parts of eigenvalues, hn,
are given in (47,48,54) with the multipole momenta defined in (49,55,56,57). We
emphasize that the problem of calculation of ωn, as well as multipole momenta
of a specific eigenmode, can be solved numerically for any specific geometry and
is not considered in this paper. An approach based on pure electrostatics can
be used for such calculation. The electrostatic solution itself, however, carries no
information about radiative relaxation.
We showed that the relaxation time of an optical excitation of a bulk dielectric

particle is defined by its multipole momenta. This result is analogous in its nature
to the well-known fact from the quantum theory of radiation. We know that
an optical transition takes more time, if the transitional dipole moment is zero.
However, the theory build here uses only classical language.
It is important, that the theoretical approach developed in this paper embraces

both the superradiance (the relaxation time is proportional to the inverse number
of particles, or, equivalently, the inverse occupied volume) and the antisuperra-
diance (the relaxation time is proportional to (λ/R)2.) These two cases differ
only in the symmetry properties of the polarization function. For the superra-
diance, the polarization function is uniform and the total dipole moment of the
particle reaches its maximum possible value, while for the antisuperradiance the
polarization function is antisymmetrical and the total dipole moment is equal to
zero.
The approach based on the eigenfunction decomposition of solutions of the

Maxwell equations can be useful for practical problem solving. In Section III
we proposed a numerical algorithm based on an approximation of replacing the
infinite-dimensional interaction operator by a finite-dimensional square matrix.
This research was supported in part by EPA under Grant R822658-01-0 and by

NSF under Grant DMR-9500258.
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