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Homogenization of electromagnetic periodic composites

is treated as a two-scale problem and solved

by approximating the fields on both scales with

eigenmodes that satisfy Maxwell’s equations and

boundary conditions as accurately as possible. Built

into this homogenization methodology is an error

indicator whose value characterizes the accuracy of

homogenization. The proposed theory allows one to

define not only bulk, but also position-dependent

material parameters (e.g., in proximity to a physical

boundary) and to quantify the trade-off between

the accuracy of homogenization and its range of

applicability to various illumination conditions.

1. Introduction

Fields scattered by a composite consisting of many

elementary cells are difficult to compute. The practical

objective of a homogenization theory is to replace the

composite with an equivalent homogeneous body that

produces approximately the same reflected/transmitted

fields. The material tensor M of this equivalent sample

is either constant within its volume or, more generally, is

allowed to vary, particularly, near the physical interface.

The relevant concept of transition layers has been

discussed by Simovski [1,2].

Classical approaches to homogenization are asymptotic

(e.g. [3,4]) in the sense that the effective medium

parameters are obtained by taking a certain limit. In

this paper we propose a novel non-asymptotic effective

medium theory.
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The term “non-asymptotic” implies that we do not compute a mathematical limit with respect

to any physical parameters or combinations thereof; instead, we minimize the errors related to

homogenization for a given composition of the material. An important feature of our approach

is that it applies to a well-defined range of illumination conditions. Indeed, for a single incident

plane wave, it is always possible to find by simple fitting the effective electromagnetic parameters

that yield the exact values of the reflection and transmission coefficients, assuming that these

quantities can be defined. However, these parameters will not in general be applicable to all

possible types of illumination. Our objective is to find parameters that are valid for some range

of illumination conditions rather than for a single incident wave. In this case, it is not possible to

eliminate homogenization errors altogether but it is possible to minimize them in some sense.

In principle, one can formulate a general optimization problem with respect to the unknown

tensor M. In that case, one seeks to minimize the discrepancy between the far fields scattered

by the actual and the equivalent samples for various forms of the incident field. This is a

nonlinear inverse problem with respect to M. The mainstream approach to solving such problems

iteratively is Newton’s method [5,6]. We note that, when the incident field is limited to a single

plane wave, the inverse problem is of Diophantine type, is ill-posed, and its solution is not unique.

This inverse problem has been extensively studied in relation to S-parameter retrieval [7–10].

We have generalized the retrieval procedure to normal and near-normal incidences (Appendix C

in [11]), but this development did not eliminate the ill-posedness noted above. Expanding the

forward dataset further by including a larger interval of incidence angles is expected to remove

the non-uniqueness of the minimizer but will also increase the associated mathematical and

computational complexity.

In the present paper, we wish to avoid the global inverse problem. Instead, we seek to define

coarse-level fields that coincide with the exact field in the region of measurement outside the

material and at the same time satisfy Maxwell’s equations in the effective medium approximately

but as accurately as practically possible. We propose a specific construction of coarse-level fields

leading to a local (that is, cell-wise) minimization problem whose object function is quadratic

in M, thereby rendering the associated inverse problem linear and directly solvable via the

Moore-Penrose pseudoinvese. Both locality and linearity of the problem are essential for making

it tractable.

To attain locality, we introduce cell-wise basis sets capable of approximating the fine-level

fields with sufficient accuracy. The effective tensor M can be unambiguously derived from any

such basis set using the procedure of Sec. 3. In general, one may choose different bases in different

cells and, consequently, the material tensor becomes position-dependent. In some cases, this

may have physical significance: for example, near the boundary of the material sample, one

may expand the basis by including surface waves [12,13]; this, however, is a separate subject

beyond the scope of the present paper. In other cases, discrepancies between the cell-wise material

tensors may just be numerical artifacts commensurate with the approximation accuracy; this will

happen, for example, if two different Bloch-wave sets are chosen in different cells in the bulk. For

maximum generality, we shall append the cell number m as an index to the material tensor Mm.

Cells that are similarly situated (e.g., deep in the bulk) should have identical or very close tensors;

if that turns out not to be the case in a practical simulation, then either the chosen basis sets have

poor approximation properties or the material is not homogenizable under given conditions.

The bases used in this paper consist of so-called Trefftz functions, which, by definition, satisfy

the underlying homogeneous differential equation (in electrodynamics, source-free Maxwell’s

equations). A natural choice of such functions in the bulk of a periodic structure is a set of

Bloch waves traveling in different directions, and a natural choice for Trefftz functions in a

homogeneous medium is plane waves. We use Trefftz bases because they are known to have

good approximation properties. Correspondingly, we will refer to the method proposed here as

Trefftz homogenization.

We use the following notation and key assumptions. A periodic composite under consideration

is intrinsically linear, scalar and local, and can be characterized by the permittivity ǫ̃(r) and
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permeability µ̃(r). In the remainder, we for simplicity assume that µ̃(r)≡ 1, as is the case at optical

frequencies, but extension of our methodology to µ̃(r) 6= 1 is straightforward.

The effective parameters will be denoted with ǫ and µ (without the tilde). Both effective

parameters ǫ and µ can be different from unity and are, generally, second-rank tensors. We will

also include into consideration the effective parameters of magnetoelectric coupling ξ and ζ, so

that the effective material tensor is

M≡

(

ǫ ξ

ζ µ

)

. (1.1)

We use calligraphic symbols such as K, M to denote 6× 6 matrices. The tilde sign is used for

all lattice-periodic quantities. For example, Bloch-periodic functions (Bloch waves) are written

in the form f(r) = f̃(r) exp(iq · r), where q is the Bloch wave vector. For orthorhombic lattices,

lattice-periodicity is expressed as

f̃(x+ ax, y + ay, z + az) = f̃(x, y, z) , (1.2)

where ax, ay and az are the lattice periods. Note that one-dimensional and two-dimensional

periodic media can be formally obtained as limits ax, ay → 0 or ax → 0. Of course, in the case

of ǫ̃, the equality (1.2) holds only if the points r= (x, y, z) and r′ = (x+ ax, y + ay, z + az) are

simultaneously located inside the composite or if they are simultaneously located in a vacuum.

Fine-level fields – that is, the exact solutions to macroscopic Maxwell’s equations – are denoted

with small letters e, d, h and b. Capital letters E, D, H, B are used for coarse-level fields that vary

on a scale larger than the cell size. The quantities e, d, h and b should not be confused with the

fields of microscopic electrodynamics. It is important to keep this distinction in mind because

the notations utilizing small letters for the microscopic (atomic-level) electromagnetic fields are

customarily used in textbooks and papers that derive macroscopic Maxwell’s equations from the

atomic-level fields. However, in this paper, we consider a different problem and do not go outside

of the theoretical framework of macroscopic electrodynamics. Thus, fine-level fields are assumed

to satisfy the constitutive relations

d(r) = ǫ̃(r)e(r) , b(r) = h(r) . (1.3)

Note that h(r) = b(r) because the medium is assumed to be intrinsically nonmagnetic.

The electromagnetic problem is formulated in in the frequency domain with the exp(−iωt)

phasor convention. At a working frequency ω, the free-space wave number k0 =ω/c= 2π/λ,

where λ is the free-space wavelength.

2. Formulation of the problem

A theory of homogenization is only physically interesting if it can describe finite samples; we

have discussed this in detail in [11]. In this paper, we develop a theory that is applicable to

finite samples of reasonably “simple” shape. We do not define this requirement of “simplicity”

precisely but note that the theory might break, for example, for samples that are not convex or

contain internal voids. However, the theory should, at least, be applicable to slabs of finite width.

Correspondingly, we will focus on this physical object in the remainder of the paper. This will

allow us to avoid the complicated issues related to the behavior of fields near edges and corners.

We note that applications of metamaterial slabs have been proposed in relation to imaging beyond

the diffraction limit [14].

Thus, in what follows, we assume that a periodic composite (a photonic crystal) is contained

between the planes z = 0 and z =L. The fine-level fields satisfy macroscopic Maxwell’s equations

of the form

∇× h(r) =−ik0ε̃(r)e(r) , ∇× e(r) = ik0h(r) (2.1)

everywhere in space, supplemented by the usual radiation boundary conditions at infinity.

Outside of the slab, the most general solution to (2.1) can be written as a superposition of
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incident, transmitted and reflected waves. For the electric field, we can write these in the form

of angular-spectrum expansions:

ei(r) =

∫
si(kx, ky)e

i(kxx+kyy+kzz)dkxdky , (2.2a)

et(r) =

∫
st(kx, ky)e

i(kxx+kyy+kzz)dkxdky , z > L , (2.2b)

er(r) =

∫
sr(kx, ky)e

i(kxx+kyy−kzz)dkxdky , z < 0 , (2.2c)

where

kz =
√

k20 − k2x − k2y , (2.3)

and the square root branch is defined by the condition 0≤ arg(kz)<π. Expressions for the

magnetic field are obtained from (2.2) by using the second Maxwell equation in (2.1). In (2.2),

si(kx, ky), st(kx, ky) and sr(kx, ky) are the angular spectra of the incident, transmitted and

reflected fields. Waves included in these expansions can be both evanescent and propagating. For

propagating waves, k2x + k2y < k
2
0 , otherwise the waves are evanescent. (Note that the operation

of the so-called superlens [14] implies amplified transmission of exponentially weak evanescent

waves.)

Everywhere in space, the total electric field e(r) can be written as a superposition of the

incident and scattered fields, viz,

e(r) = ei(r) + es(r) . (2.4)

Outside of the material, the reflected and transmitted fields form the scattered field:

es(r) =

{

er(r) , z < 0 ,

et(r) , z > L .
(2.5)

The scattered field inside the material is also formally defined by (2.4).

We note that in the case of homogeneous slabs, a single incident plane wave gives rise to

one reflected and one transmitted plane wave; the projections of the wave vectors of all three

waves onto the interface are in this case equal. For composite slabs, this is not generally so

because of the presence of complicated surface waves [11]. If the lattice periods (in the X- and

Y -directions) are smaller than λ, the surface waves are exponentially localized near the physical

interface. However, if this condition is violated, the surface waves become propagating in free

space, which gives rise to Bragg diffraction and reflection and a number of secondary maxima in

the transmitted and reflected angular spectra. Under these conditions, homogenization can only

be treated in a very special sense, defined by Craster et al. [15,16]; this is beyond the scope of the

present paper. We restrict attention to the region of parameters ax, ay <λ, although we do not

require that this inequality hold strongly.

3. Nonasymptotic (Trefftz) homogenization

In what follows, we introduce an approximation of the fine-scale fields and a procedure

for constructing auxiliary coarse-level fields from the former. Identifying and minimizing the

approximation errors is inherent in this procedure. We will finally define the effective material

tensor.

(a) Approximation of fine-scale fields

Fine-scale fields can be approximated using a suitable finite set of basis functions. To make the

procedure practical, we choose local basis functions ψmα which are supported cell-wise:

ψmα(r) =

{

{emα(r),hmα(r)} , r ∈Cm ,

0 , r /∈Cm .
(3.1)
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Here Cm is the m-th open lattice cell and index α labels the basis functions supported in Cm. The

significance of introducing the locally-supported basis functions will soon become apparent. In

principle, the number n of basis functions may be different in different cells, but for notational

simplicity this is not explicitly indicated. We also tacitly assume that the basis functions have the

level of smoothness required for all stages of our analysis.

The fine-scale field ψ ≡{e(r),h(r)} can be expanded in the given basis as

ψ(r) =
∑

α,m

cmαψmα(r) + δ(r) , (3.2)

where the term δ represents the approximation error referred to as the “out-of-the-basis error”

in [17–19] and cmα are expansion coefficients. We expect that the basis contains enough functions

so that δ is small. Note that expansion (3.2) applies to any point inside the material. The proposed

homogenization procedure relies only on the basis set itself, not on the expansion coefficients.

To construct a basis set with good approximation properties, we use Trefftz functions, that is,

waves that satisfy homogeneous Maxwell’s equations in a given cell. Bloch waves propagating in

various directions are a particular example of Trefftz functions. While mathematical issues related

to convergence of Trefftz approximations are quite technical [20–22], there is ample evidence in

the literature that the approximation errors are reasonably low even for bases of small size [20,21,

23,24], as long as the illumination conditions are within a certain range. For example, consider any

Maxwellian field that results from illumination of a composite slab by an arbitrary superposition

of plane waves with any incidence angles in the range [−θmax, θmax]. Such a field can be expanded

(in any given cell) with good accuracy into a basis of n local Trefftz functions corresponding to n

incident plane waves with discrete incidence angles varying from −θmax to θmax. If we restrict

consideration to propagating incident waves only, a good approximation can often be obtained

with only 8 Trefftz functions in 2D or 12 functions in 3D [23–25].

In the remainder, we shall assume that the basis defined in (3.1) and (3.2) consists of Bloch

waves

eα(r) = ẽα(r) exp(iqα · r) , hα(r) = h̃α(r) exp(iqα · r) , (3.3)

where the index α labels both the wave vector and the polarization state of the Bloch wave (at a

given frequency); ẽα(r), h̃α(r) are the lattice-periodic factors of the respective Bloch waves. Thus,

the Trefftz basis set we are using is

ψmα(r) =

{

{ẽα(r), h̃α(r)}e
iqmα·r , r∈Cm ,

0 r /∈Cm .
(3.4)

It is assumed that, for practical purposes, the Bloch modes can be computed numerically.

(b) Approximation of coarse-level fields

We now describe the construction of coarse-level fields E and H from e and h. As above, the

coarse-level fields will be expanded in a finite set of Trefftz functions, which in the case of a

homogeneous equivalent medium are just plane waves. Two constraints on the definition of the

coarse fields are central in the analysis below.

First, we require that the coarse-level fields satisfy Maxwell’s equations with an effective

material tensor Mm approximately but accurately. This is expressed as

δJm(r) =∇×H(r) + ik0D(r) , r ∈Cm , (3.5a)

δIm(r) =∇×E(r)− ik0B(r) , r ∈Cm , (3.5b)

δKlm(r) = n̂lm × [Hl(r)−Hm(r)] , r ∈ Slm , (3.5c)

δQlm(r) = n̂lm × [El(r) −Em(r)] , r ∈ Slm , (3.5d)

{D(r),B(r)}=

{

Mm{E(r),H(r)} , r∈Cm ,

{E(r),H(r)} , z /∈ [0, L] ,
(3.5e)
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where Cm is the m-th open cell and n̂lm is the unit normal on the interface between the two

neighboring cells Cl and Cm, pointing from Cl to Cm, and the subscripts l and m refer to the

fields on each side of the boundary when approaching from the interior of the l-th and m-th cells.

Here the terms δJm, δIm, δKlm and δQlm can be interpreted as spurious volume and surface

currents of the electric and magnetic charge. The surface currents are supported on Slm. These

currents are not physically present in the medium but simply represent approximation errors.

Importantly, δKlm and δQlm can exist also on the interface between a given cell and empty space,

if this cell is located at the outer boundary of the periodic structure. For uniformity of notation,

the two half-spaces z < 0 and z > L can be regarded as two “nonstandard cells” and are denoted

here by C0 and C∞, respectively. The interfaces between the boundary layer cells and C0 and C∞

are denoted with S0m and Sm∞. Then expressions (3.5c), (3.5d) apply to the interfaces between

the “non-standard” and “standard” cells without exceptions. Note that the material tensor Mm

appearing in (3.5e) will be determined by minimizing the error terms δJm, δIm, δKlm and δQlm.

The second constraint on the coarse fields is that they must be close to the exact fine-scale

fields in the far-field zone of the sample. In practice, the fine-scale and coarse-scale fields should

coincide in the region of space where the measurements are made. However, such equality cannot

hold in principle if the observation point is located too close to the surface of the composite.

Indeed, recall that a three-dimensional composites support a complicated surface wave which

has spatial Fourier harmonics with the wave numbers 2π(nx/ax + ny/ay), where nx and ny are

nonzero integers. The coarse-level fields do not contain such high-frequency components. Luckily,

the surface wave is evanescent and decays on the scale of max(ax, ay)/2π. We can, therefore, write

the coarse-level electric field in an angular-spectrum expansion form similar to (2.2):

E(r) =

{

ei(r) +Er(r) , z < 0 ,

Et(r) , z < L ,
(3.6)

where we have assumed that the incident component is the same for the coarse- and fine-scale

fields: ei(r)≡Ei(r). Then the reflected and transmitted components of the coarse-level field can

be expanded as

Et(r) =

∫
St(kx, ky)e

i(kxx+kyy+kzz) dkx dky , z > L , (3.7a)

Er(r) =

∫
Sr(kx, ky)e

i(kxx+kyy−kzz) dkx dky , z < 0 , (3.7b)

where kz obeys the free-space dispersion relation (2.3). Now the constraint on the coarse-level

field can be formulated as

Θ(kx, ky) [Sr,t(kx, ky)− sr,t(kx, ky)] = 0 , (3.8)

where Θ(kx, ky) is a low-pass filtering function. In the simplest case, we can take Θ(kx, ky) to

be a unit step function in 2D Fourier space, equal to zero if |kx,y|>βk0 and to unity otherwise,

where β determines the bandwidth. Homogenization is physically reasonable if we can choose

1<β < λ/max(ax, ay). As was noted above, if λ<max(ax, ay), a single reflected or transmitted

plane wave can not be defined even under illumination by a single plane wave; homogenization

is impossible in this case.

We are now ready to define the coarse-level fields that satisfy the above requirements. In free

space, we take (3.8) as a definition of the coarse field. The spectrum of the coarse field outside

the filtering window |kx,y|>βk0 can be set to zero. Inside the material, we define these fields

in a manner similar to (3.2), except that, instead of Bloch waves, we use plane-wave eigenmodes

Ψmα = {Emα,Hmα} of Maxwell’s equations in a homogeneous but possibly anisotropic medium.

For the abstract vector of the coarse field Ψ = {E,H}, we can write the cell-wise expansion

Ψ(r) =
∑

α

cmαΨmα(r) , Ψmα(r)≡ {E
(0)
mα,H

(0)
mα} exp(iqmα · r) , r∈Cm , (3.9)

where the amplitudes {E
(0)
mα,H

(0)
mα} are yet to be determined.
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Since (3.9) is taken as a definition of coarse-level fields, there is no approximation error

associated with this expansion. Thus, each Trefftz basis function for the coarse-level fields is

a plane wave with the wave vector qmα, chosen to be the same as the Bloch wave vector

in (3.4). This is, indeed, a necessary condition for the discrepancies in (3.5) to be minimized.

Physically, this condition requires that the dispersion relations in the effective and exact media

be approximately the same.

(More precisely, the wave vector of the plane wave in (3.9) should correspond to that of

the dominant plane-wave harmonic of the Bloch wave in (3.4); that is, the qmα in (3.4) and

(3.9) may not necessarily be the same and may in general differ by a reciprocal lattice vector

(2πmx/ax, 2πmy/ay, 2πmz/az) for some integers (mx, my,mz). For simplicity of notation,

though, we tacitly assume that the dominant plane-wave harmonic of the Bloch wave is in the

first Brillouin zone, in which case the qmα in (3.4) and (3.9) are indeed identical.)

Expansion (3.9) can now be substituted into the coarse-field equations (3.5a), (3.5b). The

resultant expressions are given in the Appendix; but the homogenization procedure can be

explained without making explicit use of these expressions. Our key objective is to minimize the

error fields resulting from both surface and volume error terms (3.5), with the coarse-level fields

expanded as (3.9). Some of the parameters of this problem are under our control, while others are

not; minimization will obviously be carried out with respect to the former. Parameters that cannot

be controlled include Bloch vectors qmα (which depend entirely on the given microstructure of

the cell) and the expansion coefficients cmα (which depend on the actual fine-level field and are

in general unknown). Minimization is to be carried out with respect to the material tensor Mm

and the corresponding amplitudes {E
(0)
mα,H

(0)
mα} of the coarse-level plane waves.

The minimization problem in the form outlined above is intractable due to several

complications: (i) the fields in all lattice cells are coupled (because of interface continuity

conditions); (ii) effects of both surface and volume error terms are also coupled; (iii) the expansion

coefficients cmα are unknown.

The problem can be dramatically simplified, however. Indeed, there is no need to look for a

global or even a local minimum; all that’s needed is a practical procedure leading to small (but not

necessarily the smallest possible) errors and a reasonable estimate of these errors. Accordingly,

all references to error “minimization” in this paper should be understood in the above broad

sense, i.e., as a practical procedure leading to sufficiently small errors rather than to the absolute

minimum.

With this in mind, the obstacles (i)-(iii) above can be removed. Our first consideration is (i):

to make error minimization practical, we wish to reduce it to a local (cell-wise) problem. This is

easily done by noting that at each interface (cell/cell or cell/air), the triangle inequality

‖δQlm‖= ‖n̂lm × (El −Em) ‖ ≤ ‖n̂lm × (El − e) ‖+ ‖n̂lm × (Em − e) ‖ on Slm , (3.10)

holds, where ‖ · ‖ is the L2-norm. A similar inequality applies to the magnetic field. Thus, if the

discrepancy between each coarse field and the exact field at the boundary is sufficiently small, so

is the discrepancy between the coarse fields across this boundary. Hence we shall simply seek to

minimize the former.

This immediately brings us to item (ii). Even though simultaneous minimization of the

surface and volume error terms appears to be an intractable problem, we propose a two-step

minimization where the surface error-currents are minimized first, using (3.10), and the volume

currents second.

Finally, with regard to the unknown expansion coefficients cmα [item (iii)], we note that the

difference between the coarse and fine fields can be written via the modal expansion as

∥

∥

∥

∑

α

cmα(Ψmα − ψmα)
∥

∥

∥
≤ C

(

∑

α

‖Ψmα − ψmα‖
2

)
1
2

, ∀m , (3.11)
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where C is an upper bound for ‖cm‖, and cm ≡ (cm1, cm2, . . . , cmn)
T . 1 If the right hand side of

(3.11), which can be interpreted as an average errors for all modes, is small, so is the left hand side.

This allows us to focus on minimizing the average and remove the unknown coefficient vector

cm from consideration.

Now that the key ideas have been fixed, we are ready to formulate the homogenization

procedure.

(c) Maximizing the accuracy of effective medium description

We now seek the effective tensors Mm and the field amplitudes {E
(0)
mα,H

(0)
mα} that minimize the

error terms in (3.5c), (3.5d). The procedure consists of two steps. In Step 1, we minimize the surface

terms δKlm and δQlm defined by (3.5). In Step 2, we minimize the volume currents δJm and δIm
defined by (3.5a), (3.5b). Once this is done, the residual error serves as an overall error indicator.

Step 1. To make δKlm, δQlm as small as possible, one needs to minimize the discrepancies

between the tangential components of E and H across all cell boundaries (and most importantly,

across the material/air interface). As already noted, we avoid this global problem by minimizing,

for each cell boundary ∂Cm, the discrepancy between the coarse fields and the respective fine-

scale fields rather than between the coarse fields on the two sides of the boundary:

min
E

(0)
mα,H

(0)
mα

{

∥

∥

∥
n̂× (Emα − emα)

∥

∥

∥

∂Cm

+
∥

∥

∥
n̂× (Hmα − hmα)

∥

∥

∥

∂Cm

}

, (3.12)

where ‖ · ‖ is the L2-norm. More precisely, one observes that if the norms in (3.12) are sufficiently

small, so are the surface error terms δQlm, δKlm. Indeed, the first term in the right hand side of

(3.10) can be related to the respective term in (3.12) via

∥

∥

∥
n̂lm × (Em − e)

∥

∥

∥

Slm

=
∥

∥

∥
n̂lm ×

(

∑

α

cmα(Emα − emα) + δ

)

∥

∥

∥

Slm

≤C

(

∑

α

∥

∥

∥
n̂lm × (Emα − emα)

∥

∥

∥

2

∂Cm

)1/2

+ ‖n̂lm × δ‖∂Cm
, (3.13)

where we used approximation (3.2) of the fine-scale fields and the obvious fact that the norm

over part of the cell boundary cannot exceed the norm over the whole boundary. Clearly, similar

considerations apply to the second terms in (3.10) and (3.12).

In (3.12) we have defined a quadratic minimization problem with respect to the vector

amplitudes E
(0)
mα, H

(0)
mα. Its solution for cell Cm of arbitrary shape (not necessarily hexahedral)

can be written as

E
(0)
mα =

(∫
∂Cm

NT (r)N (r)dS

)−1 ∫
∂Cm

NT (r)N (r) ẽmαdS , (3.14a)

H
(0)
mα =

(∫
∂Cm

NT (r)N (r)dS

)−1 ∫
∂Cm

NT (r)N (r) h̃mαdS , (3.14b)

where N (r) is a 3× 3 matrix representing n̂(r)× in the Cartesian system. For hexahedral cells,

(3.14a) and (3.14b) simplify to

E
(0)
mαx =

∫
∂Cmx

ẽmαx dS , H
(0)
mα =

∫
∂Cmx

h̃mαx dS , (3.15)

with similar expressions for the y and z components. Here ∂Cmx denotes part of the cell boundary

(four faces) parallel to the x-axis. Note that the averages above involve the periodic factor of the

Bloch wave.
1This slight generalization of the Cauchy-Schwarz inequality can be proved e.g. by noting that, for any coefficients aα

and functions gα(r), ‖
∑

α
aαgα(r)‖2 = (Ga, a)≤ λmax(G)‖a‖2, G being the Gram matrix of the set {gα}, and then

estimating the maximum eigenvalue λmax(G) via the trace of G.
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This completes Step 1 of the procedure: the surface error terms δKlm, δQlm have been

minimized. We therefore define the coarse-level basis as plane waves (3.9) with the amplitudes

{E
(0)
mα,H

(0)
mα} defined by (3.15).

Step 2. The next step of our procedure involves a minimization problem for the volume error

terms in (3.5a), (3.5b):

min
Mm

∑

α

∥

∥

∥
Kmα{H

(0)
mα,E

(0)
mα} − k0Mm {E

(0)
mα,H

(0)
mα}

∥

∥

∥

2
, (3.16)

where

Kmα ≡

(

−qmα× 0

0 qmα×

)

(3.17)

and q× is the matrix representation of the cross product with q.

This problem is not only tractable but has a closed-form solution for the entries of the material

tensor Mm. Indeed, note that the functional in (3.16) is quadratic with respect to these entries.

Minimization of this quadratic functional for a generic material tensor is straightforward; it

takes on a particularly simple form if the tensor is known a priori to be diagonal (e.g., from

symmetry considerations), Mm =diag(ǫm,xx, ǫm,yy, ǫm,zz, µm,xx, µm,yy, µm,zz). Then in the

minimization problem the entries of the tensor decouple. For example, we obtain the following

minimization problem for the components of the permeability:

min
µm,xx

∑

α

∣

∣

∣
k0µm,xx[hm,αx]− (qmα × [em,α])x

∣

∣

∣

2
(3.18)

with analogous problems for the yy and zz components. For the permittivity tensor, the

minimization problem is very similar:

min
ǫm,xx

∑

α

∣

∣

∣
k0ǫm,xx[em,αx]− (qmα × [hm,α])x

∣

∣

∣

2
. (3.19)

The solution to (3.18) can be easily found:

µm,xx =

∑

α(qmα × [emα])x [hm,αx]
∗

k0
∑

α

∣

∣

∣[hm,αx]
∣

∣

∣

2
, (3.20)

where the asterisk denotes complex conjugation. Similar expressions hold for the the other two

components of the permeability and for the dielectric permittivity, e.g.,

ǫm,xx =

∑

α(qmα × [hmα])x [em,αx]
∗

k0
∑

α

∣

∣

∣
[em,αx]

∣

∣

∣

2
. (3.21)

We can give a physical interpretation of the above expressions by noting the following. If only

one Bloch wave is used in the calculations, then the homogenization formulas involve the ratio of

the electric and magnetic field amplitudes, i.e., the square of the so-called Bloch impedance. In the

more realistic case of many Bloch waves, expressions (3.20), (3.21) contain ensemble averages of

the individual Bloch impedances of the basis waves. The physical significance of Bloch impedance

has been discussed in detail by Simovski in [1]. Also, in a recent conceptually close development,

Lawrence et al. [26] have provided a thorough analysis of the impedance boundary conditions

and emphasized their importance. The key novelty of the present paper is a new definition of an

effective impedance that is optimized for a given range of illumination conditions.

The general solution to (3.16) for a non-diagonal tensor can be expressed in terms of two

6× n matrices, Ψm,DB and Ψm,EH , whose columns α are equal to k−1
0 Kmα{H

(0)
mα,E

(0)
mα} and
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{E
(0)
mα,H

(0)
mα}, respectively. Then (3.16) is equivalent to the following minimization problem:

Mm,opt = argmin
M

Fm(M), Fm(M)≡
∥

∥

∥Ψm,DB −MΨm,EH

∥

∥

∥ , (3.22)

where the Frobenius matrix norm is implied. This is a classical least-squares problem with the

solution

Mm,opt = Ψm,DB Ψ+
m,EH . (3.23)

Here ‘+’ denotes the Moore-Penrose pseudoinverse. This is very similar to the expressions in our

earlier publications [17–19], where the Ψ matrices had an analogous meaning but were not the

same as here.

In practice, the minimization problem (3.22) is expected to be overdetermined (i.e. the number

of basis functions will exceed the total number of degrees of freedom). Indeed, to each coordinate

axis there corresponds a natural set of four basis waves (two opposite directions of propagation,

times two independent polarizations). Thus for a generic 3D problem the basis will typically

contain 12 waves traveling along the coordinate axes, plus possibly additional waves traveling

in other directions, thereby far exceeding the dimension 6 of the material tensor.

4. Error estimation

Let {e,h} be the exact field inside and outside a metamaterial block and let us use the

methodology described above to construct the coarse-level field {E,H}. More precisely, for any

fine-scale field written as a superposition (3.2) of basis waves within the material, we define the

respective coarse-level field inside the metamaterial as (3.9), where {E
(0)
mα,H

(0)
mα} are determined

according to the procedure of the previous section. Outside of the material, {E,H} are defined

according to (3.6) as extensions of the actual far field to the whole space.

The {E(r),H(r)} field so defined is important for theoretical analysis but is not available in

practice because the exact field and the corresponding expansion coefficients cmα are not known.

The computable quantity is the field {EM(r),HM(r)} that would exist, under the same given

illumination conditions, around an equivalent body with the material tensors Mm obtained

via our homogenization procedure. We are interested in estimating the difference between

{EM(r),HM(r)} and the actual far field (2.2). (In the near field, one does expect substantial

pointwise differences between the exact field rapidly fluctuating in the vicinity of the material

interface and the smooth field {EM(r),HM(r)}.)

Since, by construction, the auxiliary field {E(r),H(r)} is equal to the actual field in the far

zone, we may as well estimate the difference

δEH ≡ {EM(r),HM(r)} − {E(r),H(r)} (4.1)

in the far field. To this end, we note that {EM,HM} satisfies the same equations (3.5) as

{E(r),H(r)} but without the δ-terms. One concludes that the field error δEH is due to these

terms.

Both surface and volume errors have been minimized in the procedure described in the

previous section. We omit a detailed analysis of the surface error, but the volume error remaining

after minimization is given by the functional Fm introduced above, viz.

χ = max
m

[Fm(Mm,opt)] . (4.2)

where Fm is defined in (3.22). We will view the quantity χ defined above as an error indicator;

one can expect that the effective parameters produced by Trefftz homogenization yield accurate

scattering predictions if χ≪ 1.

5. Numerical examples

We now apply Trefftz homogenization to three different examples of periodic media. The first

two examples involve one-dimensional layered structures which admit an analytical solution to
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Figure 1. Example 1. Effective parameters by Trefftz homogenization (thick lines) and by S-parameter retrieval (thin lines)

as functions of a/λ; the lattice period a changes while λ is fixed. The dotted line represents the classical homogenization

limit for ǫ‖ (in s-polarization, the volume average of ǫ1 and ǫ2).

the electromagnetic problem. We use this fact to compare the exact transmission and reflection

coefficients of a finite-width layered slab to predictions of the homogenization theory. The third

example is a two-dimensional lattice of infinite dielectric cylinders. No analytical solution is

available for this structure. Therefore we have used for comparison and validation purposes

sixth-order finite difference FLAME schemes described in Refs. [24,25,27,28].

(a) Example 1: Layered dielectric medium

In Example 1, we consider a layered medium which is periodic in the Z direction and

homogeneous in the XY plane. The medium consists of a finite number of stacked inversion-

symmetric lattice cells. Each cell contains three intrinsically nonmagnetic layers of widths a/4,

a/2 and a/4 and scalar permittivities ǫ1, ǫ2, and ǫ1, respectively. The lattice period (the width

of one elementary cell) is equal to a. In this example, we take ǫ1 = 4 + 0.1i and ǫ2 = 1, that is,

the outer layers of an elementary cell are made of an absorbing dielectric and the central layer

is free space. Note that a finite-width structure of this kind is terminated by two dielectric layers

of the width a/4 on each side. Each elementary cell and the composite as a whole has a center

of symmetry, and consequently the effective material tensor is diagonal; in particular, there is no

magnetoelectric coupling. In Example 1, we do not consider the effects of dispersion and assume

that the variable a/λ can change while ǫ1 and ǫ2 are constant. This is physically achievable, for

instance, if λ is fixed and a can change.

We present results for s-polarization (one-component electric field, two-component magnetic

field); results for p-polarization are qualitatively similar. For s-polarization, the relevant elements

of the effective permittivity and permeability tensors are ǫ‖, µ‖ and µ⊥, where the indexes ‖ and

⊥ indicate the directions along and perpendicular to the layers.

We start by considering the dependence of the effective parameters on the normalized cell

size a/λ. The Trefftz basis used in this computation consisted of 2n Bloch waves with different

tangential components of the wave vector, kx (the incidence plane is XZ). The above factor of

two accounts for the two possible directions of propagation along the Z-axis. We have observed

that the numerical results depend very mildly on n as long as is n& 5. Correspondingly, we have

used n= 7.

In Fig. 1, we display the effective parameters obtained by Trefftz homogenization as well as by

S-parameter retrieval method. A particular implementation of S-parameter retrieval described in

Appendix C of Ref. [11] has been implemented (specifically, we have used Method 2 for ǫ‖ and µ‖
and Method 3 for µ⊥). For small and moderate values of the cell size (a/λ∼ 0.15), the agreement
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Figure 2. Example 1. Real parts of the reflection coefficient R (left) and transmission coefficient T (right), and the

homogenization error indicator χ (4.2) (left) for the layered structure consisting of L=10 elementary cells and for the

equivalent homogenized slab as functions of a/λ. EX – exact results, TR – Trefftz homogenization.

between these two sets of results is almost perfect but beyond that point they diverge. This is

not surprising because Trefftz homogenization optimizes effective parameters in a wide range of

propagation angles while S-parameter retrieval optimizes transmission/reflection (T/R) only for

a small range of near-normal incidence angles in the formulation of Ref. [11], which was used

here.

We now compare the T/R coefficients computed exactly for a slab consisting of L= 10

elementary cells and for an equivalent homogenized slab of width W =La. Since the principal

objective of homogenization is to predict transmission and reflection of waves, the discrepancy

between these results is the best measure of the accuracy of the effective parameters obtained.

It should be borne in mind, however, that errors in the transmitted wave (especially, phase

errors) accumulate as that wave propagates through the slab; hence the error in the transmission

coefficient will generally be higher for thicker samples, regardless of the homogenization

methodology.

The reflection and transmission coefficients defined as the ratios of the complex amplitudes

of the reflected/transmitted and incident tangential fields computed at the slab boundaries (the

electric field for s-polarization) are plotted in Fig. 2 as functions of a/λ at normal incidence. We

also show in the same plot the error indicator χ (4.2). It can be seen that the error indicator

is relatively small for a/λ. 0.2 but grows rapidly and exceeds unity when a/λ& 0.2. We can

conclude that homogenization in Example 1 is accurate for a/λ. 0.2 and that the medium is not

homogenizable (at least in terms of local parameters) for a/λ& 0.2.

The data for Fig. 2 was produced using a Trefftz basis set of Bloch waves with the X-

components kx of the wave vector bounded as |kx| ≤ k0. This accounts for illumination by

propagating waves. In applications related to imaging beyond the diffraction limit, one should

also include in the basis Bloch waves with |kx|>k0, which corresponds to evanescent incident

waves. Doing so is expected to further limit the range of a/λ where homogenization is accurate.

However, in other applications, one may wish to tailor the effective parameters to a restricted

range of incidence angles. By choosing a narrower range, one expects to improve the accuracy

of the effective medium description at the expense of narrowing its range of applicability. This

trade-off is illustrated next.

Specifically, we have restricted the set of basis functions so that |kx/k0|< sin θmax. We have

applied Trefftz homogenization to produce effective parameters for different values of θmax

and then used the homogenization result thus obtained to compute T/R in the whole range of

incidence angles θ, that is, for 0≤ θ≤ π/2. The T/R values computed in this manner are expected

to be accurate only for θ. θmax. This is illustrated in Fig. 3 for θmax = π/10 (left panel) and
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Figure 3. Example 1. Errors in the transmission and reflection coefficients (5.1) as functions of the sine of the incident

angle, sin θ= kx/k0, for a/λ= 0.2. The errors are displayed for Trefftz homogenization (TR) and for the classical

asymptotic homogenization limit (AS). The maximum angles of incidence in the restricted set of basis functions for Trefftz

homogenization [θmax = π/10 (left) and θmax = π/20 (right)] are indicated by the vertical lines.

θmax = π/20 (right panel). In this figure, the normalized cell size is fixed at a/λ= 0.2 and we

display the errors in the transmission and reflection coefficients as functions of sin θ= kx/k0. The

errors are defined as

εR ≡ |Rpredicted −Rexact| , εT ≡ |Tpredicted − Texact| (5.1)

and should not be confused with the error indicator χ or with dielectric permittivity ǫ. Note

that for a/λ= 0.2, χ= 0.093, which makes this a borderline case for local homogenizability. For

comparison, we also show in Fig. 3 the errors in T/R incurred by using the classical (quasi-static)

homogenization limit, where µ= 1 and ǫ is (for the s-mode) just the volume average of ǫ̃(r). It is

evident from the figure that Trefftz homogenization predicts T/R with high accuracy in the range

of its applicability θ < θmax but may yield inaccurate T/E predictions outside of this range. By

comparing the two values of θmax considered, we find that the errors in the range of applicability

(which is, of course, different in these two cases) are much smaller for θmax = π/20 than for

θmax = π/10. This trade-off between accuracy and the range applicability is a natural feature of

Trefftz homogenization, and it can be demonstrated for all numerical examples considered below.

(b) Example 2: Dispersive layered metal-dielectric medium

In this example, the geometric parameters of the layered medium is the same as in Example 1,

and we still consider s-polarization. However, we now assume that the second layer of the lattice

cell is a dispersive metal whose permittivity is given by Drude formula

ǫ2 = ǫint −
ω2
p

ω(ω + iγ)
, (5.2)

where ǫint − 1 is a contribution of interband transitions (assumed to be real and frequency-

independent in the spectral range of interest), ωp is the plasma frequency and γ is the Drude

relaxation constant. The parameters used in simulations corresponded approximately to the

experimental values for silver: ǫint =5 and ωp/γ =500; λp =136 nm. The lattice period is fixed at

a= 0.2λp, where λp = 2πc/ωp is the wavelength at the plasma frequency. Using the above values

of parameters, we find that this corresponds to a≈ 27 nm. The free-space wavelength λ in this

example varies and we fully account for the frequency dispersion by using Drude formula (5.2).

The effective parameters for example are plotted in Fig. 4 as functions of a/λ. The T/R data at

normal incidence are plotted in Fig. 5 in a manner that is completely analogous to Fig. 2, except
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Figure 4. Example 2. Same as in Fig. 1 but for Example 2. The retrieval result is shown up to the point a/λ= 0.25,

beyond which retrieval is numerically unstable. Note that in the right panel, Trefftz, retrieval and classical homogenization

results are visually indistinguishable due to the large dynamic range of the data. However, these results are numerically

different.
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Figure 5. Example 2. Same as in Fig. 2 but for Example 2.

that now the parameter a/λ changes because λ varies while a is fixed. As before, the actual

slab contained L= 10 elementary cells and we have used Trefftz basis restricted by kx ≤ k0 to

compute the effective parameters. It can be seen that the actual and homogenized slabs have

approximately the same T/R in the limit a/λ→ 0, although the asymptotic behavior is in this

case not as straightforward due to the effects of dispersion.

We finally show the same set of data as in Fig. 3 but with one modification. Namely, we

consider here the Trefftz basis restricted to θmax = π/10 in one case and to θmax = π/2 in another

(i.e., all propagating incident waves are included); restriction θmax = π/20 is not used. The trade-

off between the accuracy and range of applicability of the effective medium description is clearly

visible from this figure. Indeed, the restriction θmax = π/10 provides reasonable results in the

range of its applicability but poor precision outside of this range. The restriction θmax = π/2

(i.e. all propagating waves included) does not provide good approximation for any incidence

angle, although Trefftz homogenization still yields uniformly smaller errors than the classical

homogenization limit.
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Figure 6. Example 2. Same as in Fig. 3 but for Example 2, with the following modification: The maximum angles of

incidence in the restricted set of basis functions for Trefftz homogenization are θmax = π/10 (left) and θmax = π/2

(right). The normalized cell size is a/λ= 0.2.

(c) Example 3: A Periodic 2D array of cylinders.

We now consider a more complicated example which does not admit an analytical solution.

Namely, Example 3 is a two-dimensional array of infinite dielectric cylinders illuminated by a

p-polarized external wave. The radius of each cylinder is fixed at rcyl =0.33a and the dielectric

permittivity of cylinders is ǫcyl = 9.61. The material of which the cylinders are made is assumed

to be nonabsorbing and nondispersive in the spectral range of interest 2. Under these conditions,

the solution to the electromagnetic problem depends on the dimensionless ratio a/λ but not on a

and λ separately. In p-polarization, the relevant component of the permittivity and permeability

tensors are ǫ‖, ǫ⊥ and µ‖. The system is obviously electrically isotropic. Therefore, if we use

Trefftz basis sets with the same underlying cubic symmetry, the effective parameters obtained

are guaranteed to satisfy ǫ‖ = ǫ⊥. However, if we use Trefftz basis sets that are not cubically-

symmetric (e.g., due to a restriction of the incidence angles), the homogenization result can

become electrically anisotropic. An example will be given below. This type of anisotropy is an

effect of restricting the illumination conditions, not a violation of any physical principle. We

finally note that the effective parameters in Example 3 are purely real.

Effective parameters obtained with different methods for Example 3 are shown in Fig. 7. In

Trefftz homogenization, we used θmax = π/2, i.e. all possible angles of propagation but excluding

evanescent waves. A basis set with this property can be made cubically symmetric, which

was indeed done in the simulations. The corresponding effective parameters were electrically

isotropic. We also show in Fig. 7 the effective parameters obtained for the same structure by the

two-dimensional Maxwell-Garnett approximation and by the asymptotic homogenization theory

of Ref. [12].

We now use the effective parameters displayed in Fig. 7 to compute the transmission

and reflection coefficients for a finite structure consisting of L= 10 layers of elementary cells

and to compare T/R for the equivalent homogeneous slab to the exact results, which were

obtained by the finite difference method previously referred to as FD-FLAME [24,25,27,28]. In

p-polarization, the magnetic field has only one component. Therefore, the transmission and

reflection coefficients are defined here as the ratios of the complex amplitudes of the magnetic

field in the reflected/transmitted wave to that of the incident wave. In Fig. 8, we plot the

real parts of R and T at normal incidence as functions of a/λ. It is evident that Trefftz

homogenization is significantly more accurate than the asymptotic homogenization results,

2These parameters are the same as in [17,25,29]. In [29], the cylinders were Al2O3 rods in air and experiments were performed

in the frequency range from 26 to 40GHz. We are using this setup as a generic benchmark only.
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ǫ‖ = ǫ⊥

a/λ

0.30.20.10

2

1.5

1

AS
MG
TR

µ‖

a/λ

0.30.20.10

1.2

1.1

1

Figure 7. Example 3. Effective parameters for Example 3. TR – Trefttz homogenization , MG - Maxwell-Garnett, AS –

asymptotic homogenization theory of Ref. [12]. All homogenization methods produce purely real ǫ and µ. In addition, the

system is electrically isotropic due to the cubic symmetry of the underlying structure and of the Trefftz basis set, so that

ǫ‖ = ǫ⊥.

Re(R)

a/λ

0.30.20.10

0.5

0.25

0

TR
AS

MG
EX

Re(T )

a/λ

0.30.20.10

1

0.5

0

−0.5

−1

Figure 8. Example 3. Real parts of the reflection (left) and transmission (right) coefficient vs. a/λ at normal incidence.

The curve labeled EX gives the accurate numerical result obtained by FD-FLAME. Different homogenization methods are

labeled as follows: TR – Trefftz homogenization, MG – Maxwell-Garnett, AS – asymptotic homogenization of Ref. [12].

especially for transmission data. Nevertheless, the accuracy deteriorates for all methods at a/λ&

0.3.

Next, we show data similar to that of Figs. 3 and 6 for Examples 1 and 2. Namely, we fix the

ratio a/λ at a/λ= 0.2 and plot the errors in R/T for a L=10 layered structure as a function of

kx/k0 = sin θ, where θ is the incidence angle. As before, we use different restrictions on the Trefftz

basis. The results are shown in Fig. 9. For comparison, we also plot the error for the asymptotic

homogenization method of Ref. [12]. It can be seen that the restriction of the Trefftz basis

θmax = π/10 results in relatively small errors in the range of applicability of the homogenization

theory, that is, for θ < θmax. Outside of this range, the errors increase rapidly (left plot in Fig. 9).

In the case of the restriction θmax = π/2 (right plot in Fig. 9), the range of applicability includes all

propagating p-polarized incident waves, but not evanescent waves. It can be seen that the errors

are in this case somewhat larger than in the case θmax = π/10. However, the errors are distributed

more evenly in the interval 0< θ <π/2 (0< kx <k0) with a single pronounced spike near the
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θmax =
π

10

εR,T

1kx/k00.60.40.20

1

0.8

0.6

0.4

0.2

0

εT , AS
εR, AS
εT , TR
εR, TR

θmax =
π

2

εR,T

1kx/k00.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 9. Example 3. Same as in Fig. 3 and Fig 6 but for Example 3 The maximum angles of incidence in the restricted

set of basis functions for Trefftz homogenization are θmax = π/10 (left) and θmax = π/2 (right). The normalized cell

size is a/λ= 0.2.

point kx = k0, which corresponds to grazing incidence. This behavior is expected and illustrates

again the trade-off between the precision and the range of applicability of Trefftz homogenization.

We finally return to the question of isotropy of the effective parameters. Under general

illumination conditions, our method produces material parameters perfectly consistent with

the four-fold symmetry of the structure. However, restrictions on illumination can break that

symmetry. This is not a contradiction since the problem of wave propagation and scattering

involves not only the symmetric structure itself but also the external illumination. For restricted

illumination conditions, an anisotropic material tensor can provide a better approximation of

T/R data than an isotropic tensor would. For example, the effective permittivity computed for

a/λ=0.2 and the Trefftz basis restriction θmax = π/10 are ǫ⊥ = 1.59 and ǫ‖ = 1.86. Note that the

structure is expected to be magnetically anisotropic even for a symmetric Trefftz basis, but the

component µ⊥ does not influence T/R data in p-polarization.

6. Summary and discussion

We have described a two-scale homogenization theory for periodic electromagnetic composites.

The proposed methodology is nonasymptotic, which means that it does not involve any

asymptotic expansions or mathematical limits with respect to any physical parameter of the

composite or a combination thereof. Instead, we approximate the coarse-level and fine-level

fields by expansions in a basis of local cell-wise functions that satisfy homogeneous Maxwell’s

equations. The expansion is accurate for a given range of illumination conditions. Once the fine-

level basis set has been defined, the homogenization procedure is easy to implement, as it involves

only the boundary averages of the tangential components of the basis functions and standard

linear algebra. The residual error terms in Maxwell’s equations serve as an error indicator. If its

value is small, the homogenization results are accurate; otherwise, the periodic structure is not

describable in terms of local effective parameters under the illumination conditions considered.

Numerical results for several benchmark problems of layered media and a periodic array of

cylinders illustrate the above points.

In the zero-cell-size limit, the new theory applies under any physical illumination conditions

and yields the same results as classical two-scale asymptotic theories. For cells that are not

vanishingly small, our analysis and numerical examples show that the new theory is more

accurate than classical ones and applies under a well-defined range of illumination conditions

where local homogenization is still feasible.
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Approximation of fields near the material/air interface requires special consideration due to

the presence of complicated surface waves that we have analyzed previously [12,13]; see also

earlier papers by Felbacq and Simovski [1,2,30] and references therein. If a good approximation

of surface waves with evanescent Bloch waves can be found, it can be integrated seamlessly into

the homogenization procedure proposed in this paper.

In comparison with S-parameter retrieval, our methodology has a number of advantages. First,

we optimize the effective parameters for a defined range of illuminating conditions, not just for

one incident plane wave. Second, our approach results in a linear optimization problem whose

solution is well understood in mathematics, unlike in the standard formulation of the nonlinear

inverse problem of S-parameter retrieval. Third, our methodology allows one to define position-

dependent parameters if needed.

We note that the mathematical tools used in this paper (in particular, Trefftz approximations)

are rarely encountered in the literature on homogenization and therefore the analysis may appear

abstractly mathematical. In fact, our development is driven by physical considerations and is

designed to predict measurable quantities such as transmission and reflection coefficients. We

have shown that this objective is achieved by our approach, subject to unavoidable approximation

errors. Moreover, Trefftz approximations employed in our method have a clear physical meaning

themselves – as a decomposition of fine-level and coarse-level fields into physical modes that can

exist in the periodic composite (e.g., Bloch waves) and in the equivalent homogeneous medium

(plane waves). Finally, Trefftz homogenization yields effective parameters that provide, in a sense,

the best approximation of Bloch impedances as well as dispersion relations over an ensemble of

physical modes in the structure.

In summary, the proposed methodology follows from physically relevant considerations and

is both general and flexible. Information about the actual fine-scale fields is “encoded” in suitable

sets of basis functions from which the effective material parameters are easily and unambiguously

derived.
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Appendix: Equations for coarse-level fields

Substituting expansion (3.9) into the coarse-field equations (3.5a), (3.5b), one obtains the following

error term in the volume of each lattice cell:

−i{δIm(r), δJm(r)}=
∑

α

cmα

[

Kα{H
(0)
α ,E

(0)
α } − k0M{E

(0)
α ,H

(0)
α }

]

, r ∈Cm .

The error term corresponding to cell/cell boundaries is

{δKlm(r), δQlm(r)}= n̂lm ×
∑

α

{H
(0)
α ,E

(0)
α }(cmα − cαl)e

iqα·r , r ∈ Slm , z 6= 0, L .

Finally, the error terms on the material/air interfaces are

{δK0m(r), δQ0m(r)}=

ẑ×

[

∑

α

cmα{H
(0)
α ,E

(0)
α }eiqα·r −

∫
{
kr

k0
× Sr(kr),Sr(kr)}e

ikr ·r dkrx dkry

]

,

r∈ S0m , z = 0
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on the side of the incident field and

{δKm∞(r), δQm∞(r)}=

ẑ×

[∫
{
kt

k0
× St(kt),St(kt)}e

ikt·r −
∑

α

cmα{H
(0)
α ,E

(0)
α }eiqα·r dkrx dkry

]

,

r∈ Sm∞ , z =L

on the transmission side. In these expressions, kz is a function of kx and ky defined by the free-

space dispersion formula (2.3) and, finally,

kt = (kx, ky, kz) , kr = (kx, ky,−kz) .
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