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Investigation of the effect of super-resolution in nonlinear inverse scattering
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The idea that a solution to a nonlinear inverse scattering problem (ISP) can contain information about the target
on a subwavelength scale and thus allow one to achieve super-resolution (spatial resolution beyond the diffraction
limit) has been around since the 1990s. However, a solid mathematical theory of super-resolution in nonlinear
image reconstruction is still lacking. In this paper, we investigate the effect of super-resolution in nonlinear ISPs
(both analytically and numerically) by analyzing several inverse problems in which the limit of spatial resolution
can be defined precisely. The conclusions we obtain are not optimistic. Although it is possible to create examples
of exactly solvable models in which account of nonlinearity in the ISP results in additional mathematically
independent equations (one such example is shown herein), our results indicate that super-resolution is not
achievable in any practical sense. Rather, we find that the linear subspace of possible solutions to a band-limited
linearized ISP is transformed into a more general curved manifold due to the effects of nonlinearity. In the
one-dimensional problem with realistic interaction that we have considered, the manifold can have a slightly
smaller dimensionality that the subspace of solutions to the linearized problem but it does not contract to a point
and the effect is practically insignificant.
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I. INTRODUCTION

Achieving the effect of super-resolution is an important
goal in imaging, tomography, and signal processing. However,
in different fields, the problem is formulated and understood
in different ways. In the context of image processing, one
is typically interested in deblurring an undersampled or cor-
rupted image by utilizing various a priori assumptions [1,2].
This includes such techniques as nonlinear interpolation [3,4],
utilization of a prior probability density in the Bayesian frame-
work [5], Laplacian [6,7], total variation [8,9], sparsity-based
regularization [10–12], and many variants of the above. A
conceptually different group of approaches is to engineer a
physical device that can gain access to higher spatial frequen-
cies directly, either by amplifying evanescent waves or by
some other means [13,14]. Yet another group of approaches
is to use the mathematical structure of the nonlinear inverse
scattering problem (ISP) to gain access to the spatial fre-
quencies of the target outside of the conventional band limit
[15–19]. The present paper is focused on the latter problem,
specifically, in the context of nonlinear inverse scattering. We
start by reviewing various ideas that motivate this particular
direction in the quest for super-resolved imaging.

It is well known that the spatial resolution that can be
obtained by solving the linearized ISP with monochromatic
illumination and phase-sensitive detection in the far field
is limited to about one-fourth of the wavelength ([20],
Sec. 13.1.2). In the above reference, Born and Wolf define
the resolution limit as λ/2 rather than λ/4, but this is a minor
distinction. For three-dimensional tomography, the resolution
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limit can not be defined precisely but is not smaller than
λ/4 and not larger than

√
3λ/4 (see below). Structures on

a finer scale can not be resolved in this way. Here we as-
sume monochromatic illumination so that the wavelength is
well-defined, and linearization of the ISP can be achieved, for
example, by using the first Born approximation.

The band limit of the linearized ISP can be understood
as follows. Within the accuracy of the first Born approxima-
tion, the scattering amplitude of a three-dimensional object,
f (kin, kout ), where kin and kout are the incident and outgoing
wave vectors, is proportional to Ṽ (kin − kout ). Here V (r) is
the scattering potential, say, the susceptibility [ε(r) − 1]/4π

in the case of electromagnetic scattering, or any other suitable
contrast, and

Ṽ (q) =
∫

V (r)eiq·rd3r (1)

is the spatial Fourier transform of V (r). Note that we use
the notation k, possibly with subscripts, for wave vectors
whose length is equal to the free space wave number, that
is, |k| = k = ω/c = 2π/λ. The notation q is reserved for a
generic Fourier variable whose length is arbitrary.

The scattering amplitude contains all information that
is accessible in the far-field scattering experiments. Of
course, the contribution of evanescent waves is mathemat-
ically nonzero everywhere in space, but it is exponentially
small. Given any realistic finite-precision measurements, it
can be safely assumed that the measured quantity (in the far
field) is the scattering amplitude. Accounting for the fact that
|kin| = |kout| = k, we conclude that the scattering amplitude
is not influenced at all by the values of Ṽ (q) with |q| > 2k.
The region of Fourier space |q| < 2k is known as the Ewald
sphere.
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For one-dimensional objects, we can define the resolution
limit � as the Nyquist sampling rate of a function that is band-
limited in the interval of spatial frequencies [−2k, 2k]. This
leads to the result � = π/2k = λ/4. For three-dimensional
objects, the situation is not so simple since the Fourier vari-
able is restricted to a sphere rather than a rectangle, and
the standard Fourier analysis does not apply. However, the
Ewald sphere can be inscribed inside a cube of the side 4k.
Therefore, � is larger than λ/4 (since not all points inside
this cube are accessible to measurements). We can also in-
scribe a cube of the side 4k/

√
3 inside the Ewald sphere.

Therefore, � is smaller than
√

3λ/4 (since some points of the
Fourier space outside of this cube are accessible to measure-
ments). In general, we conclude that the resolution limit of
three-dimensional tomography satisfies λ/4 < � <

√
3λ/4.

A more precise mathematical statement is that the minimum
L2 norm solution V inv(r) to the linearized ISP is a spherically
low-pass filtered version of the actual potential,

V inv(r) =
∫

|q|<2k
Ṽ (q)e−iq·r d3q

(2π )3

=
∫

S(r − r′)V (r′)d3r′, (2a)

where

S(r) = sin(2kr) − 2kr cos(2kr)

2π2r3
(2b)

is the point-spread function. This result is based on the as-
sumption that the linearizing approximation is sufficiently
accurate and the measurements are ideal and sampled as finely
as necessary. If these conditions do not hold, the linearized
inverse solution is expected to be less accurate than the low-
pass filtered potential defined in (2a). We can say that (2a)
is the best possible result one can hope for in the far-field
linearized inverse scattering.

Several methods for overcoming the resolution limit of the
linearized ISP have been considered in the past. The most
straightforward approach is to utilize near-field measurements
by using small probes (serving for both illumination and
detection) that are placed in the subwavelength vicinity of
the imaged object [21–25]. Unfortunately, this technique has
several drawbacks, which include a lack of sufficiently simple
or reliable models for the probes, the technical difficulty of
placing and manipulating the probes in the near-field vicinity
of an object, and the exponential decay of the evanescent
waves, which renders the associated ISP severely ill-posed. At
the same time, direct near-field imaging (that is, mapping the
intensity of the near field without solving an inverse problem)
is not always meaningful. The problem here is the lack of
a strong correlation between the near-field intensity of the
scattered field and the geometry of the scattering object [26].
In general, near-field modalities are not useful for deep sub-
surface tomographic imaging or for imaging of surfaces in the
strong multiple-scattering regime.

A large class of methods for obtaining super-resolution
is based on utilization of a priori information about the
target. This approach is applicable to both linear and nonlin-
ear inverse problems. In one example, the prior information
concerns the shape of the target [27–29]. In this case,

the inverse problem can be reduced to linear or nonlin-
ear regression. In Ref. [29], the spherical shape prior was
used to reconstruct the diameter and the refractive index
of a particle from angularly-resolved scattering pattern with
deep subwavelength resolution. The method of [29] does
not require phase-sensitive measurements but is limited to
sufficiently large size parameters since, in the quasistatic
limit, the inverse solutions are non-unique. In the case of
so-called compositional priors [19,30,31], the medium is
assumed to consist of two or more components whose phys-
ical properties such as spectra are known but the spatial
distribution of the components is not known and must be
reconstructed. Typically, compositional priors require mul-
tispectral measurements [30,31]. However, they are useful
if only monochromatic measurements are available, as was
demonstrated in Ref. [19] where ∼λ/10 spatial resolution
in nonlinear inverse electromagnetic scattering was obtained.
Generally, the use of prior information is a powerful tool for
solving ISPs. However, this tool is applicable in both linear
and nonlinear regimes and, in the latter case, the effects of
nonlinearity, which are the main subject of this paper, and the
effects of accounting for the priors can be conflated. To avoid
this possibility, we will assume that no a priori information
about the target is available.

Another set of methods are based on analytical continua-
tion of Ṽ (q) beyond the Ewald sphere. Indeed, if V (r) has a
compact support and is sufficiently “nice”, then Ṽ (q) is an
analytical function. Based on this observation, the theorem
of global uniqueness of solutions to the ISP can be proved
[32]. However, in the practical problems of imaging, Ṽ (q) is
never known analytically. Rather, it is sampled in a discrete
and finite set of points. There is no practical way to extrap-
olate such measurements beyond the Ewald sphere without
making some a priori assumptions about the high spatial fre-
quency components of the target. But this is something that we
explicitly wish to avoid.

In relation to the above, one important comment can be
made. It is widely known that the problem of analytical
continuation of a numerically sampled function is severely
ill-posed. What is much less appreciated is that the difficulty
here is more severe and goes beyond ill-posedness. Numerical
data can not be extrapolated without making any unwanted
a priori assumptions even if the samples could be measured
with unlimited numerical precision. Indeed, imagine that yn

(n = 1, 2, . . . , N) is the discrete Fourier transform (DFT) of
N variables xn. If all N “data points” yn are known, one can
stably and uniquely reconstruct all xn. However, if some of
the points yn are not known (i.e., were not measured), there
exists no mathematically reasonable way to guess or predict
these quantities unless some additional assumptions on xn

are made. If no such a priori information is available, the
unknown data points can hold any value and the analyticity
arguments or analytical interpolation are of no help in this
scenario.

An appealing approach to obtaining super-resolution,
which does not rely on a priori information about the target or
on the analyticity arguments, is to consider and solve a non-
linear ISP. Indeed, the arguments that led us to formulation of
the resolution limit are not applicable to nonlinear ISPs. The
standard multiple-scattering theory yields the following result
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for the scattering amplitude (overall factors are omitted):

f (kin, kout )

=
∫

eikin·rV (r)e−ikout ·rd3r

+
∫

eikin·rV (r)G(r, r′)V (r′)e−ikout ·r′
d3rd3r′ + . . . .

(3)

The expression

V (r)δ(r − r′) + V (r)G(r, r′)V (r′) + . . . (4)

which appears in (3) is the power series expansion of the trans-
fer matrix (T matrix) of the system [33,34], T (r, r′). Keeping
only the first term in the right-hand side of (3) corresponds
to the first Born approximation, from which it follows that
f (kin, kout ) = Ṽ (kin − kout ) and the resolution limit ensues.
However, the second-order term contains Fourier components
of V outside of the Ewald sphere. To see this, it is convenient
to use the Fourier decomposition of G(r, r′). In free space, the
Green’s function depends only on the shift r − r′ and we can
write

G(r, r′) =
∫

g(q)eiq·(r−r′ )d3q. (5)

With the use of this formula, (3) can be rewritten as

f (kin, kout ) = Ṽ (kin − kout )

+
∫

Ṽ (kin − q)g(q)Ṽ (q − kout )d
3q + . . . .

(6)

Here g(q) is nonzero in the whole infinite integration domain,
except, perhaps, for on some surfaces or lines of zero measure.
We thus see that, already to second order, Eq. (6) contains all
Fourier components of V . The generic nth order term in the
expansion (6) is of the form∫

Ṽ (kin − q1)g(q1)Ṽ (q1 − q2)g(q2) . . .

× g(qn)Ṽ (qn − kout )d
3q1 . . . d3qn . (7)

This integral depends on all Fourier components of V . The
logical conclusion seems to be that, beyond the first Born
approximation, the scattering data depend on all Fourier com-
ponents of V and, therefore, solutions to the nonlinear ISPs
are not subject to the resolution limit.

The idea that one can break the diffraction limit by solv-
ing a nonlinear ISP was put forth in a series of papers by
Chew et al. [35–38] and then explored by different authors
[15–19] and was even the subject of some controversy [39,40].
Overall, the conclusion that accounting for multiple scattering
provides information about the Fourier coefficients of the
target outside of the Ewald sphere has been largely accepted
in physics and engineering communities [41]. The effect is
often described in terms of incident propagating waves being
coupled inside the sample to evanescent waves by the effects
of multiple scattering. Then it is pointed out that evanescent
waves carry information about the subwavelength structure of
the sample.

There are, however, good reasons to not be convinced. For
example, the experimental demonstration of ∼λ/10 resolution
in Ref. [19] is quite striking, but it has been achieved with the
use of strong a priori information about the target. Some other
works operate with the criteria of super-resolution that are not
mathematically rigorous. A case in point is the comment [39]
on an earlier paper [15] where it is stated that super-resolution
can be achieved without any multiple scattering (which is the
cause of the ISP nonlinearity) because two noiseless peaks
can be visually resolved even if the distance between the
two maxima is much smaller than the characteristic width
of the peaks. This argument, although in principle correct
and easily demonstrable, conflates the problem of detection
of a small dip between two peaks with the problem of spa-
tial resolution of images. In general, it is not evident that
the previous demonstrations of super-resolution have been
afforded by accounting for multiple scattering rather than
by some other methods such as using a priori information,
and it is not evident whether these studies have utilized a
mathematically rigorous definition of spatial resolution. The
fundamental importance of doing so has been recently high-
lighted in Ref. [42].

In this paper, we investigate the problem of super-
resolution in nonlinear inverse scattering directly by formulat-
ing an algebraic nonlinear ISP to which the rigorous criteria
of image resolution, i.e., based on the DFT, can be applied.
Our conclusion is not optimistic. Briefly, we make the follow-
ing observation. In the case when the linearized ISP is band
limited, all possible solutions to such a linearized ISP form
a linear subspace. Account of nonlinearity does not contract
this subspace to a point to force a unique solution but rather
deforms it into a more general manifold. The dimensionality
of this manifold can be somewhat smaller than the dimension-
ality of the original linear subspace but the effect is practically
insignificant. We will explain the reduction of dimensionality
by the appearance of additional independent equations, which
tend to the trivial identity 0 = 0 in the linearization limit. The
associated perturbation theory is singular in the interaction
strength. Numerical simulations presented below indicate that
only very few such statistically significant additional equa-
tions can appear relatively to the total number of unknowns.
This does not entail any noticeable improvement of the spatial
resolution of reconstructions.

Further, the intersections of the linear subspace of so-
lutions to the linearized ISP with the coordinate planes in
the N-dimensional vector space are straight lines. However,
the intersections of the manifolds that contain solutions to
the nonlinear ISP are more general curves, possibly dis-
connected. While we can state that any point on a straight
line has zero projection onto a line that is perpendicular
to the former, the same is not true for the more gen-
eral curves. In other words, solutions to the nonlinear ISPs
may have nonzero Fourier coefficients outside of the band
limit but it is not clear whether these (and other) coeffi-
cients are correct. Having some nonzero Fourier coefficients
in the inverse solution outside of the band limit does not
necessarily entail super-resolution; to achieve the latter, it
is also required that these coefficients be correctly deter-
mined. Unfortunately, our results indicate that this is not
possible.

053313-3



VADIM A. MARKEL PHYSICAL REVIEW E 102, 053313 (2020)

We will illustrate the main idea of the paper by using
examples of progressively increased complexity and realism.
In Sec. II, a general algebraic formulation of the nonlinear
ISP will be introduced. A simple exactly-solvable example
with three degrees of freedom (unknowns) will be fully an-
alyzed in Sec. III. In the case N = 3, the dimensionality of the
manifold of solutions to the nonlinear ISP is the same as the
dimensionality of the linear subspace of solutions to the linear
ISP. However, in the case N = 4, an interaction can be devised
for which the dimensionality is reduced by 1. The case N = 4
with tight-binding interaction can still be solved analytically
and is analyzed in Appendix A. An example with N degrees
of freedom but a simple unrealistic interaction, which still
admits an analytical solution, is analyzed in Sec. IV. Here
we show with extensive examples that super-resolution can-
not be achieved even though the nonlinear inverse solutions
may have nonzero Fourier coefficients outside the linear band
limit. We are, however, interested in more realistic interac-
tions, which can be analyzed only numerically. To this end,
we introduce in Sec. V a numerical method for determining
whether super-resolution can be achieved by solving a non-
linear ISP. The method does not require an explicit solution
to the inverse problem and can be applied in a very general
setting. In Sec. VI, this approach is used to study a problem
with N = 512 = 2601 degrees of freedom and a realistic in-
teraction. Finally, Sec. VII contains a discussion of obtained
results.

II. ALGEBRAIC FORMULATION OF THE NONLINEAR
INVERSE PROBLEM

To be solved on a computer, an ISP must be suitably
discretized. There are many different ways to affect the dis-
cretization. In most cases, discrete orthogonal bases in some
relevant functional spaces are introduced. The functions of
interest are then approximated by truncated expansions over
a finite number of the basis vectors. If the unknown function
is approximated by a superposition of N basis vectors, we
say that the ISP involves N degrees of freedom. In Ref. [43],
a discretization using local voxel-based basis functions was
used. Here we prefer to take a slightly different point of
view and assume that the degrees of freedom correspond to
physical particles rather than voxels in some medium. Each
particle will be characterized by a physical parameter called
the “polarizability,” and the goal of the ISP will be to recon-
struct these polarizabilities from a set of external scattering
measurements.

The term polarizability was typeset in quotes because it
may not always correspond to the electromagnetic polarizabil-
ity of a particle, which is, by definition, the linear coefficient
between the external electric field and the electric dipole mo-
ment [44]. In the case of acoustic waves, polarizabilities can
also be introduced but they have a different physical interpre-
tation. For example, in Ref. [43], the acoustic polarizability of
a voxel was defined. The mathematics, however, in all these
physically different scenarios is quite similar, which allows us
to consider the problem from a model-independent point of
view. In what follows, we will use the terms polarizability,
dipole moment, and electric field without quotation marks,
keeping in mind that these terms should not be interpreted

literally. In numerical examples, we consider a scalar prob-
lem; generalization to vectorial fields of the electromagnetic
theory is straightforward but entails a larger computational
complexity. Note that the scalar problem that we consider is
applicable to the electromagnetic case if all particles lie in a
plane and the electric field is polarized orthogonally to this
plane (TE polarization). It is is also applicable to acoustic
equations in the general 3D geometry.

Consider N small particles located at the points rn and
characterized by the polarizabilities αn each, where n =
1, 2, . . . , N . The dipole moment of the nth particle is given
by dn = αnEn, where En is the field at rn that is external to
the considered particle. This local field En is a superposition
of the incident field en and the field scattered by all particles
except for the nth, that is,

En = en +
∑
m �=n

Gnmdm. (8)

Here Gnm is the free-space Green’s function with the end
points in the centers of the particles n and m and the summa-
tion runs over all indexes m except for m = n. In what follows,
we assume that Gnn = 0; the particle interaction with itself is
included in the polarizabilities αn. We then arrive at the widely
known coupled-dipole equation

dn = αn

(
en +

∑
m �=n

Gnmdm

)
. (9)

Equations of this form have been known and used in physics
for a long time, in particular, in the context of the Foldy-
Lax approximation [45,46], electromagnetic coupled-dipole
approximation [47], discrete-dipole approximation [48,49]
(voxel-based discretization of continuous media), etc. A re-
cent review with an emphasis on various definitions of the
polarizability αn is given in Refs. [44,50]. For us, the impor-
tant point is that all coupled-dipole equations can be written
in the form (9).

We can also write (9) in matrix notations as

d = V(e + Gd), (10)

where small typewriter-style letters denote vectors, i.e.,

d =

⎡
⎢⎣

d1

d2

. . .

dN

⎤
⎥⎦ , e =

⎡
⎢⎣

e1

e2

. . .

eN

⎤
⎥⎦ (11)

are column vectors of the length N . Capital typewrite-style
letters will be used to denote matrices. In particular, V is an
N × N matrix whose elements are

Vnm = αnδnm. (12)

We should keep in mind that G has zeros on the diagonal, i.e.,
Gnn = 0. We will refer to G as the interaction matrix and to V
as the potential.

The formal solution to (10) is

d = T[V]e, (13)

where the functional T[·] is defined by [33,34]

T[X] = (I − XG)−1X, (14)
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and I is the identity matrix. The T matrix T[V] appearing
in (13) is defined by the particle polarizabilities αn and the
interaction matrix elements Gnm but is independent of the
incident fields en. In other words, the T matrix is a property
of the scatterer itself and is independent from the illumination
and detection schemes.

The field scattered by the target is a linear superposition of
the fields scattered by all dipole moments. A single data point,
that is, a measurement of the scattered field by the kth detector
(or a phased array of detectors) due to the lth incident wave
is related to the unknown potential matrix V by the nonlinear
equation

(fk, T[V]el ) = φkl , (15)

and (u, v) = ∑
n u∗

nvn denotes the scalar product of two com-
plex vectors. In (15), el is the lth vector of incident fields.
We assume that there are Nin such distinct vectors, which is
equivalent to saying that Nin distinct source waves have been
used. Similarly, fk is the kth vector onto which d is projected
to obtain the kth measurement of the scattered field. There
are Nout such distinct projections, which corresponds to Nout

detected scattered waves.
To further simplify the notations, we can rewrite (15)

equivalently as

AT[V]B = Φ, (16)

where A is a Nout × N matrix whose lines are the line vectors
f∗

k (star denotes Hermitian conjugation) and B is a N × Nin

matrix whose columns are the column vectors el , that is,

A =

⎡
⎢⎣
f∗

1
f∗

2
. . .

f∗
N

⎤
⎥⎦ , B = [e1 e2 . . . eN ]. (17)

Note that the size of Φ is Nout × Nin.
Equation (16) gives a general algebraic formulation of a

discretized ISP. All ISPs can be brought to this form, assuming
only that the underlying physical equations (e.g., Maxwell’s
equations, Schrodinger equation, acoustic equation, etc.) are
linear in the fields. The ISP is stated as follows: given Nin ×
Nout measurements (data points) contained in the elements of
the data matrix Φ, solve (16) to find the N diagonal elements
of the potential matrix V under the constraint that the off-
diagonal elements of V are zero.

The first Born linearization of (16) is

AVB = Φ. (18)

This equation will be used below for “linearized” inversion.
We note that (18) can be obtained from (16) either by setting
formally G = 0 or, alternatively, by assuming that |VG| � |I|
in some suitable norm, writing out the power series expansion
T = V + VGV + VGVGV + . . . and keeping only the first term
in this expansion. Unlike the first Born approximation, other
linearizing approximations including the first Rytov and the
mean-field approximation can not be stated in the operator
form but must be written explicitly for the elements Tnm.

III. EXAMPLE WITH THREE DEGREES OF FREEDOM

We start with a simple exactly-solvable toy problem, which
is nevertheless quite instructive. Consider just three particles
with unknown polarizabilities α1, α2, and α3. We further
assume that the particles form an equilateral triangle so all
pairwise interactions are the same and we can write G12 =
G23 = G13 = g (recall that G11 = G22 = G33 = 0) so

G =
⎡
⎣0 g g

g 0 g
g g 0

⎤
⎦ . (19)

In this case, the matrix inverse in (14) can be computed ana-
lytically and T can be expressed in terms of αn as

Tnm = κnδnm + g
κnκm

1 − gS
, (20)

where

κn = αn

1 + gαn
, S =

3∑
n=1

κn. (21)

Equation (20) gives the solution to the forward problem.
We now need to formulate the inverse problem, and to this
end we need to define the measurement matrices A and B
that couple the T matrix to the measurements Φ according to
(16). We will construct A and B using the following basis of
mutually orthogonal vectors:

u =
⎡
⎣1

1
1

⎤
⎦ , v =

⎡
⎣ 1

−2
1

⎤
⎦ , w =

⎡
⎣ 1

0
−1

⎤
⎦. (22)

Let us assume that the particles are illuminated by two dif-
ferent incident waves, which, up to some overall factors, are
given by two of these basis vectors, say, by u and v or by u
and w. We will see below that the choice matters. Similarly, the
scattered field is measured by two different detectors, which
register the projections of d onto the same two basis vectors.
In this case, the measurement matrices A and B are transposes
[51] of each other so that AT[V]B = AT[V]AT (the upper index
T denotes transposition) is symmetric, and the same must be
true for the data matrix Φ, assuming that it is in the range of
the forward operator.

We will refer to such data matrices as being physically
admissible. If a nonsymmetric � is measured in an experi-
ment, i.e., due to noise or systematic errors, it is not physically
admissible as it does not correspond to any diagonal or even
symmetric potential V. If this is the case, one can still seek a
solution that fits the data best in some sense. For example,
if a noisy nonsymmetric data matrix is measured, one can
use the substitution Φ → 1

2 (Φ + ΦT). In this paper, we restrict
attention to ideal data matrices, which are always in range of
the forward operator for some diagonal V.

Note that symmetry is a necessary but not a sufficient con-
dition of physical admissibility of Φ. The sufficient condition
is not easy to state in general. Below, we will derive the
sufficient and necessary condition for the toy problem at hand;
in a more general case, the range of the forward operator can
not be easily characterized.

Thus, in the considered setup, there are four measurements
(two source waves and two detectors) but only three of them
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are independent due to the symmetry of Φ. We therefore con-
clude that there are only three independent measurements.
There are also three unknowns. We are interested whether
the linearized ISP has a unique solution and, if it does not,
whether accounting for multiple scattering and solving the full
nonlinear ISP can fix the ill-posedness and produce a unique
solution. We will first consider the case when the linearized
ISP is band-limited and has no unique solution. Then we will
consider the opposite case when the linearized ISP is not band
limited. In both cases, we will analyze the solution to the full
nonlinear ISP. We will finally discuss why the linearized ISP
is band limited in one case but not in the other.

A. Band-limited measurement

Consider the case when the two basis vectors used in the
construction of A and B are u and v. Then

A =
[

1 1 1
1 −2 1

]
, B =

⎡
⎣1 1

1 −2
1 1

⎤
⎦. (23)

1. Linearized problem

Let us first analyze the linearized inverse problem. To this
end, we use the expressions (23) for A and B, compute the
product AVB and substitute this result into (18). This results in
the matrix equation[

α1 + α2 + α3 α1 − 2α2 + α3

α1 − 2α2 + α3 α1 + 4α2 + α3

]
=

[
φ11 φ12

φ21 φ22

]
. (24)

As noted above, a solution to (24) exists only if φ12 = φ21.
However, this is not the only requirement. We note the linear
dependence [1, 4, 1] = 2[1, 1, 1] − [1,−2, 1]. Therefore, the
sufficient and necessary condition of consistency of all equa-
tions in (24) is

φ12 = φ21, φ22 = 2φ11 − φ12. (25)

So, only two of the elements of the data matrix Φ are math-
ematically independent. This already indicates that there are
not enough equations in (24) to determine the unknowns
uniquely.

Let Φ satisfy the physical admissibility conditions (25).
Then (24) is reduced to only two linearly independent equa-
tions:

α1 + α2 + α3 = φ11 , α1 − 2α2 + α3 = φ12. (26)

Therefore, we can find the projection of α = [α1, α2, α3]T

onto u and v. The projection onto w is fundamentally unknown
and cannot be recovered in this setting. If a minimum L2-norm
inverse solution is sought, the unknown projection (w, α) is
simply set to zero. We will say that the linearized ISP is band
limited in such cases. The situation is directly analogous to the
case when the unknown Fourier coefficients of a function or a
vector are set to zero and the inverse Fourier transform is used
to obtain a low-pass filtered reconstruction, i.e., as in (2a).

2. Full nonlinear problem

We now investigate the question whether the band limit
will persist in the full nonlinear ISP with the same mea-
surement matrices A and B as above. The T matrix of the

problem with the full account of multiple scattering is given in
terms of αn by (20), and we can use this equation to compute
AT[V]B. Equating the result of this computation to the matrix
Φ (entrywise), we obtain the following equations:

κ1 + κ2 + κ3

1 − g(κ1 + κ2 + κ3)
= φ11, (27a)

κ1 − 2κ2 + κ3

1 − g(κ1 + κ2 + κ3)
= φ12, (27b)

κ1 − 2κ2 + κ3

1 − g(κ1 + κ2 + κ3)
= φ21, (27c)

κ1 + 4κ2 + κ3 + g(κ1 − 2κ2 + κ3)2

1 − g(κ1 + κ2 + κ3)
= φ22. (27d)

Note that κn are given in terms of αn by (21). As before,
physical admissibility of Φ requires that φ12 = φ21, and there
is an additional condition, which we will derive shortly.

Equations (27) can be solved for linear combinations of
κn’s as follows:

κ1 + κ2 + κ3 = φ11

1 + gφ11
, (28a)

κ1 − 2κ2 + κ3 = φ12

1 + gφ11
, (28b)

κ1 + 4κ2 + κ3 = φ22 − gφ2
12

1 + gφ11
. (28c)

Assuming φ12 = φ21, Eqs. (27) and (28) are equivalent.
We now recall the linear dependence [1, 4, 1] = 2[1, 1, 1] −
[1,−2, 1] and conclude that the rank of the matrix on the
left-hand side of (28) is equal to 2. Therefore the necessary
and sufficient condition of physical admissibility for (27) is

φ12 = φ21, φ22 = 2φ11 − φ12 + gφ2
12

1 + gφ11
. (29)

Note that, in the limit g → 0, the second equation in (29)
becomes the same as the second condition for the linearized
ISP in (25).

Assuming that Φ is physically admissible, the whole set
(28) is equivalent to the two equations (28a) and (28b). We
thus see that the solution to the nonlinear ISP is band limited
if we view κn’s as the unknowns. But it is not band imited
with respect to αn’s. To be sure, the solution for αn’s is still not
unique. However, it is not possible to talk about a band limit
for αn’s since the set of solutions that are consistent with (28a)
and (28b) is no longer a linear subspace but, rather, a curved
manifold. In the simple case considered here, this manifold
is a two-dimensional surface in the three dimensional space.
Intersection of this surface with the plane α2 = const are the
curves defined by the equation

α1

1 + gα1
+ α3

1 + gα3
= 1

3

2φ11 + φ12

1 + gφ11
, (30a)

and α2 can be reconstructed uniquely as

α2 = φ11 − φ12

3 + g(2φ11 + φ12)
. (30b)

In fact, (30) defines a union of two disjoint manifolds.
The loci of all points in the (α1, α3) plane that satisfy (30)
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FIG. 1. Loci of all points in the (α1, α3) plane that satisfy (30)
for different values of the coupling parameter g, as labeled. The data
matrix � was generated (for each value of g) by using the following
model values of the polarizabilities: αmod

1 = 1, αmod
3 = 8; this point

is shown by the black dot. Every curve, except for the one with
g = 0, consists of two disjoint segments. One of these two segments
contains the model point and the other does not. The segments of the
curves g = 0.01, 0.02, 0.04 that do not contain the model point lie
outside of the figure frame.

are illustrated in Fig. 1. It can be seen that the account of
nonlinearity does not make the ISP any better posed and does
not provide additional information. Rather, characterization of
solutions becomes more complicated. Whereas, in the linear
regime, the projection of the solution onto a linear subspace
(in this case, of R3) is known from the data, there is no such
simple consideration in the nonlinear case.

One can also observe that, if an initial or an intermediate
guess in some optimization procedure happens to lie on the
“remote” manifold of possible solutions (the one that does not
contain the true solution), then there is little hope that any
iterative process will converge to the correct result regardless
of the regularization method.

B. Measurement without a band limit

As mentioned above, the choice of the basis vectors for
construction of the measurement matrices A and B matters. In
Sec. III A, we used u and v to this end. Let us now use u and
w. Then

A =
[

1 1 1
1 0 −1

]
, B =

⎡
⎣1 1

1 0
1 −1

⎤
⎦. (31)

We will see that in this case the inverse problem is not band
limited.

1. Linearized problem

The linearized problem for the measurement matrices A
and B defined in (31) takes the form[

α1 + α2 + α3 α1 − α3

α1 − α3 α1 + α3

]
=

[
φ11 φ12

φ21 φ22

]
. (32)

It can be seen that the necessary and sufficient requirement of
physical admissibility of the Φ matrix is its symmetry; there
are no other conditions. Consequently, (32) contains three
independent linear equations whose unique solution is

αinv
1 = 1

2 (φ22 + φ12), (33)

αinv
2 = φ11 − φ22, (34)

αinv
3 = 1

2 (φ22 − φ12). (35)

Therefore, the linearized inverse problem in this case is well
posed and not band limited.

2. Full nonlinear problem

The full nonlinear problem for the chosen measurement
matrices A and B is given by the following four equations:

κ1 + κ2 + κ3

1 − g(κ1 + κ2 + κ3)
= φ11, (36a)

κ1 − κ3

1 − g(κ1 + κ2 + κ3)
= φ12, (36b)

κ1 − κ3

1 − g(κ1 + κ2 + κ3)
= φ21, (36c)

κ1 + κ3 + g(κ1 − κ3)2

1 − g(κ1 + κ2 + κ3)
= φ22. (36d)

Just like in the linearized case, the only condition of phys-
ical admissibility of the Φ-matrix is its symmetry. Assuming
this condition holds, (36) has the following unique solution
for κn:

κinv
1 = 1

2

(
φ22 + φ12

1 − gφ12

1 + gφ11

)
, (37a)

κinv
2 = −φ22 + φ11 + gφ2

12

1 + gφ11
, (37b)

κinv
3 = 1

2

(
φ22 − φ12

1 + gφ12

1 + gφ11

)
. (37c)

From (37), one can find αn as αinv
n = κinv

n /(1 − gκinv
n ). If

we set g = 0, (37) becomes equivalent to (36).
We thus see that if the solution to the linearized problem is

unique, it remains unique in the full nonlinear case. Indeed,
if we fix the data (e.g., assuming that they were measured
experimentally) and increase the interaction parameter g in
(37), the solution will start off as the linearized solution (33)
and remain unique except at the point of discontinuity g =
−1/φ12; no bifurcations of the solution will occur.

Another way to analyze the inverse solutions is to fix
g (assuming it is known theoretically) and to consider the
dependence of αn on the elements of the data matrix Φ. For
sufficiently small Φ, this dependence is linear and given by
(33). This means that when the data matrix is sufficiently
small (for a given g), the linearized solution to the ISP is
accurate. As Φ increases, the nonlinearity sets in and, even-
tually, the inverse solutions experience discontinuities. This
is illustrated in Fig. 2. The presence of discontinuities is the
main feature that distinguishes the solution to the nonlinear
ISP from its linearized counterpart. If the data is close to the
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FIG. 2. Inverse solutions α1 (solid line), α2 (short dash), and α3

(long dash) as functions of the various elements of the data matrix
for g = 0.1. Left panel: φ11 is variable while φ12 ≈ 2.534 and φ22 ≈
0.504. Center panel: φ12 is variable while φ11 ≈ 1.465 and φ22 ≈
0.504. Right panel: φ22 is variable while φ11 ≈ 1.465 and φ12 ≈
2.534. The triplet of values (φ11, φ12, φ22) ≈ (1.465, 2.534, 0.504)
corresponds to (α1, α2, α3) = (1, 2, −1).

surfaces on which the discontinuity occurs, the ISP is severely
ill-posed. However, if the solution was unique in the linear
regime, it remains unique for almost all values of the data ma-
trix, except exactly at the surfaces of discontinuity where the
inverse solution does not exist. In the simple case considered
here, it is relatively easy to define the region around the origin
of the three-dimensional space (φ11, φ12, φ22) in which the in-
verse solutions are continuous. In multidimensional problems,
finding the discontinuities can become complicated. Yet, if
the linearized ISP is well posed, a region of continuity of
the nonlinear inverse solutions containing the origin always
exists.

C. Discussion

The intermediate conclusion that we can draw is that ac-
counting for multiple scattering does not necessarily make
the ISP better posed and might not provide additional in-
formation about the target that is not available in the linear
regime. However, if the linearized ISP is well posed and has a
unique solution, the same remains true in the nonlinear case.
The difficulty in this case is that the nonlinearity results in
discontinuities in the dependence of the inverse solutions on
the data, which, in the presence of experimental noise, can be
detrimental.

The considered example also indicates that, in the case of
nonuniqueness, the set of solutions is a curved manifold or a
union of several such disjoint manifolds. The manifolds can be
close to linear subspaces near the origin as is the case for the
curve g = 0.01 in Fig. 1, which is almost a straight line near
the origin but starts to curve as one moves further away. It can
be pointed out that the curve g = 0, which is truly a straight
line, is a mathematical abstraction; it does not represent a set
of possible solutions to any physical inverse problem since all
such problems have g �= 0.

It remains for us to discuss why the measurement scheme
based on the two vectors u and v resulted in a band-limited
problem (Sec. III A) whereas the choice of u and w in the
same context resulted in a well-posed problem (Sec. III A).
This seems counterintuitive since all vectors in a Hilbert space
are equivalent; one can be obtained from another by a simple
rotation and dilation. The answer to the posed question is that
what matters are entrywise (Hadamard) products of various
pairs of the basis vectors. For example, if x = y ◦ z, then

xn = ynzn. We can construct in this manner the following three
vectors from u and v:

u ◦ u =
⎡
⎣1

1
1

⎤
⎦ , u ◦ v =

⎡
⎣ 1

−2
1

⎤
⎦ , v ◦ v =

⎡
⎣1

4
1

⎤
⎦.

These vectors are linearly dependent. However, if we use u
and w for the same purpose, we generate the following three
vectors:

u ◦ u =
⎡
⎣1

1
1

⎤
⎦ , u ◦ w =

⎡
⎣ 1

0
−1

⎤
⎦ , w ◦ w =

⎡
⎣1

0
1

⎤
⎦.

These vectors are in fact linearly independent.

IV. EXAMPLE WITH N DEGREES OF FREEDOM
(INVERSE PROBLEM ON A FULLY CONNECTED GRAPH)

We now consider N particles characterized by possibly
complex polarizabilities αn and introduce the DFT of these
variables (assuming for simplicity that N is odd) according to

α̃m =
N∑

n=1

αneiξnm, (38a)

where

−M � m � M , M = N − 1

2
, ξ = 2π

N
. (38b)

The inverse relation is

αn = 1

N

M∑
m=−M

α̃me−iξnm. (39)

The system under consideration can be visualized as a one-
dimensional chain of particles in which the index n labels the
coordinate. The setup of this section is directly relevant to the
problem of inverse scattering. Moreover, the resolution limit
can now be given a physically relevant definition.

In this section, similarly to Sec. III, we assume that all
pairwise interactions in the system are given by the same
parameter g so that Gnm = g(1 − δnm). We can refer to this
interaction as to fully connecting since it corresponds to the
interactions of vertices in a fully-connected graph. Therefore,
this section is a generalization of Sec. III to N degrees of free-
dom and also to more realistic measurement matrices, which
now correspond to incoming and outgoing plane waves. The
fully connecting interaction is not a physically realistic model
but it will allow us to investigate the relevant mathematical
features of the ISP analytically. In Sec. VI, we will consider
a realistic interaction. To this end, we will have to resort to
numerical simulations. However, we will perform a direct
comparison of the realistic interaction to the fully-connecting
interaction as well as to the tight-binding interaction and show
that, at least from the point of view of nonlinear ISP, these
cases are qualitatively similar. It is therefore useful to consider
the fully connecting interaction to gain additional theoretical
insight.

For the fully connecting interaction considered here, the
T matrix of the system is given by a generalization of (20),
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namely,

Tnm = κnδnm + g
κnκm

1 − gκ̃0
, 1 � n, m � N. (40)

Here κ̃0 = ∑N
n=1 κn is the zeroth Fourier coefficient of κn.

Further, let the incident fields be given by a set of plane
waves of the form eiξ ln, where −L � l � L, and let the detec-
tors project the dipole moments of the particles onto the set of
the same plane waves. Then the elements of the measurement
matrices A and B are defined as follows:

Aln = e−iξ ln, Bnl = eiξnl , (41a)

where
−L � l � L, 1 � n � N. (41b)

This measurement scheme is characteristic of far-field ex-
citation and detection.

Given the above definitions, equation (16) takes the form

κ̃l− j + g
κ̃l κ̃− j

1 − gκ̃0
= φ jl , −L � j, l � L, (42)

where we have introduced the DFT of κn (denoted by κ̃m)
according to the convention (38a).

A. Linearized problem

In the limit g → 0, we have κn = αn and Eq. (42) is re-
duced to the following linear problem:

α̃l− j = φ jl , −L � j, l � L. (43)

The physical admissibility condition for the Φ-matrix is in
this case that it be banded so that φ jl = f (l − j), where f (·)
is any function. Assuming that Φ is physically admissible,
(43) defines all Fourier coefficients α̃m in the interval −2L �
m � 2L. If 2L < M, we say that the linearized problem is
band-limited: one can recover only the Fourier coefficients α̃m

with the indexes m satisfying the above inequality. The high-
frequency Fourier coefficients, that is, those with the indexes
in the interval 2L < |m| � M are, in principle, unrecoverable
from the data.

Note that the band limit is 2L rather than L. This is
analogous to the radius of the Ewald sphere being twice the
free-space wave number.

B. Full nonlinear problem

In the full nonlinear case, we must solve Eq. (42) for κ̃m. If
all κ̃n with −M � m � M can be found from this equation
(denote this result by κ̃inv

n ), we can use the inverse DFT
to compute κinv

n for 1 � n � N and then find all αn from
αinv

n = κinv
n /(1 − gκinv

n ). This is possible only if Φ is phys-
ically admissible, which we assume below.

However, (42) does not contain Fourier coefficients κ̃m

with |m| > 2L and therefore these coefficients can not be
determined from the equation. For m within the band limit,
we have the following solution:

κ̃inv
m =

⎧⎪⎨
⎪⎩

φ0m

1+gφ00
, − L � m � L

φ−L,m−L − gφ0Lφ0,m−L

1+gφ00
, L < m � 2L

φL,m+L − gφ0,−Lφ0,m+L

1+gφ00
, −2L � m < −L .

(44)

This is not a unique expression but, if Φ is physically admis-
sible, then all such expressions are equivalent. For |m| > 2L,
the solution can not be recovered in any way from the data.

We thus see that the nonlinear solution (44) is band-limited
with respect to the Fourier coefficients κ̃m. Indeed, all such
coefficients with |m| > 2L are unknown and can not be re-
constructed in the measurement scheme considered here. But
this does not mean that the inverse solution for αn is also band
limited. In fact, a set of αn that is consistent with (44) but
otherwise arbitrary is unlikely to be band limited.

The crucial point here is that the above observation does
not mean that we have achieved super-resolution by solving
a nonlinear ISP. Even though a typical set of αn’s that is
consistent with (44) is not band-limited, there is no reason
to believe that the high-frequency Fourier coefficients of this
solution are correct. In fact, there is no reason to believe that
any Fourier coefficients of this solution are correct. Indeed,
there is no way to compute any of the unknowns αn if we
know only a limited subset of κ̃n’s and do not know the rest.
In any reconstruction method, we would be forced to make
some a priori assumptions about these unknown quantities.
In fact, all numerical solutions to ill-posed nonlinear ISPs
involve such assumptions either explicitly or not. So, whereas
in an ill-posed linearized ISP we know at least some Fourier
coefficients of the unknown quantities αn with certainty, in
the nonlinear case none of the Fourier coefficients of αn are
known. Instead, the nonlinear equations provide some more
general constraints, which are not easily amenable to Fourier
analysis.

These theoretical considerations can be illustrated with the
following numerical example. Consider N particles with some
model polarizabilities αmod

n . For simplicity, these quantities are
taken to be real-valued in the simulations. Given the model
for αn’s, we can compute the quantities κmod

n and then we
can compute the forward DFT of κmod

n according to the con-
vention (38a). This will produce a set of Fourier coefficients
κ̃mod

m for −M � m � M. We then assume that the quantities
κ̃m are known within the band limit, that is, κ̃m = κ̃mod

m for
−2L � m � 2L. The rest of the coefficients, that is, those
with 2L < |m| � M, are unknown from the data. In a practical
reconstruction problem, we would be forced to make some
a priori assumption about these coefficients. They can be
set to any value without violating the governing nonlinear
equations. The simplest choice is to set these quantities to
zero. Then, given the complete set of Fourier coefficients
κ̃m with −M � m � M (some of which are “correct” and
inferred from the data while the others are guessed), we can
proceed with the algorithm outlined in the beginning of this
subsection. That is, we apply the inverse DFT to compute
κinv

n and then use the formula αinv
n = κinv

n /(1 − gκinv
n ) to find

the complete set of αinv
n . Of course, the resultant αinv

n will be
different from αmod

n .
In the simulation, we have taken N = 1001 so M = (N −

1)/2 = 500 and L = 25, and M/2L = 10. The model consists
of several pulses of various width. The results are shown in
Fig. 3. In the Fig. 3(a), we have taken g = 0 and the “recon-
struction” performed by the algorithm described above simply
yields the low-pass filtered version of αmod

n . Since M/2L = 10,
we expect that this reconstruction will resolve the features
of about 10 units of length in width; oscillations or features
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FIG. 3. Inverse solutions for N = 1001 and L = 25 (band limit
of the linearized ISP is 2L = 50) and various values of the interaction
parameter g. The model polarizabilities αn are purely real. However,
nonlinear reconstructions are complex; only real parts are shown in
the plots. (a) (g = 0) corresponds to the usual band-limited linearized
reconstruction of αn from ideal data. The plots in (c) and (d) ex-
tend beyond the figure frames and reach the values of ≈17 (c) and
≈ −17 (d).

that change on a smaller scale should not be resolvable. As
can be seen from the Figure, this is, indeed, the case. Then,
as the interaction strength g increases, the reconstructions
acquire some sharp features due to the appearance of nonzero
high-frequency Fourier coefficients of αrec

n . But these Fourier
coefficients are incorrect and the sharp features are in the
wrong places; they do not help resolve the fine structure of the
model at all. In fact, when g = ±0.4, all Fourier coefficients
in the reconstruction are incorrect: even the integral (the sum
of all αrec

n ’s) is predicted incorrectly. We note that the sharp
features seen in the Panels (c) and (d) extend way beyond the
figure frames and are truncated to make the graphical repre-
sentation of the data manageable. Note that, for a real-valued
model, the symmetry property α̃−m = α̃∗

m should theoretically
hold. However, in the nonlinear reconstruction, this property
is lost. Therefore, reconstructed values αrec

n are generally com-
plex; only the real parts of αrec

n are shown in Fig. 3.
In Fig. 4, we show the power spectra, that is, the squared

absolute values of the Fourier coefficients |α̃m|2 for the model,
the low-pass filtered model and the nonlinear reconstruction
with g = 0.4. It can be seen that the nonlinear reconstruction
is not band limited; however, its power spectrum is very dif-
ferent from the power spectrum of the model. Only for small
indexes m is there some resemblance.

In Fig. 5, we show what would happen if, instead of setting
the unknown coefficients κ̃m to zero, we assigned them some
random values. Specifically, we have set the quantities κ̃m with

FIG. 4. Power spectra of the model (a), of the low-pass filtered
model (b) and of the nonlinear reconstruction with g = 0.4 (c) for the
same numerical example and parameters as in Fig. 3.

2L < |m| � M to rm, where rm are pseudo-random numbers
uniformly distributed in the interval [−R, R]. For the example
shown in Fig. 5, we have taken R = 100. One can say that
the linearized reconstruction is still recognizable while the
nonlinear version is badly distorted. Note the different vertical
scales in the Panels (a) and (c).

To illustrate the effects of noise, we have simulated re-
construction with noisy data. To this end, we have, first,
used the model to generate the “ideal” data according to
(42). Specifically, we have used the values αmod

n to compute
κmod

n = αmod
n /(1 + gαmod

n ). Then the set of κmod
n were Fourier-

transformed and substituted into the left-hand side of (42)
to generate the forward data φ jl . We then added to each
element φ jl a mathematically-independent complex quasi-
random number according to the prescription

φ jl −→ φ jl + R
√〈|κ̃mod

j−l |2
〉
Z , (45)

where R is the noise level and Z is a complex random
variable with the following statistical properties. The abso-
lute value |Z| is distributed according to one-half of the

FIG. 5. Same reconstructions as in Figs. 3(a) and 3(c), but the
unknown coefficients κ̃m were set to pseudorandom numbers rm

uniformly distributed in [−R, R], where R = 100. The data of Fig. 3
are obtained by setting R = 0.
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FIG. 6. Nonlinear reconstructions of the same model as in Fig. 3 for g = 0.2 (a)–(d) and g = 0.4 (e)–(h) and different levels of noise in
the data as quantified by the parameter R according to (45). In (a), (b), (e), (f), R = 0.1 and in (c), (d), (g), (h) R = 0.1. Reconstructions
are performed for different bandwidths of the measurements, as quantified by the ratio M/2L. Two cases are considered: band-limited
measurements with M/2L = 10 (a), (c), (e), (g) and complete (not band-limited) measurements with M/2L = 1 (b), (d), (f), (h).

normal distribution with the unit variance, i.e., P(|Z|) =√
2/π exp(−|Z|2/2), and the complex phase of Z is uniformly

distributed between 0 and 2π . Note that the square-root factor
in (45) is the root mean square value of the elements of the
data matrix in the linear regime (i.e., when g = 0). The same
noise up to the multiplicative factor R, which was varied,
was added to the ideal data, independently of g or the band-
width that was used in the reconstruction. Finally, using the
noisy data defined by (45), we computed the nonlinear inverse
according to (44).

Results of reconstructions with noisy data are shown in
Fig. 6. It can be seen that, in the case of weak nonlinearity
(g = 0.2), the reconstructions are relatively stable. This is
expected since the reconstruction in this case is “almost” an
inverse Fourier transform. As the Fourier transform operator
has a flat spectrum of singular values, its inversion is numer-
ically stable. Moreover, it can be seen that, in the case of a
band-limited reconstruction (M/2L = 10), the noise is largely
suppressed. This is similar to suppression of the uncorrelated
white noise by low-pass spectral filtering. However, when
nonlinearity is increased (g = 0.4), reconstructions become
much more sensitive to noise. Indeed, the nonlinear inverse
solutions are discontinuous. As g is increased, the data ap-
proach the surfaces of discontinuity of the inverse solution
(this is illustrated, for example, in Fig. 2 above). Since the
inverse solution is highly nonlinear close to the surfaces of
discontinuity, it is also numerically unstable: small errors in
the data tend to be amplified. This is easy to understand by
considering the function 1/(x + r) where r is noise. When x is
far from zero (much further than

√
〈r2〉), the above function is

numerically stable. However, this is not so when |x| �
√

〈r2〉.

So far we did not consider very strong nonlinearities. If
we take, say, g = 5 and keep the band limit at the level
M/2L = 10, a sensible reconstruction is not possible even
with ideal data. But as L increases, progressively better re-
constructions are obtained. If the linearized ISP is well posed
(when 2L = M), we know that the full nonlinear ISP also has
a unique solution. This behavior is illustrated in Fig. 7. Here
we increase L gradually from 50 to 240. In the latter case,
the ratio 2L/M is very close to but still not quite unity. It
can be seen that all but the finest features are well resolved
and the nonlinearity does not play a very detrimental role
for L = 240. If we take L = 250 so 2L = M, the resulting
reconstruction is perfect in the absence of data noise (data
not shown). However, the reconstruction for L = 50 is hardly
meaningful. Compare this to Fig. 1(a), which shows the low-
pass filtered version of the model. The latter is quite useful.
In comparison, the reconstruction in the strong nonlinearity
regime with the twice-as-large band limit [Fig. 7(b)] is not
useful at all. It should also be noted that reconstructions at
g = 5 are extremely sensitive to noise. If we use the same
noise that was used in Fig. 6, all reconstructions already be-
come very noisy when R = 0.01 and are completely destroyed
at R = 0.1.

V. TANGENT VECTORS AND SPACES

So far, we have relied on exactly solvable toy problems.
In more realistic cases, neither the forward nor the inverse
problem can be solved analytically. However, there exists a
powerful numerical approach that allows one to investigate
the possibility of super-resolution in a generic setting. The
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FIG. 7. Nonlinear reconstructions of the same model as in
Fig. 3 for g = 5 and different bandwidths of the measurements,
as quantified by the ratio M/2L. For complete (not band-limited)
measurements, we have M/2L = 1; otherwise, M/2L > 1.

method is based on examining the tangent spaces at various
points of the manifold of solutions to the nonlinear ISP. This
approach is explained below.

A. Distorted Born approximation

Consider a nonlinear ISP as defined by Eq. (16). Let D be
some generic potential. We are interested in a small vicinity
of D. Let

U = D + V, (46)

where V is in some sense small. First, we have nonvanishing
order in V:

T[U] = T[D + V] ≈ T[D] + S[D] V ST[D], (47)

where T[·] is given by (14) and S[·] is defined by

S[X] = (I − XG)−1, ST[X] = (I − GX)−1. (48)

It follows from the symmetry of all matrices involved that
the two expressions given above are transposes of each other.
Note the relations

T[X] = S[X] X = X ST[X]. (49)

Thus, in the vicinity of D, Eq. (16) takes the following form:

(AS[D]) V (ST[D]B) = Φ − A T[D] B ≡ Ψ[D]. (50)

Assuming that Φ is measured and D is known, (50) is a linear
equation with respect to V. The approximation involved in
deriving (50) is known as the distorted Born approximation.
In fact, there is no big conceptual difference between the
ordinary Born and the distorted Born approximations. The
former is just a special case of the latter obtained when D =
0. Equation (50) provides a linearization of (16) near some
generic potential D, which is not necessarily zero.

B. Examination of uniqueness

It can be easily seen that (50) is the equation that one would
use in order to find small deviations of the total potential
U from the known background D. Let a data matrix Φ be
measured in an experiment or simulated by solving a forward
problem. We wish to find the potential U that corresponds to
this Φ. If Φ is not small, we have no reason to suspect that
the corresponding U is small. So we cannot linearize the ISP
in U. Now assume that we have some additional information
about U, namely, that it can be written in the form (46) where
D is known and not necessarily small whereas V is small but
otherwise unknown. Since D is known, we can also compute
S[D], T[D], and then Ψ[D] by using (48)–(50). The problem is
now to find V by solving the linear equation (50). But is the
solution unique?

Let us assume that this solution is indeed unique and
denote it by Vinv. Then the nonlinear ISP has the solution
Uinv ≈ D + Vinv and there are no other solutions in the vicinity
of D [52]. There might be other solutions elsewhere, so we
have not proved global uniqueness. However, there exists a
finite radius R > 0 such that there is only one solution in the
N-dimensional ball of radius R centered at D; the map U → Ψ
is locally invertible in the vicinity of D. This is guaranteed by
the inverse function theorem; existence of the unique inverse
solution to (50), Vinv, is equivalent to the condition that the
Jacobian derivative of the functional F[U] ≡ AT[U]B that is
defined by the left-hand side of (16) is nonzero at U = D.

On the other hand, if (50) does not have a unique solution,
then we have strong reasons to suspect that the solution to
the original nonlinear ISP (16) is also nonunique. We do not
know this for sure due to the possible exception noted below
in Sec. V C. However, the following statement is true. Let D
itself be a particular solution to (16) selected from the set of
all possible solutions (this implies Ψ[D] = 0). Let also Rn (n =
1, 2, . . .) be diagonal matrices that satisfy

(AS[D]) Rn (ST[D]B) = 0. (51)

Then the potential Un(ε) = D + εRn satisfies the nonlinear ISP
(16) with the precision of at least O(ε2). To see that this is in-
deed the case, we linearize (16) near D, substitute V = εRn into
the resulting linearized equation (50) and see that the equation
is satisfied by this substitution. So the error of the equation is
zero to first order in ε. The first nonvanishing correction to
this result is obviously of the order O(ε2) or higher. Under
the “normal” circumstances (discussed below in Sec. V C),
this means that the set of solutions to (16) forms a manifold
of which D is a particular point and that one can define one
or more orthogonal tangent directions to this manifold at D.
These directions span the tangent space. We will say that the
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number r(D) of linearly independent matrices Rn that satisfy
(51) is the dimensionality of this tangent space at the point D.

We can therefore investigate the degree of ill-posedness of
a nonlinear ISP by analyzing the linear operator in Eq. (50).
If the corresponding linearized ISP is band limited, we know
for sure that the tangent space at D = 0 is not empty so that
r(0) > 0. For one-dimensional targets characterized by the
coefficients αn, r(0) is equal to the number of Fourier coeffi-
cients α̃m that lie outside of the band limit and, consequently,
are not coupled to the data. If D �= 0, we no longer have this
simple interpretation of the tangent space. However, we can
attempt to answer the following question numerically. Assume
that r(0) > 0. Is it possible that, for some D �= 0, r(D) < r(0)
and, moreover, is it possible that r(D) = 0? Any of these
outcomes entails achieving some super-resolution, although
to varying degrees. In the best possible case, r(D) = 0 implies
that the potential D can be recovered uniquely without any loss
of resolution by solving the nonlinear ISP, assuming that the
data are noiseless.

C. A word of caution

Above, we have, essentially, relied the inverse function the-
orem. However, this theorem provides only a sufficient, and
not a necessary condition for a map to be locally invertible.
The counter-examples in which the conditions of the theorem
are not met but a function is invertible usually involve surfaces
or curves that touch at a point. Perturbation theory (in the
interaction) is in such cases singular and should be approached
with caution. Here we present a simple albeit an abstract ex-
ample, which illustrates the same mathematical point. A more
relevant but also much more complicated example is analyzed
in Appendix A, but the inverse solution for that model is very
complicated.

Consider two equations with two unknowns,

y − g2x2 = φ1, y = φ2, (52)

which describe a parabola and a straight line. If φ1 = φ2 = b,
the parabola touches the straight line at the point (0, b). Thus,
if the data matrix is given by Φ = (b, b), the set (52) has the
unique solution (0, b). The conditions of the inverse function
theorem are however not satisfied at this point. Indeed, the
Jacobian derivative of the forward functional is given by

J = det

[−2g2x 1
0 1

]
= −2g2x. (53)

At the point (0, b), the Jacobian is zero.
Another feature of (52) is that the perturbation expansion

of the inverse solution is singular when g → 0. Indeed, we
have

xinv = ±1

g

√
φ2 − φ1 , yinv = φ2. (54)

This solution is not defined at g = 0 (a limit g → 0 may
exist if the data are ideal). However, the conditions of the
inverse function theorem are satisfied in the vicinity of any
point (xinv, yinv) given by (54) as long as xinv �= 0 or in
the vicinity of any point (φ1, φ2) in the data space as long
as φ1 �= φ2. Under these conditions, the two curves defined
by (52) intersect rather than touch. The map (52) is in this

case locally (but not globally) invertible and the analysis of
Sec. V B fully applies.

The questions we wish to address now are: (i) Is (52)
an example of super-resolution due to nonlinearity? (ii) Do
equations of this kind arise in practical ISPs? (iii) If they do,
can we analyze them numerically as suggested in Sec. V B?

The answer to question (i) is positive: Definitely, (52) has
a unique solution (modulo the sign of xinv) only if g �= 0. So,
the nonlinearity forces uniqueness in this example.

The answer to question (ii) is more nuanced. Equations of
the form similar to (52) can arise in practical problems and
the numerical examples shown below indicate that they do
arise. However, the simulations also indicate that this effect
is insignificant because, in systems with many degrees of
freedom, the number of such equations is relatively small.
Consequently, the dimensionality of the manifold of solutions
is not decreased substantially due to such occurrences.

Question (iii) can be answered as follows. If super-
resolution exists, the numerical technique proposed in this
paper should discover this by considering r(D) at several dif-
ferent points D. The test can fail at some particular point D0.
That is, the tangent space dimensionality can be larger at D0

than the actual dimensionality of the manifold of solutions.
In the extreme case, the tangent space may appear to be non-
empty whereas the nonlinear equations have in fact a locally
unique inverse. However, occurrences of this sort are likely to
be rare exceptions; they require that many multi-dimensional
surfaces described by the forward nonlinear equations touch
at one point. By trying different D’s, i.e., randomly-generated,
one is certain to find that the tangent space is almost always
empty if the ISP, indeed, has a unique solution. So, the numer-
ical analysis proposed in this paper is reliable if used properly.

Finally, in the above discussion, we interpret “touching” of
two surfaces at a point in a somewhat broader sense than usual
and include the possibility of an intersection with a saddle
point, as in the case of two lines y = x3 and y = 0.

VI. EXAMPLE WITH A REALISTIC INTERACTION
(SCALAR WAVE INVERSE DIFFRACTION)

In this section, we introduce an interaction that is rele-
vant to the scalar wave tomography, i.e., in the ultrasound or
seismic imaging. Although we still consider one-dimensional
targets, the interaction is characteristic of three-dimensional
space. We can say that the target is simply a special case of
a more general three-dimensional object. Neither the forward
nor the inverse problem are solvable analytically for the in-
teraction considered in this section. We will therefore resort
to numerical simulations. Chains of particles (or voxels) of
N = 512 = 2601 independent degrees of freedom will be used
in the numerical examples. We will apply the ideas of Sec. V
and investigate the dimensionality of the tangent space r(D).

A. Model setup

The forthcoming numerical examples involve the realistic
interaction of the form

Gnm = g(1 − δnm)
eik|rn−rm|

|rn − rm|/h
, (55)
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where g is a dimensionless parameter quantifying the strength
of interaction, rn are the positions of the particles, k = ω/c =
2π/λ is the free-space wave number, and h is the interparticle
spacing (or the voxel size). The particles are arranged on a lin-
ear chain so xn = yn = 0 and zn = (n − 1)h, n = 1, 2, . . . , N .

We have formulated the problem so that both the interac-
tion matrix and the potential are dimensionless. We will use
some model potentials for D in which the diagonal elements
are of the order of unity and linearize the inverse problem
near those points. The linearization will involve computing
the matrices T[D] and S[D] nonperturbatively, i.e., by matrix
inversion according to (14) and (48). These formulas depend
on the interaction matrix G and the latter is proportional to
the dimensionless parameter g. We will vary g to control the
strength of nonlinearity in the ISP.

In the examples shown below, we compare two cases. In
the the first case, we take L = 51 and N = L2 = 2601. Cor-
respondingly, M = 1300 and M/2L ≈ 13. For this choice of
parameters, the linearized ISP is severely band limited; only
about 1/13 of all DFT coefficients of the target are known
from the data. In the second case, N and M are the same
but L = 650, so M = 2L and N = 4L + 1. In this case, the
linearized ISP is well posed and not band limited.

In all cases, we have defined the wave number in (55) as
k = 2πL/Nh, so it coincides with the largest spatial frequency
that is present in A and B. In other words, we assume that
the incident and the outgoing plane waves have a fixed wave
number but can make different angles with the chain including
the zero angle. Consequently, the measurement matrices are

Aln = e−i(l/L)kzn , Bnl = ei(l/L)kzn , (56)

where −L � l � L and 1 � n � N . Here (l/L)k is the projec-
tion of a plane-wave wave vector onto the chain. We can also
write l/L = cos θ , where θ is the angle between the positive
direction of the Z axis and the wave vector of an incident or
an outgoing plane wave.

B. Linearized reconstructions

Let us first linearize (16) near D = 0. In the considered
setting, a linearized reconstruction, that is, a solution to (18)
with some known data matrix Φ, can be achieved by either
low-pass filtered inverse DFT (for L = 51) or by the exact
inverse DFT (for L = 650). However, we have used a more
general and, as one can argue, a better [53] approach, and
computed the inverse solution to (18) by the method described
in Refs. [54,55]. Namely, it can be shown that the Tikhonov-
regularized pseudoinverse solution to (18) can be obtained as
the solution to the system of equations

(W[0] + ε2wmaxI)α = b, (57)

where

Wnm[0] = (A∗A)nm(BB∗)mn, (58)

ε is the regularization parameter, wmax is the maximum eigen-
value of W[0] (introduced in the formula for convenience), and

FIG. 8. Error χ (60) as a function of ε for the linearized in-
verse crime reconstruction obtained by solving (57) numerically. The
target model 1 used to generate data for these reconstructions is
illustrated in the subsequent figures.

the vectors α and b are defined by

α =

⎡
⎢⎣

α1

α2

. . .

αN

⎤
⎥⎦ , b =

⎡
⎢⎣

(A∗ΦB∗)11

(A∗ΦB∗)22

. . .

(A∗ΦB∗)NN

⎤
⎥⎦ , (59)

Note that α consists of the diagonal elements of V. The matrix
W[0] is square, Hermitian (self-adjoint) and non-negative def-
inite so that (57) is well-posed. The argument “0” is used to
indicate that W[0] is defined for D = 0; a more general matrix
W[D] will be defined below for nonzero D.

As the first example, we have generated the data matrix Φ
by substituting the model potential D = diag(αmod

1 , . . . , αmod
N )

in place of V in (18) and evaluating the left-hand side. We
then pretended that Φ is known while V is not and sought
to reconstruct the latter from the former. This procedure is
known as “inverse crime”. In Fig. 8, we show the error of
such an inverse crime reconstruction, χ , as a function of ε

for the parameters defined above and for the model D that is
illustrated in the subsequent figures and referred to as model
1 (we have also used for comparison an alternative homoge-
neous model D = I, which we refer to as model 2). The error
is defined as

χ2 =
∑

n |αinv
n − αmod

n |2∑
n |αmod

n |2 . (60)

For L = 51, the error does not approach zero and is not partic-
ularly small. This is so because the linearized problem in this
case is band limited. The minimum-L2 norm solution that is
found by solving (57) is not expected to reproduce the model
precisely. However, the error is flat in a wide interval of ε.
This is a characteristic feature of the low-pass filtered inverse
DFT: the spectrum of W has a wide gap. We further note that,
for ε � 10−7, numerical instabilities set in while, for ε � 1,
the regularization is too crude. Indeed, we have αinv

n → 0
when ε → ∞; the corresponding error χ approaches unity
in that limit, as follows from (60). In the case L = 650, the
error approaches zero for sufficiently small ε and there are
no numerical instabilities. Indeed, the matrix W[(0)] is in this
case invertible and has no numerically small eigenvalues. The
solution can be found by setting ε = 0 in (57) and computing
the ordinary matrix inverse.
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FIG. 9. Linearized reconstructions for L = 51 and inverse crime
data generated from (18) (a) (b) and for the data obtained from the
nonlinear Eq. (16) and G defined in (55) and various values of g,
as labeled (c). In all cases, the same target D was used (a set of
rectangular pulses shown the thin blue line in the plots). We refer to
this target as model 1. Equation (57) was used for the reconstructions
with ε = 10−3. The matrix W (58) was diagonalized numerically.
The line keys correspond to (c): Thin (red) line represents the case
g = 0.1, medium (green) line represents g = 0.4 and thick (purple)
line represents g = 1.0.

Linearized reconstructions with the inverse crime data gen-
erated by using model 1 as the target are shown in Figs. 9(a)
and 9(b) for L = 51 and in Figs. 10(a) and 10(b) for L = 650.
Model 1 is shown in all plots as a thin blue line and consists of
rectangular pulses of different widths. In both cases, we used
ε = 10−3 for regularization; this value is well inside the gap
of the spectrum of W[0]. It can be seen that, in the case L = 51,
the reconstruction is indeed a low-pass filtered version of the
model. The pulses whose widths are of the order of 100 lattice
units or larger are reconstructed more or less correctly, but the
finer features are unresolved. In particular, the narrow pulses
in the center of the target are completely lost. In contrast, the
inverse crime reconstructions for L = 650 are perfect, just as
expected.

In Figs. 9(c) and 10(c), we show for comparison the
linearized reconstructions for which the data matrix Φ
was computed from the “exact” nonlinear equation (16).
The reconstructions were still performed assuming that the

FIG. 10. Same as in Fig. 9 but for L = 650. The line representing
the model is obscured in this figure but can be seen clearly in Fig. 9.
The line keys correspond to (c): Thin (red) line represents the case
g = 0.1, medium (green) line represents g = 0.4 and thick (purple)
line represents g = 1.0.

linearization (18) is accurate and then using (57) for numerical
inversion. Therefore, the reconstructions shown in Figs. 9(c)
and 10(c) do not involve inverse crime. At the relatively small
value g = 0.1, the effects of nonlinearity are negligible for
both L = 51 and L = 650; the reconstructions are almost the
same as the inverse crime linearized reconstructions. But at
g = 0.4, the nonlinearity sets in and at g = 1.0 linearized
reconstructions are no longer useful. The distortions are, how-
ever, quite different in the cases L = 51 and L = 650. In any
event, we can conclude that the ISP is essentially nonlinear at
g = 0.4 and severely nonlinear at g = 1.0.

C. Eigenvalues of W and dimensionality of the tangent space

The next question we address is whether the tangent space
dimensionality near D �= 0 is different from that near D = 0.
To this end, we consider the distorted Born approximation
(50) and view it as a linear equation with respect to V. In
complete analogy to (58), we define the matrix W[D] for the
distorted Born approximation as

Wnm[D]

= ((AS[D])∗(AS[D]))nm((ST[D]B)(ST[D]B)∗)mn, (61)
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FIG. 11. Eigenvalues of W[D], wn[D], for L = 51 (a), (c) and L = 512−1
4 = 650 (b), (d). D is given by model 1 (a), (b) or model 2 (c), (d),

and different interaction strengths g are used as labeled. In model 2, D = I. In (a) and (c), eigenvalues with indexes that are greater than ∼1500
are not numerically distinguishable from zero and therefore cannot be displayed using the vertical logarithmic scale.

where S[D] is defined by (48). If we evaluate S[D] at D = 0
and substitute the result into (61), we would obtain the same
matrix W[0] that was defined in (58). The same result can
be obtained by formally setting g = 0 since, in this case,
S[D] = I irrespectively of D. In what follows, we evaluate
S[D] for two different models D and use different values of
g to tune the degree of nonlinearity. The dimensionality of the
tangent space r(D) is equal to the number of zero eigenvalues
of W[D]. Of course, in numerical simulations, eigenvalues are
never exactly zero. We will have therefore an additional task
in front of us to determine which eigenvalues are significant
(that is, essentially, nonzero) and which are insignificant. Only
the latter contribute to the dimensionality of the tangent space.
Although the choice is often easy, there exist borderline cases
when it is not.

In Fig. 11, we display the eigenvalues of W[D] for different
L, g and D. Model 1 for D [Figs. 11(a) and 11(b)] is the same
as the one used in Figs. 9 and 10. In Figs. 11(c) and 11(d), we
show for comparison the results for the homogeneous model
D = I (Model 2).

Consider first the results for model 1 and L = 51 [
Fig. 11(a)]. It can be seen that there exists a set of relatively
large eigenvalues, which we will call significant, and then an
abrupt jump of roughly 15 orders of magnitude. We will refer
to the eigenvalues at the floor of this jump as insignificant.
In the case g = 0, the jump is perfectly sharp. Theoretically,
we can predict that, at L = 51, W[0] has exactly 4L + 1 = 205
nonzero eigenvalues and the rest are zero. This is fully consis-
tent with the numerical results. The small eigenvalues below
the gap in the g = 0 data set are finite only due to the limited
numerical precision of the computer. When g > 0, the above
analysis does not apply since W[D] is no longer related in
this case to a band-limited DFT. However, the numerical data
indicate that the transition from significant to insignificant

eigenvalues still occurs, although it is not as sharp as in the
case g = 0. The eigenvalues in the transition region will be
discussed below separately.

We now discuss the data sets shown in Fig. 11(a) in more
detail. First, we note that the significant eigenvalues are not
constant but decrease with the index. This may seem to be
counterintuitive since the nonzero singular values of the DFT
operator are constant. It is, however, easy to understand this
behavior in the case g = 0. In this case, the inverse problem
of finding V from the data consists of inverting the linear
equations in (18). This set contains redundant equations. For
example, it contains 2L + 1 equations of the form

α1 + α2 + . . . + αN = �l,−l , −L � l � L. (62)

Note that α1 + α2 + . . . + αN = α̃0 is the zeroth Fourier co-
efficient of α. We say that the equation for α̃0 in (18) has
the statistical weight 2L + 1. More generally, the equations
for the Fourier coefficients α̃m have the statistical weights that
decrease linearly with |m|. The equations for α̃±2L have the
statistical weights of 1. Equations for the higher coefficients
have statistical weight 0, which means that these coefficients
simply do not enter the equations. The spectrum of W[0] is de-
fined by the above statistical weights. The linear dependence
of the significant eigenvalues on the index for the g = 0 data
set would be clearly visible in the plots if we used linear scale
on both axes.

When g > 0, the perturbation V is coupled to the data by
(50) rather than by (18). In this case, we can no longer assign
statistical weights to the Fourier coefficients so easily; instead,
all the Fourier coefficients of the diagonal elements of V are
coupled to each other by (50). Still, the significant eigenvalues
do not need to be constant. Moreover, in the cases g = 0.4 and
g = 1.0, there appear some relatively large eigenvalues. This
is due to the resonance phenomena. The matrix S[D] in (50)
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FIG. 12. Eigenvalues of W[D], wn[D], normalized to the maximum eigenvalue for each spectrum. Results are compared for the same two
models for D as in Fig. 11 and three different interactions G: exponential interaction (55) (E), the tight-binding interaction Gnm = g(1 +
0.1i)(δn,m−1 + δn,m+1) (T), and the fully connecting interaction Gnm = g(1 + 0.1i)(1 − δnm ) (C). Parameters L and g as labeled.

is singular when one of the eigenvalues of GD is equal to 1.
If GD is close to one of such singularities, the resultant matrix
W[D] has one or several very large eigenvalues. Put simply, in
this case, the scattered field becomesvery sensitive to small
changes in V (recall that the total potential is U = D + V where
D is fixed) in some directions because the system goes in or
out of resonance due to such changes.

Next, we discuss the transition from significant to in-
significant eigenvalues. As can be seen in Fig. 11(a), a finite
transition region exists when g > 0. The situation is somewhat
similar to a band-limited but irregular Fourier transform. The
spectra of singular values for such transforms also display
a quasi-smooth transition, in contrast to the regular band-
limited DFT whose spectrum has a perfectly sharp jump.
However, the typical transition in an irregular band-limited
Fourier transform is even sharper than what is displayed in
Fig. 11(a). For example, a band-limited Fourier transform
with the same parameters as those used in Fig. 11(a) and
N Fourier wave numbers qm randomly sampled between the
bounds −2(2π/N )L and 2(2π/N )L has the transition for
the eigenvalue indexes, roughly, from n = 4L + 1 = 205 to
n ≈ 250 (data not shown). In contrast, the transition occurs
between n ≈ 205 and n ≈ 350 in Fig. 11(a) (for g = 1.0).

While the effect of irregular sampling can play some role,
we conclude that the nonlinear ISP in the vicinity of D given
by model 1 is, indeed, better posed, albeit very slightly, than
in the vicinity of D = 0. This can occur due to some additional
statistically significant equations that can appear when g �= 0,
similarly to what is described analytically in Appendix A 2.
Linearization of these equations near D gives rise to the tran-
sitional eigenvalues. We note, however, that the transitional
eigenvalues go to zero quite fast and cannot be expected to
produce a noticeably better resolution in the reconstructions.
In the case of the homogeneous model 2, which is illustrated

in Figs. 11(c) and 11(d) for comparison, the transition region
is almost absent or, at least, it is consistent with that of an
irregular DFT [56].

In practice, what matters for determining whether an
eigenvalue is significant or insignificant is not its absolute
magnitude but the ratio to the largest eigenvalue in the spec-
trum. The dynamic range of values displayed in Fig. 11(a) is
very large, i.e., �1015. In a realistic reconstruction, only a few
of the transitional eigenvalues (with the associated eigenvec-
tors), if any at all, carry useful information about the target. In
the presence of experimental noise, most of these modes will
be suppressed. So the overall improvement of the nonlinear
reconstruction compared to the linearized one in terms of
well-posedness of inversion will hardly be noticeable.

We illustrate the above point further in Fig. 12 where we
plot the spectra of W[D] normalized to the largest eigenvalue
and compare various interactions G. In addition to the Green’s
function of the three-dimensional wave equation (55), we
adduce in Fig. 12 results the tight-binding interaction Gnm =
g(1 + 0.1i)(δn,m−1 + δn,M+1) (also used in Appendix A) and
the fully connecting interaction of Secs. III, IV, Gnm = g(1 +
0.1i)(1 − δnm). The factor 1 + 0.1i is introduced to avoid nu-
merical instability in computing S[D] (that is, to make sure
that the forward problem has a numerically stable solution). In
the case of fully connecting interactions, the transition from
significant to insignificant eigenvalues is perfectly sharp (up
to the finite precision of the computer) and occurs exactly
at n = 4L + 1 = 205, as was proved theoretically in Sec. IV.
For the other two interactions, a transition region exists but is
insignificant. We therefore conclude that the fully connecting
interaction is a reasonable model for examining uniqueness of
solutions to nonlinear ISPs.

We now turn to the case when the linearized ISP is not
band-limited. This corresponds to L = 650; the eigenvalues
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FIG. 13. Squared components of the Fourier-transformed eigenvectors x̃n[D] as functions of the component index m for various parameters
as labeled. The matrix W[D] is computed for model 1. Solid vertical lines are drawn at m = ±2L = ±102. The data points are represented by
filled red circles and the dashed green lines are shown to guide the eye.

of W[D] for this L are illustrated in Figs. 11(b) and 11(d). It is
evident that in this case there is no gap in the spectrum and all
eigenvalues remain significant regardless of g. The apparent
precipitous drop of wn[D] near the right bound of the plots
is, in fact, fully consistent with the linear decrease due to the
change in statistical weights of wn[D], as discussed above.
If plotted using a linear scale on all axes, the dependence
near the right edge of the plots will appear as linear. No
numerically small (insignificant) eigenvalues are present in
the data sets of Figs. 11(b) and 11(d). This means that the
solution to the nonlinear ISP remains unique if the solution
to the corresponding linearized ISP is unique. However, the
condition number of W[D] tends to increase with g. This is due
to the resonance phenomena discussed above. A closely re-
lated observation is the existence of surfaces of discontinuity
in the inverse solution to the nonlinear ISP. Linearization at the
points that are close to a discontinuity can result in matrices

W[D] with very large condition numbers. A one-dimensional
analogy is when a function f (x) is locally invertible near x0

but the derivative f ′(x0) is very large. This can happen if f (x)
has a discontinuity at x1, which is close to x0.

Next, we look more closely at the eigenvectors of W[D].
Let xn be the set of orthonormal eigenvectors so W[D]xn[D] =
wn[D]xn[D]. Each xn[D] is a vector of length N with the com-
ponents (xn[D]) j . The eigenvalues are assumed to be arranged
in descending order so wmax[D] = w1[D]. We can define the
Fourier transforms of xn[D] as

(x̃n[D])m =
N∑

j=1

(xn[D]) je
iξm j, (63)

where −M � m � M, M = (N − 1)/2. In Fig. 13, we plot the
squared components of (x̃n[D])m as functions of m for L = 51,
D given by model 1, different g, and different eigenvalue
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FIG. 14. Same as in Fig. 13 but for D given by model 2 (D = I).

indexes n. Note that the Fourier coefficients (x̃n[D])m with
−2L � m � 2L lie within the band limit. The special values
m = ±2L are shown in Fig. 13 by two vertical lines.

In the case g = 0 (left column of images in Fig. 13),
the first 4L + 1 = 205 eigenvectors correspond to significant
(nonzero) eigenvalues. Projection of α onto these eigenvectors
can be computed by solving the linearized ISP. The eigen-
vectors with n > 4L + 1 have zero eigenvalues. It can be
seen that all significant eigenvectors are band limited in the
sense that they have nonzero Fourier coefficients only within
the band limit −2L � m � 2L. The insignificant eigenvectors
(those with n > 4L + 1) do not have any nonzero components
within the band limit. This is all consistent with the standard
Fourier analysis of the linearized ISP. When we move to the
cases g = 0.4 (middle column of images) and g = 1.0 (right
column of images), the consideration is no longer that simple.
It can be seen that the significant eigenvectors have nonzero
components both within and outside of the band limit. Same is
true for the transition eigenvectors, i.e., for the index n = 250.

The Fourier coefficients of insignificant eigenvectors (i.e.,
n = 500) can also be nonzero both inside and outside of the
band limit, although those that are outside visibly dominate.
We can conclude that for g > 0.4 and g = 1.0, the number
of significant eigenvectors is approximately the same as in
the case g = 0 (or slightly larger due to the existence of
transitional eigenvalues) but is still smaller than the number
of nonzero Fourier coefficients in these vectors. Therefore,
projecting α̃ onto the significant eigenvectors of W[D] does not
generate enough equations to find α̃ or any of its components
with confidence.

In Fig. 14, we display the squared coefficients (x̃n[D])m

for D = I (model 2). Basically, the same conclusions can be
drawn. In the cases when g > 0, the significant eigenvec-
tors couple together more Fourier coefficients (x̃n[D])m than
the number of significant eigenvectors themselves. Therefore,
there are not enough equations to find any of these com-
ponents reliably. The insignificant eigenvectors are however
localized outside of the band limit stronger than for model 1.
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Overall, the situation is very similar to what we have ob-
served in Sec. IV. Namely, if the linearized ISP is ill-posed,
the nonlinear ISP remains ill-posed and contains, essentially,
the same number of significant equations. However, when
g = 0, only the Fourier coefficients α̃m within the band limit
are coupled to the data so there are enough equations to find
these coefficients reliably, while the coefficients outside of
the band limit are fundamentally unknown. In the case of
g �= 0, the number of significant equations remains the same
but now all Fourier coefficients α̃m become coupled to the data
so none of them can be computed reliably. The geometrical
interpretation of this phenomenon is that the linear subspace
of solutions that is characteristic of the g = 0 limit becomes a
curved manifold when g �= 0. An example of such manifolds
is graphically illustrated in Sec. III.

VII. DISCUSSION

We have considered the question whether solving a nonlin-
ear ISP can provide super-resolution in the situations wherein
the linearized ISP is band limited. A number of examples
suggest that this kind of super-resolution does not exist in a
practical sense. Essentially, we have provided several coun-
terexamples to the conjecture of super-resolution by solving a
nonlinear ISP.

The approach based on counterexamples can, of course, be
criticized as not sufficiently general. In particular, we have so
far considered only one-dimensional targets. However, there
are grounds to believe that the provided examples are in-
dicative of a more general tendency. In particular, we have
shown in Sec. VI C (Fig. 12) that there is not much qualitative
difference between the cases of the fully connecting inter-
action, tight-binding interaction and the realistic interaction
given by the Green’s function of the three-dimensional wave
equation. While in the case of the fully connecting interaction,
the transition from significant to insignificant eigenvalues is
perfectly sharp, as was proved theoretically in Sec. IV, there
is some narrow transition region for the other two interactions.
The transition eigenvalues observed in the latter two cases
can be interpreted as additional mathematically independent
equations of the form described theoretically in Appendix
A 2. However, the transition regions are narrow and the
eigenvalues drop down precipitously. Therefore, we conclude
that the fully connecting interaction is a reasonable model to
investigate the effects of super-resolution in nonlinear ISPs.
But, for the fully connecting interaction, the ISP can be solved
analytically for any geometry or dimensionality of the target.
The results of Sec. IV can be generalized to three dimensional
targets without conceptual difficulty, although this entails
working with irregular DFTs. Moreover, the one-dimensional
targets considered in this paper can be viewed as being em-
bedded in the three-dimensional space and, therefore, they
are special cases of more general three-dimensional targets. If
there is no super-resolution for these relatively simple targets,
one can hardly expect super-resolution to emerge for more
complicated objects.

We thus conclude that the effect of nonlinearity is not to
force uniqueness of inverse solutions but, rather, to transform
a linear subspace of possible solutions into a more general
curved manifold. This tendency is already manifest in the

simplest toy problem with three degrees of freedom that
was discussed in Sec. III; examples of such manifolds are
graphically illustrated in Fig. 1. Moreover, as the strength
of nonlinearity is increased, the reconstruction become more
sensitive to noise. This tendency is present even if complete
data are available and the inverse solution is unique, as is
illustrated in Fig. 6 above.

Finally, a comment on the existing demonstrations of
super-resolution needs to be made. For example, in Ref. [19],
a resolution of ∼λ/10 was demonstrated by solving a nonlin-
ear ISP. However, this result was obtained only after using
a strong a priori constraint on the possible values that the
unknown contrast can take. We believe that such constraints
can be crucial and indeed result in super-resolution either in
linearized or full nonlinear ISPs. Of course, if the ISP is es-
sentially nonlinear, it should not be linearized, lest the inverse
solution turns out to be useless, either with the constraints
or not. It is the combination of solving the correctly stated
nonlinear ISP and the use or prior information that allowed
achieving the λ/10 resolution in Ref. [19]. In this paper, we
assumed no prior information about the target. An interplay of
nonlinearity of the ISP and the use of a priori constraints on
the target is an interesting direction for further research.
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APPENDIX: EXAMPLE WITH FOUR DEGREES
OF FREEDOM

In this Appendix, we analyze the problem with four
degrees of freedom quantified by the polarizabilities α =
[α1, α2, α3, α4]T. We will consider two different tight-binding
interaction G as detailed below. One form of interaction will
be cyclic, that is, it will correspond to a closed loop (simply, a
square) of particles, and the other will correspond to an open
chain. The model is exactly solvable in both cases although,
for the open chain, the solution is very involved. We will show
that, depending on the choice of interaction, accounting for
the ISP nonlinearity may or may not provide one additional
mathematically independent equation and thus render the in-
verse solution unique.

In both cases, we will use the following three basis vectors
to construct the measurement matrices A and B:

u =

⎡
⎢⎣

1
1
1
1

⎤
⎥⎦ , v =

⎡
⎢⎣

1
−1

1
−1

⎤
⎥⎦ , w =

⎡
⎢⎣

1
0

−1
0

⎤
⎥⎦ , (A1)

so

A =
⎡
⎣1 1 1 1

1 −1 1 −1
1 0 −1 0

⎤
⎦ , B =

⎡
⎢⎣

1 1 1
1 −1 0
1 1 −1
1 −1 0

⎤
⎥⎦ .

(A2)

Accounting for the symmetry of Φ, the problem involves six
data points φ11, φ12, φ13, φ22, φ23, and φ33 and four unknowns.
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Therefore, at least two of the above data points are not inde-
pendent but related to the rest by the physical admissibility
conditions.

The linearized ISP for the setup considered in this Ap-
pendix is band limited. The subspace of solutions to (18) with
the measurement matrices (A2) is defined by

αinv
1 = 1

2 (φ33 + φ23), (A3a)

αinv
3 = 1

2 (φ33 − φ23), (A3b)

αinv
2 + αinv

4 = φ22 − φ33. (A3c)

The physical admissibility conditions in the linear regime
consist of the three equations:

φ13 = φ23, φ12 + φ22 = 2φ33, φ11 = φ22. (A3d)

1. Cyclic tight-binding interaction

Consider the case when G is given by

G =

⎡
⎢⎣

0 g 0 g
g 0 g 0
0 g 0 g
g 0 g 0

⎤
⎥⎦ . (A4)

This interaction can be interpreted as a tight-binding model
for four particles arranged in the vertices of a square. Any two
particles connected by a square side interact with the strength
g but the pairs of particles connected by the square diagonals
do not interact. In this case, the solution to the nonlinear ISP
is still not unique. The set of possible solutions is defined by

αinv
1 = 1

2

(φ12 + φ22)φ33 − (φ13 + φ23)φ23

φ12 + φ22 − 2φ33
,

αinv
3 = 1

2

(φ12 + φ22)φ33 − (φ13 + φ23)φ23

φ12 + φ22 + 2φ33
,

αinv
2 + αinv

4

= φ13(φ22 − φ23) + φ23(φ23 − φ12) + φ33(φ12 − φ22)

φ12 + φ13 + φ22 − 4φ33 + 2g
(
φ22φ33 − φ3

23

) ,

and the physical admissibility conditions consist of the fol-
lowing three equations:

φ13

φ23
= 1 + g(φ22 − 3φ33) + g2

(
φ22φ33 − φ2

23

)
1 − gφ22 − g2φ2

23 − gφ33 + g2φ22φ33
,

φ12 = 2φ33 − φ22 + g
(
φ2

23 − φ22φ33 − φ13φ23
)

1 − gφ33
,

φ11(φ22 − φ33) = φ2
12 − φ2

13

+ φ23(2φ13 − φ23) + φ33(φ22 − 2φ12).

It is interesting to note that this solution describes a linear sub-
space rather than a curved manifold. This is a consequence of
the special measurement scheme considered here. It happens
so the forward equations contain the combination α2 + α4 and
not α2 or α4 individually. By using various subsets of the basis
vectors in (A1) and the fourth basis vector, [0, 1, 0,−1]T, for
constructing the measurement matrices A and B, one can create
a linear subspace of solutions in which α2 + α4 is replaced
by any pairwise sum αi + α j with i �= j. All these inverse

solutions are nonlinear in the data and therefore experience
discontinuities.

2. Noncyclic tight-binding interaction

Next, let G be given by

G =

⎡
⎢⎣

0 g 0 0
g 0 g 0
0 g 0 g
0 0 g 0

⎤
⎥⎦ . (A5)

This interaction corresponds to a linear open chain of four
particles with nearest-neighbor interactions. Even though the
interaction (A5) appears to be simpler than (A4), it results in
a very complicated nonlinear inverse solution. Generally, we
can write

αinv
k = fk (g; φ11, φ22, φ23, φ33), k = 1, 2, 3, 4, (A6)

where fk (·) are single-valued functions defined for g �= 0 ex-
cept at some surfaces of discontinuity. Thus, the nonlinear
inverse solution in this case is unique, unlike its linearized
counterpart. The complete inverse solution is quite compli-
cated and given below in Appendix A 3. However, the first
two leading terms in the expansions of αinv

k in powers of g are
relatively simple and given by the following expressions:

αinv
1 = 1

8
(φ11 − φ22) + 1

2
(φ33 + φ23)

+ g

8

[
φ22(φ11 − φ22 + 4φ23)

+φ33(4φ33 − 4φ23 − 3φ11 − φ22)
]

+ O(g2), (A7a)

αinv
2 = 2

g

φ11 − φ22

φ11 − φ22 + 4(φ23 + φ33)

+ φ11 − φ22 + 4(φ23 − φ33)

(φ11 − φ22 + 4(φ23 + φ33))2

× [
φ2

22 + φ22(2φ23 + φ33) − φ11(φ22 − 2φ23 − 3φ33)

− 4φ33(φ23 + φ33)
] + O(g1), (A7b)

αinv
3 = 1

8
(φ22 − φ11) + 1

2
(φ33 − φ23)

− g

32
(3φ11 + φ22 − 4φ33)

× (φ11 − φ22 + 4φ23 − 4φ33) + O(g2), (A7c)

αinv
4 = 2

g

φ22 − φ11

φ11 − φ22 + 4(φ23 + φ33)

+ 2

(φ11 − φ22 + 4(φ23 + φ33))2

× [
φ22(φ11 − φ22)(φ11 − φ22 + 4φ23) + 4φ23φ33

× (φ11 + 3φ22) + 8φ2
33(φ11 + φ22 − 2(φ23 + φ33))

−φ33(φ11 − φ22)2
] + O(g1). (A7d)

In addition, there are two equations of physical admissi-
bility of the data matrix. These conditions can be defined
implicitly by expressing φ12 and φ13 in terms of α1, α2, α3,
and α4 and then using the complete inverse solutions given in
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Sec. A 3 to express αk in terms of φ11, φ22, φ23, and φ33. These
conditions are very complicated and not stated here explicitly.

An important observation that we can make is that the
inverse solutions (A7a), (A7c) for α1 and α3 approach the
linearized solutions (A3a), (A3b) when g → 0 [accounting for
the physical admissibility condition (A3d)]. However, this is
not so for the inverse solutions (A7b), (A7d) for α2 and α4. If
the data are ideal, (A7b), (A7d) have well-defined limits when
g → 0 and it should not matter how g approaches zero in the
complex plane. However, the solutions cannot be obtained by
formally setting g = 0 because the perturbation theory in g
(for the inverse solutions) is singular.

The unique inverse solution described above is an example
of super-resolution that is obtained purely due to accounting
for the ISP nonlinearity; it cannot be obtained by formally
setting g = 0 and considering the linearized ISP. In a more
general context, the mathematical question is whether a sin-
gular perturbation theory that leads to the solutions of the kind
(A7) is possible, numerically stable, and how many additional
equations (degrees of freedom) it allows us to fix. Perturbative
investigation of the inverse solutions (keeping in mind that
the perturbation is singular and can lead to Laurent series
expansions) is a promising avenue of research but we do
not follow it here. Instead, we present below a number of
numerical examples in which the question can be addressed
nonperturbatively and show that, for large systems and realis-
tic interactions, the number of additional degrees of freedom
that can be recovered by accounting for the nonlinearity is
practically insignificant.

3. Analytical solution for the four-particle chain problem

Here we state the complete analytical solution to the in-
verse problem stated in Appendix A 2. Considering the upper
triangle of the matrix equation A[I − VG]−1VB = Φ, we can
write explicitly six nonlinear equations for four unknowns.
Obviously, not all these equations are independent. Assuming
the data matrix is in range of the forward operator (as we say,
is physically admissible), the inverse solution can be written
in terms of the following elements of the data matrix: φ11,
φ22, φ23 and φ33. The remaining two matrix elements, φ12 and
φ13, are not mathematically-independent from the former four
elements. For economy of writing, we use below the following
shorthand notations:

λ = φ11, μ = φ22, ν = φ23, ξ = φ33.

Then

αinv
k = Nk

gDk
, k = 1, 2, 3, 4,

where

Nk = ak + bkg + ckg2 + dkg3 + ekg4,

Dk = pk + qkg + rkg2 + skg3 + tkg4.

The coefficients are given by the following expressions:

a1 = 2(1 − R);

b1 = 2[λ + 8ν + 7ξ − 2μ + (3ξ − ν)R];

c1 = λ(6ν − μ − ξ ) + μ(μ − 12ν − 19ξ ) + 28ν2

+ 2ξ (5ν − 6ξ ) + 2[ν(2ξ + ν) − ξ (2ξ + μ)]R;

d1 = 2[λ(3ν2 − μν − μξ − νξ ) + ν(8ν2 − 3νξ − 2ξ 2)

+ μ(μν + 4μξ + 7ξ 2 − 9νξ − 6ν2)

+ (μξ 2 + ν3 − ν2ξ − μνξ )R];

e1 = λμ(ξ 2 + μξ − 2νξ − ν2) + νξ (4μ2 − λν − 2ν2)

+ μν(νξ + 2ξ 2 + μν − 4ν2) − μ2ξ (3ξ + μ)

+ 2ν3(λ + ν);

p1 = 32;

q1 = 8(λ + 8ν − 4ξ − 5μ);

r1 = 8(ξ + 2μ − 2ν − λ)(μ + ξ − 2ν);

s1 = 2(λ − μ)(μ + ξ − 2ν)2;

t1 = 0;

a2 = 2[λ − μ + 2(ν + ξ ) − 2(ν + ξ )R];

b2 = λ(6ν − μ − ξ ) + μ(μ − 6ν − 11ξ ) + 8ξ 2 + 4ν2

+ 4(ξ 2 + μξ − 2ν2)R;

c2 = 2[λ(3ν2 − μν − μξ − νξ ) + μ(μν + 3μξ

− 3ν2 − 3νξ ) + 2ν(νξ + 3ξ 2 − ν2) − 4ξ 3

+ 2(ξ − ν)(ν2 − μξ )R];

d2 = (μξ − ν2)

× [4(ν − ξ )2 + μ(2ν − ξ ) + λ(μ − 2ν + ξ ) − μ2];

e2 = 0;

p2 = λ − μ + 4(ν + ξ );

q2 = 4ν(λ + 4ν − μ) + 8(3ν − μ)ξ + 16ξ 2;

r2 = 2[3ν2(λ + 4ν − μ) + ξ (μ2 − λμ + 16ν2 − 12μν)

− 8ξ 2(μ + ξ )];

s2 = 4(ν2 − μξ )[ν(λ + 4ν − μ) + 2ξ (ν − μ) − 4ξ 2];

t2 = (λ − μ + 4ν − 4ξ )(ν2 − μξ )2;

a3 = 2(R − 1);

b3 = λ + μ − 2ν;

c3 = d3 = e3 = 0;

p3 = 8;

q3 = 2(λ − μ);

r3 = s3 = t3 = 0;

a4 = 2[μ − λ − 2(ν + ξ ) + 2(ν + ξ )R];

b4 = 2[λ(μ − 2ν + ξ ) + μ(4ν − μ) + ξ (7μ + 2ν − 4ξ )

+ 2(ν2 − 2ξ 2 − ξ (μ + 2ν))R];

c4 = 4[λν(μ + ξ ) + μ(3ν2 + 3νξ + 3ξ 2) − μ2(ν + 3ξ )

+ ν(2ν2 − 3νξ − 6ξ 2) + (μξ (ν + 3ξ ) − ν2(ν + 3ξ ))R];

d4 = 2[(μξ − ν2)(μ2 − λ(μ + 2ν + ξ ) + 10νξ

− μ(4ν + 3ξ ) + 2(ν2 − μξ )R)];
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e4 = 2(λ + μ − 2ν)(ν2 − μξ )2;

p4 = λ − μ + 4(ν + ξ );

q4 = 4(ν(λ − μ + 4ν) − 2(μ − 3ν)ξ + 4ξ 2);

r4 = 2[3ν2(λ + 4ν − μ) + ξ (16ν2 + μ2) − μξ (12ν + λ)

− 8ξ 2(μ + ξ )];

s4 = 4(ν2 − μξ )[ν(λ − μ + 4ν) + 2ξ (ν − μ) − 4ξ 2];

t4 = (λ − μ + 4ν − 4ξ )(ν2 − μξ )2.

In these expressions,

R = [1 − 2g(λ + ν − 2ξ )

+ g2(ν2 − μξ + λμ − 2λν + λξ )]1/2.

The square root branch is defined by the conventional condi-
tion −π/2 < arg(

√
z) � π/2. Strictly speaking, the nonlinear

forward equations have two solutions, one with +R and the
other with −R. However, only the solution defined above
has the same g → 0 limit for αinv

1 , αinv
3 as the linearized

solution (A3). The second branch produces a solution in
which αinv

1 , αinv
3 = O(g−1) when g → 0. This solution can be

viewed as belonging to the “remote” manifold. Similar remote
manifolds may appear even if there are no square roots or
other multivalued functions involved; a similar occurrence is
illustrated in Fig. 1 where emergence of the remote manifold
can be explained by the inverse solution discontinuity (in the
data).

More generally, the small-g asymptotes of the solution
stated in this Appendix (with the square root convention men-
tioned above) are given in (A7).
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