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We consider the problem of homogenizing the Maxwell equations for periodic composites. The analysis is
based on Bloch-Floquet theory. We calculate explicitly the reflection coefficient for a half space and derive and
implement a computationally efficient continued-fraction expansion for the effective permittivity. Our results
are illustrated by numerical computations for the case of two-dimensional systems. The homogenization theory
of this paper is designed to predict various physically measurable quantities rather than to simply approximate
certain coefficients in a partial differential equation.
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I. INTRODUCTION

Theories of electromagnetic homogenization of composite
materials, also known as effective-medium theories (EMTs),
have a history that dates to the time of Maxwell. Nev-
ertheless, these theories continue to attract attention and
even controversy, as evidenced by recent reviews [1,2] and
many references therein. In applied mathematics the theory
of homogenization based on multiscale analysis of partial
differential equations is also well established [3–6]. However,
interest in EMTs has been steadily on the rise for the past
ten years with conceptually new approaches continuing to
appear [7–10]. This can be explained perhaps by noting that the
tasks of relating the existing mathematical theories to physical
observables and of determining the range of applicability of
a given theory have not been fully addressed, particularly for
the case of Maxwell’s equations. Indeed, in the past ten years
or so homogenization theories have been applied to obtain
extreme properties of electromagnetic composites, including
the phenomenon of strong artificial magnetism. At the same
time significant experimental progress has been made recently
in manufacturing deeply subwavelength (in the visible spectral
range) periodic metallic nanostructures [11–13]. The question
is whether the existing theories are directly applicable or
accurate enough to guide the experimental design of periodic
nanostructures of desirable properties. Another reason for the
renewed interest in homogenization theories is that, in addition
to abstract mathematical results, there is a need for efficient,
stable computational methods. Thus the question of how to
construct physically relevant and computationally effective
EMTs and determine their limits of applicability have not been
completely settled.

This paper is an attempt to address the above issues for the
case of periodic composites; random media are not considered.
The framework we develop is based on the Bloch-Floquet
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expansion, which is a well-known tool in homogenization
theory [5,14–19]. However, in several aspects we go beyond
the standard theory. In particular (i) we explicitly account
for boundary effects and derive a general expression for the
reflection coefficient (many existing homogenization theories
consider infinite composites) and (ii) we make use of the inte-
gral equation formulation of scattering theory for the Maxwell
equations. The resulting formulas for the effective-medium
parameters (EMPs) have a different mathematical structure
than those derived from partial differential equations; (iii) we
develop a computationally efficient algorithm for calculating
the EMPs. The algorithm is based on a continued-fraction
expansion of the self-energy and is obtained from a result on
the resolvent of a linear operator and (iv) a numerical study
of stability and convergence is performed for some test cases.
Stability is investigated by comparing the results for inclusions
of the same volume fraction but different shape and of the same
shape but different volume fractions.

It is useful to recognize that all EMTs can be classified as
either standard or extended. A standard EMT is obtained by
taking the limit h → 0, where h is the scale of the medium’s
heterogeneity; in this paper h is the lattice spacing. In standard
theories h is viewed as a mathematically and physically
independent variable and the resulting EMPs are independent
of h as long as the latter is small enough for the theory
to be applicable. Another feature of all standard theories is
the so-called law of unaltered ratios [20], which states that
if a composite medium is made of several constituents with
permittivities εj (j = 1,2, . . .) and if εj → λεj (λ > 0), then
the effective permittivity ε̄ also scales as ε̄ → λε̄.

Extended EMTs came to the fore (at least in the physics
literature) in Refs. [21,22]. The basic idea of these papers is
to note that one can compute the exact electric and magnetic
polarizabilities αe and αm of a spherical particle through the
use of the first Lorenz-Mie coefficients a1 and b1 even when
the sphere in question is not small compared to the external
wavelength. These polarizabilities can be used to construct an
extended Maxwell-Garnett approximation. Since a1 and b1 are
not proportional to the sphere volume, except in the quasistatic
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limit, the resultant EMTs contain the sphere radius explicitly.
In Refs. [23,24] a counterintuitive effect of noncommuting
limits was demonstrated. Specifically, it was shown that insofar
as the effective refractive index of a photonic crystal is
computed from the slope of the dispersion curve near the
� point, different results are generally obtained depending
on which of the two limits h → 0 and ε1 → ∞ is taken
first, where ε1 is the permittivity of one of the components
of the photonic crystal. A related point is that a complete
theory of homogenization requires error estimates. That is, it
is essential to determine how the error in the homogenization
limit depends upon contrast. Moreover, the reflection and
transmission properties of the composite medium have not
been considered [21–24].

In this paper we develop a standard EMT. However, when
considering reflection and refraction at a planar interface, we
derive formulas for the reflection and transmission coefficients,
which are valid for finite values of h. Then we show that taking
the limit h → 0 results in the standard Fresnel coefficients. In
this case the electric and magnetic properties of the medium
constituents do not mix, in agreement with Ref. [25]. That is, if
we begin with nonmagnetic inclusions, the resultant composite
is also nonmagnetic. An extended EMT can be obtained by
taking a different limit in which the permittivity of one of
the constituents scales as 1/h2 [26]. Here we note again the
existence of the effect of noncommuting limits [23,24,27],
which calls for additional scrutiny of the homogenization
results thus obtained. In particular, one would expect that in
the limit considered in Ref. [26], Fresnel formulas would also
be reproduced, but with a nontrivial magnetic permeability.
We have not been able to show that this is the case. In other
words, it is not clear whether the EMPs obtained from an
extended EMT are independent of the incidence angle or, more
generally, of the type of incident wave. This is in accord with
Refs. [28–33], which find that the conditions under which
metamaterials exhibiting strong magnetic resonances can be
assigned purely local (incidence-angle-independent) EMPs are
rather restrictive. The same point has been made in the recent
review [2].

An additional feature by which EMTs can be classified is the
physical model of the medium. In the model of dipole lattices
the medium is thought of as being composed of point particles
that are completely characterized by their polarizabilities
(electric and possibly magnetic) and whose shape and size
do not enter into the problem directly [34–36]. Alternatively,
one can consider the space as a two-component continuous
medium [37–39]. The point-dipole model is appealing because
of its simplicity but leads to serious mathematical problems.
The so-called dipole sum (also known as the lattice sum or
the dipole self-energy), which plays a key role in this model,
diverges in the case of three-dimensional (3D) lattices. While
it is true that even divergent series can be summed by means
of applying various mathematical tricks, the results obtained
depend on the particular trick used, a state of affairs that is not
very satisfying. Therefore, we will adopt from the start a model
of a two-component continuous medium. As the development
in this paper progresses, it will become apparent why the
point-dipole model is inadequate.

The mathematical development in this paper begins by
considering the integral equation obeyed by the polarization

field, which is introduced in Sec. II. In Sec. III we derive a
homogenization theory of the standard type for infinite peri-
odic media. Reflection and refraction at a planar boundary are
considered in Sec. IV. In Sec. V we discuss the correspondence
between the point-dipole model and the continuous-medium
model of this paper. A continued fraction expansion of the
effective permittivity is derived in Sec. VI and used in the
numerical simulations of Sec. VII. The expansion has its
origins in a theorem on resolvents of general linear operators
(with no special symmetry properties), which is stated in
Sec. VI and proved in the Appendixes. A discussion and a
summary of results are contained in Secs. VIII and IX.

II. BASIC EQUATIONS

The geometry of the problem we consider is sketched in
Fig. 1. The medium consists of two intrinsically nonmagnetic
constituents: a host medium of permittivity εb and periodically
arranged inclusions of permittivity εa . In practice, the host is
often a transparent dielectric with Reεb > 0 and 0 < Imεb �
Reεb and the inclusions are metallic. However, the theory of
this paper places no such restriction on the permittivities and
requires only that Imεb > 0 and Imεa > 0. In the case when
the host medium is a vacuum, we will set εb = 1 + i0. The
inclusions are arranged on a cubic lattice of period h. The
position vector of the center of each unit cell is denoted by rn,
where n can be viewed as a composite index: n = (nx,ny,nz)
and rn = h(x̂nx + ŷny + ẑnz). Whenever a summation over n

(or a similar composite index m) appears in the text it is implied
that the sum runs over all three integer indices. Inside the nth
cell the spatial region �n has the permittivity εa; the rest of
the cell has the background permittivity εb. All regions �n are
identical and differ only by translation. It is assumed that �n

can touch but not cross the cell boundaries. No assumption
on the connectivity of �n is made. The union of all regions
�n is denoted by �tot and the volume of each region is
denoted by V :

�tot =
⋃
n

�n,

∫
�n

d3r = V. (1)

We work in the frequency domain and the common factor
exp(−iωt) is suppressed. All frequency-dependent quantities,
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FIG. 1. (Color online) Sketch of the geometry considered: an
infinite 3D lattice.
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such as the permittivities εb and εa , are evaluated at the
frequency ω.

The mathematical development in this paper begins with
the integral equation

P(r) = 3χ

4π

[
Ei(r) +

∫
�tot

G(r,r′)P(r′)d3r ′
]
, r ∈ �tot. (2)

Here P(r) is the vector of polarization, which is related to the
electric field E(r) by

P(r) = ε(r) − εb

4πεb

E(r), (3)

Ei(r) is the incident electric field, G(r,r′) is the regular part
of the free-space retarded Green’s tensor, and

χ = εa − εb

εa + 2εb

. (4)

Note that P(r) defined in Eq. (3) is not the true physical
polarization, which is given by [ε(r) − 1]E(r)/4π , but rather
an auxiliary field; P(r) vanishes in the host medium while the
true polarization does not.

In what follows we will make use of the spatial Fourier
transform of the Green’s tensor, namely,

G(r,r′) = 4π

3

∫
d3p

(2π )3
K(p) exp[ip · (r − r′)], (5)

where

K(p) = 2k2
b + p2 − 3p ⊗ p

p2 − k2
b

(6)

and

k2
b = εbk, k = ω

c
. (7)

Here the wave number in the background medium is denoted
by kb and the wave number in vacuum is denoted by k. We
note that the integral equation (2) is equivalent to the pair of
curl Maxwell equations written in the frequency domain.

III. WAVES IN INFINITE LATTICES

A. Three-dimensional lattices

Consider the propagation of a wave in a three-dimensional
infinite lattice. In this case the incident field is absent and
Eq. (2) must be satisfied for Ei = 0. We seek the solution to
Eq. (2) in the form of a Bloch wave:

P(r) = exp(iq · rn)F(r − rn), r ∈ �n. (8)

Here q is the Bloch wave number and F(r) is a vector function.
Equivalently, if we write r = rn + R, then

P(rn + R) = exp(iq · rn)F(R), R ∈ �. (9)

In this formula � ≡ �0 is the region centered at the origin of
a rectangular reference frame. From the above relation we find
the equation obeyed by F(R):

F(R) = 3χ

4π

∫
�

W (R,R′)F(R′)d3R′, (10)

where

W (R,R′) =
∑
m

G(rn + R,rm + R′) exp[iq · (rm − rn)].

(11)

It can be seen that W is independent of n. It should also
be noted that the summation in Eq. (11) runs over the entire
lattice, including the term m = n. In theories that consider
pointlike particles, the dipole sum is defined as an incomplete
lattice sum, which excludes the term m = n. This makes
application of the Poisson summation formula problematic
and unnecessarily complicates the mathematics [36].

Returning to our derivation, we evaluate W as

W (R,R′) = 4π

3

∫
d3p

(2π )3
K(p) exp[ip · (R − R′)]

×
∑
m

exp[i(p − q) · (rn − rm)]

= 4π

3h3

∑
g

K(q + g) exp[i(q + g) · (R − R′)],

(12)

where

g = 2π

h
(x̂nx + ŷny + ẑnz) (13)

are the reciprocal lattice vectors and we have used the Poisson
summation formula∑

m

exp[i(p − q) · (rm − rn)] =
(

2π

h

)3 ∑
g

δ(p − q − g).

(14)

The summation in Eqs. (12) and (14) is over the complete set
of reciprocal lattice vectors; equivalently, it can be viewed as
a summation over the triplet of indices (nx,ny,nz) that appear
in Eq. (13).

The series on the right-hand side of Eq. (12) diverges when
R = R′. This is the well-known divergence of the dipole sum
[40], which hinders the analysis of waves in lattices made of
pointlike polarizable particles. The model of pointlike dipoles
is discussed in more detail in Sec. V. In the equations derived
above, the divergence is of no concern because W (R,R′)
appears only inside an integral and the singularity in question
is integrable.

Upon substitution of Eq. (12) into Eq. (10) we obtain

F(R) = χ

h3

∑
g

K(q + g) exp[i(q + g) · R]

×
∫

�

F(R′) exp[−i(q + g) · R′]d3R′. (15)

It follows from Eq. (15) that F(R) can be expanded as

F(R) =
∑

g

Fg exp[i(q + g) · R] (16)

and that the expansion coefficients satisfy the system of
equations

Fg = ρχK(q + g)
∑

g′
M(g − g′)Fg′ , (17)
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where ρ = V/h3 is the volume fraction of inclusions and M(g)
is defined by the expression

M(g) = 1

V

∫
�

exp(−ig · R)d3R. (18)

Note that M(g) is defined only by the shape of the inclusions
and is invariant with respect to the coordinate rescaling r →
λr. Some mathematical properties and calculations of M(g)
for special geometries are given in Appendix A.

So far we have simply restated the well-known theorem of
Floquet. The eigenproblem (17) defines the band structure of
a photonic crystal. It is well known that EMTs are not always
applicable to photonic crystals. However, there exists a regime
in which EMPs can be reasonably introduced; this regime will
be explored below. Namely, if qh,kbh � 1, we can consider
the cases g = 0 and g 	= 0 in Eq. (17) separately. This yields
the following equations:

F0 = ρχK(q)

⎡
⎣F0 +

∑
g	=0

M(−g)Fg

⎤
⎦, (19a)

Fg = ρχQ(g)

⎡
⎣M(g)F0 +

∑
g′ 	=0

M(g − g′)Fg′

⎤
⎦, g 	= 0,

(19b)

where

Q(g) ≡ lim
h→0

K(q + g) = 1 − 3ĝ ⊗ ĝ, g 	= 0. (20)

Here ĝ = g/|g| is a unit vector.
The derivation of Eqs. (19) is one of the key developments

of this paper. It can be seen that Eq. (19b) does not contain the
variable k or q, but is completely defined by the geometry of
inclusions and by the variable χ . Moreover, these equations are
invariant with respect to the rescaling r → λr. For any given
value of F0, Eq. (19b) can be solved uniquely as Fg = AgF0,
where the tensor Ag depends on g, the shape of inclusions, and
on χ . Given this result, we can write∑

g	=0

M(−g)Fg =
∑
g	=0

M(−g)AgF0 = �F0, (21)

where the tensor � has all the properties of Ag and in addition
is independent of g. It will be shown in Sec. VI that �

plays the role of the self-energy and originates due to the
electromagnetic interaction within and between the inclusions.
It will also be shown that � can be computed as a resolvent of a
linear operator, which depends only on the shape of inclusions.

Using the notation introduced in Eq. (21), we can rewrite
Eq. (19a) as

[1 − ρχK(q)(1 + �)]F0 = 0. (22)

This equation has nontrivial solutions if

det[1 − ρχK(q)(1 + �)] = 0. (23)

Here the quantity in the square brackets is a 3 × 3 matrix.
For a fixed value of k (that is, at a fixed frequency), the
condition (23) is an algebraic equation with respect to the
Cartesian components of the Bloch vector q. Roots of this
equation, computed at different values of k, determine the

dispersion relation q(k). There can be more than one branch of
the dispersion relation corresponding to different polarization
states. By polarization of the mode we mean here the direction
of the vector F0.

Effective-medium parameters can be inferred by comparing
these results to the polarization states and dispersion relation in
a homogeneous medium characterized by tensor permittivity
and permeability ε̄ and μ̄. However, it is not possible
to determine ε̄ and μ̄ simultaneously and uniquely from
consideration of the dispersion relation alone. For example, in
an isotropic medium, only the product of these two quantities
(the squared refractive index) can be unambiguously obtained.
Indeed, the dispersion relation in such a medium is invariant
with respect to the transformation ε̄ → ξ ε̄ and μ̄ → ξ−1μ̄,
where ξ 	= 0 is a complex number. To determine ε̄ and μ̄

uniquely one must consider reflection and refraction at the
medium boundary. This will be done in Sec. IV. In particular
it will be shown that in order to obtain the correct Fresnel
reflection coefficients one must set μ̄ = 1.

To summarize the results of this section, the electromag-
netic modes of a medium can be found if the tensor � is
known. Computation of the modes involves diagonalization
of a 3 × 3 matrix, while the tensor � is uniquely determined
by the solution to Eq. (19b). The latter is an infinite set of
equations that must be appropriately truncated in numerical
computations. Thus we have reduced the homogenization
problem to solving a set of algebraic equations in which the
shape of the inclusions appears only in the functions M(g).

B. Main homogenization result for three-dimensional
composites with well-defined optical axes

The standard description of electromagnetic waves in
anisotropic crystals is based on the assumption that the tensors
ε̄ and μ̄ commute and are simultaneously diagonalizable by a
rotation of the reference frame with purely real Euler angles.
The axes of the reference frame in which ε̄ and μ̄ are diagonal
are known as the optical axes. Moreover, standard textbooks
often specialize to the case μ̄ = 1, which is a very good
approximation in crystal optics [41]. In the most general
case, however, the tensors ε̄ and μ̄ do not commute, which
gives rise to two distinct sets of electric and magnetic axes.
Furthermore, ε̄ and μ̄ are complex valued, symmetric, and
hence non-Hermitian matrices. A purely real rotation that
diagonalizes any one of these two tensors may not exist.
A mathematically tractable dispersion relation for the most
general case has been derived only recently [42]; we will use
below one particular case of this result.

For the composite medium consisting of nonmagnetic
components, which is considered in this paper, the situation is
somewhat simpler. It can be seen from Eq. (23) that a unique
set of optical axes exists if the tensor � is diagonalizable by
a real-angle rotation of the reference frame. Thus the issue of
commutability of two different tensors does not arise in this
case.

In this section we assume that the optical axes of the
composite medium (that is, the principal axes of the tensor �)
exist and moreover coincide with the crystallographic axes
of the medium. The latter assumption is not really necessary,
but any composite can be cut is such a way that it holds.
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In particular, � is diagonal in the reference frame defined
by the crystallographic axes (which is the laboratory frame
in this paper) if the inclusions are symmetric with respect
to reflections in each of the xy, xz, and yz planes. The
principal values of �, denoted by �αα (α = x,y,z), are not
necessarily equal in this case. The two familiar examples of
reflection-symmetric inclusions that result in all three principal
values being different are a general parallelepiped and an
ellipsoid with unequal semiaxes. However, if the inclusions
also have cubic symmetry (which in addition to reflections
includes rotations about each axis by the angle π/4), then �

is reduced to a scalar and the effective medium is isotropic.

1. General direction of propagation

Let the tensor � be diagonal in the rectangular frame
xyz. We then use the expression (6) for K(q), evaluate the
determinant in Eq. (23), and obtain the following equation:

ε2
b

∏
α[1 + 2ρχ (1 + �αα)](

q2 − k2
b

)2 Dc(k,q) = 0, (24)

where

Dc(k,q) = k4 − Ac(q)k2 + Bc(q) (25)

and

Ac(q) = q2
x

(
1

ηy

+ 1

ηz

)
+ q2

y

(
1

ηx

+ 1

ηz

)
+ q2

z

(
1

ηx

+ 1

ηy

)
,

(26a)

Bc(q) = q4
x

ηyηz

+ q4
y

ηxηz

+ q4
z

ηxηy

+ q2
xq

2
y

ηz

(
1

ηx

+ 1

ηy

)

+ q2
xq

2
z

ηy

(
1

ηx

+ 1

ηz

)
+ q2

yq
2
z

ηx

(
1

ηy

+ 1

ηz

)
. (26b)

The quantities ηα are given by

ηα = εb

1 + 2ρχ (1 + �αα)

1 − ρχ (1 + �αα)
, α = x,y,z, (27)

and the subscript in Dc, Ac, and Bc has been used to emphasize
that these expressions are applicable to composite media and
have been obtained by evaluating the left-hand side of Eq. (23).

The set of dispersion relations (24)–(26) should be com-
pared to the analogous set of equations in a homogeneous
medium characterized by the effective tensors ε̄ and μ̄.
Generally, the dispersion relation in such media reads

det[(q × μ̄−1q×) + k2ε̄] = 0 (28a)

if μ̄−1 exists or

det[(q × ε̄−1q×) + k2μ̄] = 0 (28b)

if ε̄−1 exists. If both μ̄ and ε̄ are invertible, the two
equations (28a) and (28b) are identical.

For homogenization theory to be applicable, the effective
medium must have the same symmetry as the composite. It is
therefore evident that the principal axes of � should coincide
with the optical axes of the effective medium. Denote the
principal values of ε̄ and μ̄ by ε̄αα and μ̄αα . Let us further
assume that μ̄ is invertible. In this case Eq. (28a) takes the

following form:

k2ε̄xx ε̄yy ε̄zzDh(k,q) = 0, (29)

where

Dh(k,q) = k4 − Ah(q)k2 + Bh(q) (30)

and

Ah(q) = q2
x

(
1

ε̄yyμ̄zz

+ 1

ε̄zzμ̄yy

)
+ q2

y

(
1

ε̄xxμ̄zz

+ 1

ε̄zzμ̄xx

)

+ q2
z

(
1

ε̄xxμ̄yy

+ 1

ε̄yyμ̄xx

)
, (31a)

Bh(q) = q4
x

ε̄yy ε̄zzμ̄yyμ̄zz

+ q4
y

ε̄xx ε̄zzμ̄xxμ̄zz

+ q4
z

ε̄xx ε̄yyμ̄xxμ̄yy

+ q2
xq

2
y

ε̄zzμ̄zz

(
1

ε̄xxμ̄yy

+ 1

ε̄yyμ̄xx

)

+ q2
xq

2
z

ε̄yyμ̄yy

(
1

ε̄xxμ̄zz

+ 1

ε̄zzμ̄xx

)

+ q2
yq

2
z

ε̄xxμ̄xx

(
1

ε̄yyμ̄zz

+ 1

ε̄zzμ̄yy

)
. (31b)

Here the subscript in Dh, Ah, and Bh has been used to em-
phasize that these expressions are applicable to homogeneous
media. In the case μ̄xx = μ̄yy = μ̄zz = 1, Eq. (29) reduces to
the well-known Fresnel equation.

The prefactors in Eqs. (24) and (29) are almost always
nonzero, except in the case of nondissipative plasmas, which
can support longitudinal waves. This case will be considered
by us separately. Assuming that the prefactors are nonzero,
the dispersion relations are Dc(k,q) = 0 for the composite
medium and Dh(k,q) = 0 for the homogeneous medium. We
can introduce EMPs for the composite by observing that these
two dispersion relations become identical if we set

ε̄αα = ξηα, μ̄αα = 1

ξ
, (32)

where ξ 	= 0 is an arbitrary complex number. As already
mentioned, the nonuniqueness in the above definition of
the EMPs cannot be removed by considering the dispersion
relations alone.

Several remarks regarding the dispersion relations obtained
above should be made. First, in the general case the functions
Dc(k,q) and Dh(k,q) cannot be factorized into products of two
quadratic forms in the variables k, qx , qy , and qz. However,
such a factorization becomes possible for special directions of
propagation when one or more of the Cartesian components
of q are zero. Examples will be given below.

Second, the condition (32), which guarantees that
Dc(k,q) = Dh(k,q), requires that the effective permeability
μ̄ be a scalar. Any deviation of μ̄ from a scalar will result
in different laws of dispersion in the composite and in
the effective medium with no hope of obtaining the same
measurables from these two models. This requirement that μ̄

be a scalar even in a strongly anisotropic composite is difficult
to justify on physical grounds unless of course μ̄ = 1.
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Third, the dispersion relations (23) (for a composite
medium) and Eqs. (28a) and (28b) (for a homogeneous
medium) appear to have very different mathematical structure.
The fact that they reduce to the same equation under the
simple condition (32) is quite remarkable. Thus we have
shown that if orthogonal optical axes of the composite
medium can be defined, its dispersion relation q(k) and its
isofrequency surfaces [defined as the sets containing all q
such that Dc(k,q) = 0 for each k = ω/c] are equivalent to
those obtained in a homogeneous medium with EMPs ε̄ and
μ̄ given by Eq. (32), where the quantities ηα are defined in
Eq. (27).

Since it will be proved below that the correct choice of
the parameter ξ in Eq. (32) is ξ = 1, we now state the main
homogenization result of this paper pertaining to the principal
values of the EMPs:

ε̄αα = εb

1 + 2ρχ (1 + �αα)

1 − ρχ (1 + �αα)
, μ̄αα = 1. (33)

It can be seen that the Maxwell-Garnett mixing formula is
obtained from Eq. (33) by setting � = 0. Electromagnetic
interactions of inclusions in the composite result in a nonzero
value of � and correspondingly in the deviation of the EMPs
from the predications of Maxwell-Garnett theory.

2. Propagation along crystallographic axes

Consider a plane wave propagating along the z axis so that
qx = qy = 0. In this case

Dc(k,q) = k4 − k2q2
z

(
1

ηx

+ 1

ηy

)
+ q4

z

ηxηy

=
(

k2 − q2
z

ηx

)(
k2 − q2

z

ηy

)
. (34)

Thus Dc(k,q) is factorized into a product of two quadratic
forms, giving rise to two branches of the dispersion relation:
q2

z = ηxk
2 and q2

z = ηyk
2. Obviously these two branches

correspond to x- and y-polarized modes. It can be seen
that, in agreement with Eq. (32), the quantities ηα give the
effective squared refractive index for the transverse modes of
the composite.

In addition to the two transverse modes, a longitudinally
polarized mode can also exist under certain conditions. A mode
with an arbitrary wave number qα , which propagates and is
polarized along the same axis α, exists if and only if

1 + 2ρχ (1 + �αα) = 0. (35)

Under this condition, the equality (24) holds, even if Dc(k,q) 	=
0.

Let us consider briefly the physical conditions for the
existence of the longitudinal waves. From the property (A4)
(given in Appendix A) it follows that limρ→1 �αα = 0.
Consequently, the longitudinal waves exist in the high-density
limit if 1 + 2χ = 0, which is possible only if εa = 0. This is the
well-known condition for longitudinal waves in nondissipative
plasma. The low-density limit cannot be considered so easily
because �αα does not approach zero when ρ → 0 (see
Sec. III C) and can in fact diverge for certain values of
χ . However, we can use the reciprocity substitutions ρ ↔
1 − ρ and εa ↔ εb to see that in the low-density limit the
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FIG. 2. (Color online) Sketch of the geometry considered: reflec-
tion and refraction at a half-space boundary.

condition for the existence of the longitudinal waves is εb = 0.
Quite analogously, longitudinal waves can be obtained by
considering the dispersion relation (29) and setting one of
the principal values ε̄αα equal to zero.

3. Propagation in a crystallographic plane

We now discuss the case when q lies in the xz plane.
Problems of this type can arise when one considers reflection
and refraction at the interface z = 0, where the xz plane is the
plane of incidence, as shown in Fig. 2. Under the condition
qy = 0 we have

Dc(k,q) = k4 − k2

[
q2

x

(
1

ηy

+ 1

ηz

)
+ q2

z

(
1

ηx

+ 1

ηy

)]

+ q4
x

ηyηz

+ q4
z

ηxηy

+ q2
xq

2
z

ηy

(
1

ηx

+ 1

ηz

)

=
[
k2 −

(
q2

x

ηy

+ q2
z

ηy

)][
k2 −

(
q2

x

ηz

+ q2
z

ηx

)]
. (36)

Thus Dc(k,q) is factorized into a product of two quadratic
forms, which correspond to the s- and p-polarized modes.

By equating the first factor in Eq. (36) to zero, we obtain
the dispersion relation for the s-polarized wave:

q2
z

ηy

+ q2
x

ηy

= k2. (37)

The vector F0 of the s-polarized wave is aligned with the y

axis and is therefore perpendicular to the plane of incidence.
By equating the second factor in Eq. (36) to zero, we obtain

the dispersion relation for the p-polarized wave:

q2
z

ηx

+ q2
x

ηz

= k2. (38)

We can now find the vector F0 for the p-polarized wave by
considering the nontrivial solutions to Eq. (22). It can be easily
seen that F0 lies in this case in the plane of incidence (its
projection onto the y axis is zero) and the x and z components
of F0, F0x , and F0z satisfy the following relation (details of the
derivation are given in Appendix B):

F0x

F0z

= − 1 + 2ρχ (1 + �zz)

1 + 2ρχ (1 + �xx)

qz

qx

. (39)
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Equation (39) will be used below in Sec. IV to compute the
half-space reflection coefficient for the p-polarized incident
wave.

C. Low-density and low-contrast limits

Iteration of Eq. (19b) results in the following expansion for
the self-energy:

� = ρχ
∑
g	=0

M(−g)Q(g)M(g) + (ρχ )2

×
∑

g,g′ 	=0

M(−g)Q(g)M(g − g′)Q(g′)M(g′) + · · · . (40)

It is important to note that this expansion should be used with
caution. Indeed, if χ is of the order of unity or larger, the
series in Eq. (40) does not converge, even for arbitrarily small
values of the density ρ. This result may seem unexpected, but
it is easily understood by observing that the functions M(g)
depend on ρ and obey the sum rules (A2).

In Sec. VI a more useful (and always convergent) expansion
of � will be derived. Here we note that the functions M(g) are
independent of χ . Therefore, Eq. (40) is the formal expansion
of � into the powers of χ . Thus, in the low-contrast limit χ →
0 we have � → ρχσ1, where σ1 = ∑

g	=0 M(−g)Q(g)M(g).
In the case of three-dimensional inclusions with cubic sym-
metry, σ1 is identically zero. Then the first nonvanishing term
in the low-contrast expansion of � is given by (ρχ )2σ2, where
σ2 grows naturally out of the second term on the right-hand
side of Eq. (40).

D. Two-dimensional lattices

Consider a medium in which ε = ε(x,y) is independent of
z. As above, we assume that ε(x,y) is periodic on a square
lattice with lattice step h. The homogenization theory for
this medium can be obtained either by considering a three-
dimensional lattice with unequal steps hx , hy , and hz and taking
the limit hz → 0 or by following the derivations of Sec. III A,
taking account of the modified geometry. The results obtained
are very similar to those in the 3D case, with some obvious
modifications. Specifically, we arrive at Eqs. (19a) and (19b)
in which, however, we must take g = (2π/h)(x̂nx + ŷny).
Additionally, in the integrals (18), � must be understood as a
two-dimensional region (the intersection of an inclusion with
the xy plane) and V as the area of � and d3R is replaced by
d2R. The definition of Q(g) (20) remains unchanged, but Q(g)
is now a 2 × 2 tensor.

Consider a wave propagating in the xy plane and polarized
along the z axis. In this case Fg = ẑFg, where Fg is a scalar
and � can be found analytically in general. Indeed, we have in
this case Q(g)Fg′ = Fg′ , Q(g)F0 = F0 and Eq. (19b) becomes

Fg = ρχ

⎡
⎣M(g)F0 +

∑
g′ 	=0

M(g − g′)Fg′

⎤
⎦ , g 	= 0. (41)

The solution to this equation is

Fg = ρχ

1 − (1 − ρ)χ
M(g)F0, (42)

where some of the properties in Eq. (A2) have been used
(keeping in mind that the term g = 0 must be excluded from
the summation). We then have

�zz = ρχ

1 − (1 − ρ)χ

∑
g	=0

M(−g)M(g) = (1 − ρ)χ

1 − (1 − ρ)χ
. (43)

It can be seen from this equation that �zz does not approach
zero when ρ → 0, as discussed in Sec. III C. Upon substitution
of Eq. (43) into Eq. (33) we find that

ε̄zz = (1 − ρ)εb + ρεa = 〈ε〉. (44)

Thus the effective permittivity for z polarization is given by
the arithmetic average of ε(x,y). This is in agreement with
Krokhin et al. [14,15].

E. Concept of the smooth field

The result (44) for a z-polarized wave could have been
anticipated. To understand better why the effective permittivity
in this case is given by an arithmetic average, it is instructive
to consider the concept of the smooth field. The smooth field
S(r) changes slowly on the characteristic scale defined by the
heterogeneities in the medium. As a result, one can factorize
spatial averages of S(r) multiplied by any rapidly varying
function. For example, we can write 〈Sε〉 = 〈S〉〈ε〉, etc.

Let us recall some well-known results for 1D periodically
layered media [43]. The effective permittivity of such media
is ε̄‖ = 〈ε〉 for waves polarized parallel to the layers and
ε̄⊥ = 〈ε−1〉−1 for waves polarized perpendicularly to the
layers. These two results can be obtained quite expeditiously
by applying the concept of the smooth field. In the case of
tangential polarization, the electric field E is smooth. This
follows from the boundary condition that requires that the
tangential components of the electric field be continuous at all
interfaces. Consequently, we can write

〈D〉 = 〈εE〉 = 〈ε〉〈E〉, (45)

from which it follows that ε̄‖ = 〈ε〉. For perpendicular polar-
ization, the field D is smooth. We then write

〈E〉 = 〈ε−1D〉 = 〈ε−1〉〈D〉 (46)

and ε̄⊥ = 〈ε−1〉−1.
Similar considerations can be applied to the 2D problem of

Sec. III D. For waves polarized along the z axis, the field E is
smooth, which results in ε̄zz = 〈ε〉, in agreement with Eq. (44).

One can also consider a more general smooth field of the
form S = pE + (1 − p)D = [p + (1 − p)ε]E, where p is a
mixing parameter. Here we consider the 3D case and assume
that S is smooth for any polarization state. Application of the
smooth field principle results in the following equalities:

〈E〉 = 〈S〉〈1/[p + (1 − p)ε]〉, (47a)

〈D〉 = 〈S〉〈ε/[p + (1 − p)ε]〉, (47b)

from which we find the effective permittivity to be

ε̄αβ = δαβ

〈ε/[ε + p/(1 − p)]〉
〈1/[ε + p/(1 − p)]〉 . (48)

Equation (48) is in fact the Maxwell-Garnett formula. Al-
though this form is rarely used, the Maxwell-Garnett effective
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permittivity can be written as

ε̄MG = 〈ε/(ε + 2εb)〉
〈1/(ε + 2εb)〉 . (49)

We see that Eqs. (48) and (49) coincide if p = 2εb/(1 + 2εb).
Thus the Maxwell-Garnett EMT assumes that the field S =

[(ε + 2εb)/(1 + 2εb)]E is smooth. Since the mixing parameter
p depends on the permittivity of the host medium, Eq. (49)
is not invariant with respect to the substitutions εa ↔ εb and
ρ ↔ 1 − ρ. The homogenization formula (33) derived in this
paper, however, is fully symmetric. Note that Bruggeman’s
EMT is also symmetric but cannot be easily written in terms
of averages. Therefore, it is not clear which form of the smooth
field Bruggeman’s approximation assumes. In general, the
smooth field does not need to be a linear functional of E
and D.

IV. REFLECTION AND REFRACTION
AT A HALF-SPACE BOUNDARY

An infinite lattice is a mathematical abstraction. All experi-
mental media are bounded and the physical effects that occur at
the boundary are often important. For instance, as mentioned
above, it is not possible to determine simultaneously and
uniquely the effective permittivity and permeability of a
medium from the bulk dispersion relation alone.

The problem of reflection and refraction of a wave at a flat
interface is considered in this section. The goals are threefold.
First, we will derive the limit in which the correct expression
for the Fresnel reflection coefficient is obtained. This will
turn out to be the same limit used in Sec. III A. Second,
we will show that the correct expression for the reflection
coefficients results only if we set ξ = 1 in Eq. (32), from
which it follows that μ̄ = 1. Third, we will provide additional
mathematical justification for the results of Sec. III A. Indeed,
the derivations of that section contain one dubious step.
Namely, the applicability of the Poisson summation formula
(14) can be questioned because the variable q is complex.
Strictly speaking, the series on the left-hand side of Eq. (14)
diverges for an infinite lattice. The problem can be fixed, in
principle, by considering real-valued q’s and then analytically
continuing the summation result to the whole complex plane.
In this section no such complication will arise since all series
in question are convergent.

A. General setup

The geometry considered in this section is sketched in
Fig. 2. The medium occupies the right half space and the
left half space has the background permittivity εb. It would
be more appropriate to consider the case when the left half
space is a vacuum and the right half space is a two-component
mixture, so that there are three different components in the
problem. This however requires the use of the half-space
Green’s tensor [44]: a step that is not conceptually difficult,
yet mathematically involved. Here we restrict consideration
to only two components. This includes the cases when the
host medium is a vacuum and also when the incident beam is
first refracted from the vacuum into a homogeneous medium
of permittivity εb 	= 1 (at a planar interface that is located at

z = z1 � −h and is not considered explicitly) and then into
a heterogeneous medium that is a mixture of a- and b-type
components.

Physically, the z coordinate of the effective-medium bound-
ary can be stated only approximately, within an interval of
width ∼h. It will prove mathematically convenient to place the
boundary on the plane z = 0 and the centers of the leftmost
cells on the plane z = h, as shown in Fig. 2. In the EMT
developed below, the half space z > 0 is assumed to be filled
with an effective medium.

A wave cannot propagate in a semi-infinite medium without
an external source. Therefore, we must solve the integral
equation (2) with a nonzero incident field Ei , which we will
take to be a plane wave. We will also find that under appropriate
conditions, a uniquely defined reflected plane wave Er exists
in the region z < 0. The incident and the reflected waves are
given by

Ei(r) = Ai exp(ki · r), −∞ < z < ∞, (50a)

Er (r) = Ar exp(kr · r), −∞ < z < 0. (50b)

Note that the incident wave is defined in the whole space but
Eq. (2) is defined only for r ∈ �tot. The wave numbers of the
incident and the reflected waves can be written as

ki = k⊥ + ẑkiz, kr = k⊥ − ẑkiz. (51)

Henceforth the subscript ⊥ will be used to denote projections
of vectors onto the xy plane. Note that k⊥ · ẑ = 0 and

k2
i = k2

r = k2
⊥ + k2

iz = k2
b = k2εb =

(
ω

c

)2

εb. (52)

It is important to note that the vector k⊥ is purely real. A
complex-valued k⊥ would imply a wave that is evanescent
in a direction parallel to the interface. This would necessitate
the presence of additional interfaces; such a possibility is not
considered here. The vector k⊥ is real valued even if the host
medium is absorbing. Indeed, we should keep in mind that the
incident wave enters the host medium from a vacuum and that
the tangential component of the wave vector is conserved at
any planar interface, even if one of the media is absorbing.
However, the z projection of ki does not need to be real. In a
transparent host (εb > 0) the incident wave is evanescent and
kiz is purely imaginary if k⊥ > kb; in an absorbing host kiz is
generally complex.

Note that the reflected wave (50b) does not enter Eq. (2)
because it is identically zero in �tot. The reflected wave is
computed a posteriori once the polarization field P is found.
Then the amplitudes Ar and Ai can be used to determine the
reflection coefficient.

To solve Eq. (2) in the presence of the incident field we
decompose P as

P = PB + PS, (53)

where PB is the Bloch wave of the form (8) and PS is an
additional wave that originates due to the presence of the
surface. We seek the condition under which

EEO(r) ≡
∫

�tot

G(r,r′)PB(r′)d3r ′ = EB(r) + Eext(r) + ES(r),

(54)
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where in �tot

EB(r) = 4π

3χ
PB(r), (55a)

Eext(r) = −Ei(r), (55b)

If Eqs. (53)–(55) hold, then Eq. (2) becomes

PS(r) = 3χ

4π

[
ES(r) +

∫
�tot

G(r,r′)PS(r′)d3r ′
]
, r ∈ �tot.

(56)

Note that Eq. (56) contains only quantities that are associated
with the surface wave.

Equation (54) is the mathematical formulation of the
Ewald-Oseen extinction theorem and we will refer to EEO as
to the Ewald-Oseen field. We will see that one can determine
the reflection coefficient from the conditions (55). We will
also see that the surface wave is exponentially localized near
the interface and does not contribute to either reflection or
transmission coefficients if

(k⊥ + g⊥)2 > k2
b ∀g⊥ 	= 0. (57)

Inequality (57) is weaker than what is required for ho-
mogenization. It is merely the condition that there is no
Bragg diffraction in the medium; if Eq. (57) is violated, the
conventional reflection and transmission coefficients cannot
be defined. If, however, Eq. (57) holds, we do not need to solve
Eq. (56) explicitly; it suffices to know that the surface wave
does not contribute to any measurement performed sufficiently
far from the interface.

B. Evaluation of the Ewald-Oseen field

To compute the Ewald-Oseen field, we proceed along the
lines of Sec. III A to arrive at the following expression:

EEO(r) = 4π

3

∫
d3p

(2π )3
K(p)

∫
�

d3R F(R)

× exp[ip · (r − R)]
∑
m

exp[i(q − p) · rm]. (58)

So far, no restrictions on r have been placed. In particular, r
can be either in the right or left half space. However, when we
later substitute the result of integration into Eqs. (55), r will
be restricted to �tot.

The sum over m in Eq. (58) can be evaluated as follows.
First, we expand the summation as∑

m

exp[i(q − p) · rm]

=
∞∑

mx,my=−∞
exp[i(qx − px)hmx + i(qy − py)hmy]

×
∞∑

mz=1

exp[i(qz − pz)hmz]. (59)

From symmetry considerations we know that q⊥ = k⊥. This
property is a manifestation of momentum conservation and
will be confirmed below by considering the conditions (55).
Since, as discussed above, k⊥ is purely real, qx and qy are also
real. Therefore, we can compute the sums over mx and my

using the Poisson sum formula. Further, the half-range sum
over mz converges absolutely because the transmitted wave
decays into the medium and correspondingly Imqz > 0. We
therefore have∑

m

exp[i(q − p) · rm] =
(

2π

h

)2

f (pz)
∑
g⊥

δ(p⊥ − q⊥ − g⊥),

(60)

where

f (pz) ≡
∞∑

mz=1

exp[i(qz − pz)hmz] = 1

exp[i(pz − qz)h] − 1

(61a)

= 2π

h

∑
gz

(2πi)−1

pz − qz − gz

. (61b)

Here the well-known Laurant expansion of the function
1/[exp(iz) − 1] has been used. The equality (61b) is an
important observation. It will allow us to evaluate the Ewald-
Oseen field.

We now proceed by substituting Eq. (60) into Eq. (58),
which yields

EEO(r) = 4π

3h2

∑
g⊥

∫ ∞

−∞

dpz

2π
f (pz)K(q⊥ + g⊥ + ẑpz)

×
∫

�

d3R F(R) exp[i(q⊥ + g⊥ + ẑpz) · (r − R)].

(62)

The integral over pz can be computed by contour integration
since all the poles and residues of the integrand are known.
The positions of the poles in the complex pz plane are shown
in Fig. 3. The poles at pz = qz + gz are the singularities of the
function f (pz). Since qz has a positive imaginary part and all
gz’s are real valued, these poles lie in the upper half plane. The
remaining poles are the singularities of K(q⊥ + g⊥ + ẑpz),
which is viewed here as a function of pz. From the definition
(6) we find that these singularities are located at pz = ±Pg⊥ ,
where

Pg⊥ =
√

k2
b − (q⊥ + g⊥)2. (63)

⊥ ≈⊥ ⊥

=

=

=

( (−

−

+

⊥ ≈⊥ ⊥

⊥

( (− +

⎯

= −−

= −

FIG. 3. (Color online) Poles of the integrand of Eq. (62) in the
complex pz plane.
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These poles can be considered separately for g⊥ = 0 and g⊥ 	=
0. The two poles corresponding to g⊥ = 0 are pz = ±P0 =
±

√
k2
b − q2

⊥. The poles with g⊥ 	= 0 have large (either positive
or negative) imaginary parts if hkb,hq⊥ � 1, in which case
they can be written approximately as Pg⊥ ≈ ig⊥.

Note that in the case of infinite lattices the singularities of
K(p) do not contribute to Fourier integrals of the type (12)
because the corresponding residues are identically zero [these
singularities fall in between the peaks of the δ-function fence
given by the right-hand side of Eq. (14)]. We will compute the
contributions of the different families of poles to the integral
(62) separately. If the vector of position r is inside one of the
inclusions, the integration contour must be closed in the upper
half of the complex pz plane. Correspondingly, only the poles
with positive imaginary parts contribute to the integral (62) in
this case. The Ewald-Oseen field can also be computed in the
left half space. If the point of observation r is further away
from the interface than h/2 so that the inequality ẑ · r < −h/2
holds, the integration contour must be closed in the lower half
of the complex pz plane. In what follows it will be shown that
the poles at pz = qz + gz yield the Bloch-wave field EB(r),
the pole at pz = P0 yields the extinction field Eext(r), the pole
at pz = −P0 yields the reflected wave, and finally the poles
pz ≈ ±Pg⊥ with g⊥ 	= 0 yield the fast-decaying surface wave.

1. Bloch wave

We start by computing the Bloch-wave contribution to the
Ewald-Oseen field EB(r). We place the point of observation
in �tot, use the expression (61b) for f (pz), and evaluate the
contributions of the poles pz = qz + gz to the integral (62).
This results in the following expression:

EB(r) = 4π

3h3

∑
g

exp[i(q + g) · r]K(q + g)

×
∫

�

F(R) exp[−i(q + g) · R]d3R, r ∈ �tot.

(64)

Here we have used the equalities g⊥ + ẑgz = g and∑
g⊥

∑
gz

= ∑
g. Now, if F(R) is expanded according to

Eq. (16) and if the expansion coefficients Fg satisfy
Eq. (17), then the field given by Eq. (64) satisfies EB(r) =
(4π/3χ )PB(r) for r ∈ �tot, where PB is of the form (8). Thus
Eq. (55a) is satisfied if the Bloch wave of the polarization PB is
the same as one would find by solving the eigenproblem (17)
for an infinite medium. This justifies the use of the Poisson
summation formula in Sec. III A.

Equation (17) applies to general photonic crystals that
are not necessarily describable by EMPs. As discussed in
Sec. III A, homogenization is obtained by taking the limit
h → 0. This limit must be computed separately for the
equations with g = 0 and g 	= 0, which results in Eq. (19). This
system of equations defines an eigenproblem for the Bloch
wave vector q, while the polarization vector F0 is obtained
as an eigenvector of Eq. (22). The higher-order expansion
coefficients Fg are uniquely determined by F0, but F0 itself is
defined by Eq. (19) only up to a multiplicative factor. Next we
will show that this factor is fixed by the condition (55b).

2. Extinction wave

We now compute the contribution of the pole located at
pz = P0. The function f (pz) is analytic in the vicinity of
P0; therefore, we can use the expression (61a) for f (pz).
Since Eq. (55b) should hold only for r ∈ �tot, we close the
integration contour in the upper half plane. A straightforward
calculation yields

Eext(r) = 4πi

h2

exp[i(q⊥ + ẑP0) · r]

exp[i(P0 − qz)h] − 1

×k2
b − (q⊥ + ẑP0) ⊗ (q⊥ + ẑP0)

2P0

×
∫

�

d3R F(R) exp[−i(q⊥ + ẑP0) · R], r ∈ �tot.

(65)

We seek the condition under which Eext(r) = −Ei(r) for
r ∈ �tot, where Ei(r) is given by Eq. (50a). It immediately
transpires that the above equality can hold only if q⊥ = k⊥.
The continuity of the tangential components of all wave
vectors, including the incident wave vector ki , the reflected
wave vector kr , and the Bloch-wave vector of the transmitted
wave q, follows from the discrete translational symmetry
of the problem. We now find from Eq. (51) that P0 = kiz

and q⊥ + ẑP0 = ki . With the use of these equalities and the
notation

F̃(k) =
∫

�

F(R) exp(−ik · R)d3R, (66)

we can simplify Eq. (65) as

Eext(r) = 4πi

h2

exp(iki · r)

exp[i(kiz − qz)h] − 1

× k2
b − ki ⊗ ki

2kiz

F̃(ki), r ∈ �tot. (67)

The extinction condition then takes the form

Ai = −2πi

h2

k2
b − ki ⊗ ki

exp[i(kiz − qz)h] − 1

F̃(ki)

kiz

. (68)

So far, no approximations have been made. The homogeniza-
tion limit is obtained by observing that

lim
h→0

exp[i(±kiz − qz)h] = 1 + i(±kiz − qz)h, (69a)

lim
h→0

F̃(ki) = lim
h→0

F̃(kr ) = V (1 + �)F0. (69b)

Once the above limiting expressions are used, the extinction
condition becomes of the form

Ai = −2πρ
k2
b − ki ⊗ ki

kiz(kiz − qz)
(1 + �)F0. (70)

This equation couples the amplitude of the incident field Ai and
the amplitude of the Bloch polarization wave F0. The vector F0

must simultaneously satisfy the following two conditions: It
must (i) be an eigenvector of the tensor in the square brackets
in Eq. (22) and (ii) satisfy Eq. (70). These two conditions
determine both the direction and the length of F0.
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3. Reflected wave

Consider now the case when the point of observation r
is in the left half space. As discussed above, we will place
r at least h/2 away from the interface. This will allow us
to close the integration contour in Eq. (62) in the lower half
of the complex pz plane. The reflected wave is obtained by
computing the input of the pole pz = −P0. We find that the
electric field of the reflected wave is of the form (50b), where
the amplitude Ar is given by

Ar = 2πi

h2

k2
b − kr ⊗ kr

exp[−i(kiz + qz)h] − 1

F̃(kr )

kiz

. (71)

This expression contains no approximations. In the homoge-
nization limit we use the limiting expressions (69) and obtain

Ar = −2πρ
k2
b − kr ⊗ kr

kiz(kiz + qz)
(1 + �)F0. (72)

4. Surface wave

Finally, let us evaluate the contribution of the poles
pz =Pg⊥ with g⊥ 	= 0. For r ∈ �tot we have

ES(r) = 2πi

h2

∑
g⊥	=0

f (Pg⊥ ) exp(ikg⊥ · r)

× k2
b − kg⊥ ⊗ kg⊥

Pg⊥
F̃(kg⊥ ), r ∈ �tot, (73)

where

kg⊥ = q⊥ + g⊥ + ẑPg⊥ . (74)

If the condition (57) holds, the quantities Pg⊥ have nonzero
imaginary parts even if the host is transparent. Therefore, the
surface wave decays exponentially away from the interface. In
the homogenization limit the exponential decay is fast. Indeed,
in the limit h → 0 we have (for g⊥ 	= 0) Pg⊥ → ig⊥, kg⊥ →
g⊥ + iẑg⊥, and f (Pg⊥) → −1/g⊥h. With these limits taken
into account, the surface wave takes the following form:

ES(r) = −2πi

h3

∑
g⊥	=0

k2
b − (g⊥ + iẑg⊥) ⊗ (g⊥ + iẑg⊥)

g2
⊥

× exp[(ig⊥ − ẑg⊥) · r]F̃(g⊥ + ẑg⊥), r ∈ �tot.

(75)

It can be seen that ES decays exponentially on the scale of h.
So does the wave of polarization PS , as both fields are related
by the integral equation (56).

Solving Eq. (56) numerically can be a very difficult task.
Fortunately, doing so is not necessary if one is concerned with
only far-field measurements.

C. Reflection coefficient

We will now utilize the results of Sec. IV B. We will use
the assumption of Sec. III B, namely, that the crystallographic
and optical axes of the medium coincide so that the tensor
� is diagonal in the laboratory frame. Apart from other
simplifications, media of this type are nonchiral and do not
rotate the polarization of the transmitted and reflected waves.

This property holds even beyond the homogenization limit
since it is a straightforward consequence of the elementary
cell symmetries and it will enable us to consider the s and p

polarizations separately.
In this section we will explicitly use the reference frame

shown in Fig. 2. That is, we will assume that the plane of
incidence is the xz plane and that the projection of the wave
vectors ki , kr , and q onto the interface is k⊥ = kx x̂.

1. s polarization

In the case of s polarization the incident and reflected
waves are polarized perpendicularly to the plane of incidence.
Consequently, we have Ai ,Ar ∝ ŷ, and the exact reflection
coefficient is given by

r = Ar · ŷ
Ai · ŷ

= − F̃(kr ) · ŷ

F̃(ki) · ŷ

exp[i(kiz − qz)h] − 1

exp[−i(kiz + qz)h] − 1
. (76)

To derive the second equality we have used the expressions
(68) and (71) for the amplitudes Ai and Ar . This is an exact
expression that retains its physical meaning as long as Eq. (57)
holds. In the homogenization limit, we use the expressions (69)
to obtain

r = kiz − qz

kiz + qz

. (77)

Here qz is given by

qz =
√

k2ηy − k2
x, (78)

which follows from the dispersion relation (37), in which
we must take qx = kx . The square root branch in Eq. (78)
is determined by the condition Im(qz) > 0.

The expressions (77) and (78) should be compared to
the corresponding Fresnel coefficient rF and the dispersion
relation for a homogeneous medium characterized by the
permittivity and permeability tensors ε̄ and μ̄:

rF = kiz − qz/μ̄xx

kiz + qz/μ̄xx

. (79)

The wave number qz in an effective medium satisfies the
dispersion relation

qz =
√

k2ε̄yyμ̄xx − k2
x

μ̄xx

μ̄zz

. (80)

As discussed in Sec. III B1, we must impose the condition (32)
on the EMPs ε̄ and μ̄ in order to obtain the same laws of
dispersion in the composite and in the continuous medium
models. In particular, this condition guarantees that the
quantities qz given by Eqs. (78) and (80) are equal for all values
of kx . However, if this is so, the only way the two expressions
(77) and (79) can yield the same reflection coefficient is if we
set ξ = 1 in Eq. (32), which corresponds to μ̄ = 1.

We note that to reach the above conclusion it is sufficient
to consider the reflection coefficient for s polarization only.
We will show next that the same conclusion can be reached by
considering p polarization only and that the homogenization
results obtained in these two cases are consistent.
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2. p polarization

In the case of p polarization the reflection coefficient
can be conveniently defined by using the ratio of tangential
components of the magnetic field for the reflected and incident
waves. The magnetic field amplitudes of these waves are given
by

Bi,r = 1

k
ki,r × Ai,r . (81)

As could be anticipated, the amplitudes Bi,r are aligned with
the y axis. We can now use the expressions (68) and (71) for
the amplitudes Ai,r to find the exact reflection coefficient:

r = Br · ŷ
Bi · ŷ

= − [kr × F̃(kr )] · ŷ

[ki × F̃(ki)] · ŷ

exp[i(kiz − qz)h] − 1

exp[−i(kiz + qz)h] − 1
.

(82)

In the homogenization limit, this expression is simplified by
using Eq. (69), which leads to

r = − [kr × (1 + �)F0] · ŷ
[ki × (1 + �)F0] · ŷ

kiz − qz

kiz + qz

. (83)

As shown in Appendix B, Eq. (83) can be further simplified to
read

r = kiz/εb − qz/ηx

kiz/εb + qz/ηx

. (84)

In Eqs. (83) and (84) qz satisfies the dispersion relation for the
p-polarized wave Eq. (38). With the substitution qx = kx the
latter reads

qz =
√

k2ηx − k2
x

ηx

ηz

. (85)

As in the case of s polarization, the branch of the square root
is determined by the condition Im(qz) > 0.

We wish to compare the expressions (84) and (85) to the
analogous expressions in a continuous medium with the EMPs
ε̄ and μ̄. The Fresnel reflection coefficient for a p-polarized
incident wave is given by

rF = kiz/εb − qz/ε̄xx

kiz/εb + qz/ε̄xx

(86)

and the dispersion relation in the effective medium is

qz =
√

k2ε̄xμ̄y − k2
x

ε̄x

ε̄z

. (87)

As in the case of s polarization, the condition (32) with an
arbitrary parameter ξ guarantees that the two expressions (85)
and (87) yield the same wave number qz for all values of
kx . However, the expressions (84) and (86) yield the same
reflection coefficient only if we set ξ = 1 in Eq. (32).

This completes the proof that the correct choice of the
parameter ξ in Eq. (32) is ξ = 1 and correspondingly the
correct homogenization result is μ̄ = 1. A similar proof has
been given by us for a one-dimensional layered medium in
Ref. [43] for both s and p polarizations.

V. COMPARISON OF POINT-DIPOLE AND
CONTINUOUS-MEDIUM MODELS

The model of pointlike polarizable particles arranged on
a three-dimensional infinite lattice possesses an intuitive
physical appeal. Historically, many authors have used this
model and although an exhaustive review is outside of the
scope of this paper, Refs. [34–36,40,45,46] can be mentioned.
Unfortunately, the model is haunted by divergences. In this
section we will discuss the nature and origins of these
divergences and some of the commonly used methods for
their regularization. We will also attempt, to the degree it is
possible, to establish a correspondence between the model of
point dipoles and the model of a continuous two-component
medium, which is the subject of this paper.

Most previous works on electromagnetic waves in point-
dipole lattices assume that the background medium is a
vacuum. For compatibility of results and simplicity of notation,
we will also make this assumption (in this section only) and
set εb = 1 + i0 and kb = k = ω/c + i0.

The model of point dipoles considers an array of pointlike
particles that have well-defined locations, but no shape or size.
Instead of the latter two physical characteristics, the electric
dipole polarizability α is used. In some generalizations of the
model the magnetic dipole polarizability is also included. The
basic idea of this approach is that the electromagnetic response
of a particle is completely characterized by its polarizability.

If only the electric polarizability is retained, one arrives, in
lieu of the integral equation (2), at the set of algebraic equations

1

α
dn = Ei(rn) +

∑
m	=n

G(rn,rm)dm. (88)

Here dn is the electric dipole moment of the nth particle. Now
two important points should be made. First, the summation
on the right-hand side of Eq. (88) is restricted only to the
indices m that are not equal to n. This reflects the idea that the
electric field at the site of the nth dipole is a superposition
of the incident wave Ei(rn) and the waves scattered by
all other dipoles. Second, energy conservation requires that
[47–49] Im(1/α) � −2k3/3. If the equality holds, the particles
are nonabsorbing. It is convenient to decompose the inverse
polarizability as

1

α
= 1

αLL
− i

2k3

3
, (89)

where αLL is the Lorenz-Lorentz quasistatic polarizability and
−i2k3/3 is the first nonvanishing radiative correction to the
imaginary part of 1/α. Radiative corrections to the real part of
1/α also exist and are in fact of a lower order in k, but it is the
correction to the imaginary part that is physically important
and should be retained even in the limit kh → 0. We will see
momentarily that the two seemingly unrelated facts mentioned
above are mathematically connected.

We now consider an infinite lattice, set the incident field
to zero, and seek the solution to Eq. (88) in the form dn = d
exp(iq · rn). This results in the eigenproblem

1

α
d = S(q)d, (90)
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where

S(q) =
∑
m	=n

G(rn,rm) exp[−iq · (rn − rm)] (91)

is the dipole sum. Using the Fourier representation (5), we
rewrite Eq. (91) as

S(q) = 4π

3

∫
d3p

(2π )3
K(p)

∑
m	=n

exp[i(p − q) · (rm − rn)].

(92)

The first complication encountered in the above is that the
summation on the right-hand side of Eq. (92) is incomplete.
We can easily fix this problem by adding and subtracting unity
to the series, which leads to

S(q) = 4π

3

[
1

h3

∑
g

K(q + g) −
∫

d3p

(2π )3
K(p)

]
, (93)

where we have used the Poisson summation formula (14). Still,
both terms on the right-hand side of Eq. (93) are divergent.
We will deal with the integral first. To this end we utilize the
expression for K(p) given in Eq. (6) and notice that the angular
integral of the term p2 − 3p ⊗ p is zero in three dimensions.
Therefore, we have

I ≡
∫

d3p

(2π )3
K(p) = 4π

∫ ∞

0

p2dp

(2π )3

2k2

p2 − k2
. (94)

This is still a divergent integral. We can regularize Eq. (94) by
writing

I = lim
λ→0

{
4π

∫ ∞

0

p2dp

(2π )3

2k2

p2 − k2
exp[−(λp)2]

}
. (95)

The above limit indeed exists and is equal to ik3/2π , assuming
that Imk > 0 (which is true if we set k = ω/c + i0). Upon
substitution of this result into Eq. (93) we find that

4π

3

[
−

∫
d3p

(2π )3
K(p)

]
= −i

2k3

3
. (96)

We now use the decomposition (89) and notice that the above
term is canceled by a similar term on the left-hand side
of Eq. (90). Taking into account this cancellation, Eq. (90)
becomes

1

αLL
d = 4π

3h3

∑
g

K(q + g)d. (97)

The mathematical tricks used so far are not very objectionable.
The result (96) is a reflection of the fact that

lim
λ→0

[
3

4πλ3

∫
|r′−r|�λ

G(r,r′)d3r ′
]

= −i
2k3

3
. (98)

Here we have assumed that the particle is spherically symmet-
ric. The use of a different integration volume in Eq. (98), or of
a different regularization function in Eq. (95), would certainly
yield a different result. Fortunately, if kh � 1, only the real
part of I is affected by the choice of the regularization function
in Eq. (95) while the imaginary part is relatively stable. If ReI
is unimportant, e.g., if it is small compared to the sum of
real parts of all other contributions in Eq. (93), then Eq. (97)

is a good approximation, regardless of the true shape of the
particles.

However, the divergence of the series on the right-hand
side of Eq. (97) is truly problematic. One can attempt to
regularize this divergence by the same mathematical trick that
was used above. However, the result of such a manipulation
would indeed depend on the regularization function in a
nontrivial way. One can conclude that knowledge of the
particle polarizability is in fact insufficient for solving the
problem at hand. The shape of the particles is also important
and cannot be disregarded.

Another way to look at this is the following. The polar-
izability α defines the response of a particle to an external
electric field that is almost uniform over the particle volume.
However, in an infinite three-dimensional lattice the electric
field is not uniform over the particle volume, no matter
how small the particle is. This is because the lattice Green’s
function W (R,R′) given by Eq. (12) experiences an integrable
divergence when R = R′. However, in the point-dipole model,
we are attempting to evaluate this function exactly at R = R′ =
0, which is not mathematically reasonable.

It appears that the only feasible approach to regularize
the summation in Eq. (97) is to endow the particles with
a finite volume, as done, for example, in Ref. [34]. This
would naturally lead to a modification of Eq. (97) in which
the right-hand side is multiplied by a decaying function
f (g), ensuring convergence. Unfortunately, the exact form
of f (g) strongly depends on the particle shape and size. If
the regularization is carried out in a mathematically consistent
way, one would end up with a set of equations that are identical
to the equations obtained here for the model of a continuous
two-component medium.

Evidently, within the point-dipole model, one wishes to
avoid introducing the particle shape and size. Then the only
conceivable approach to regularization is simply to truncate
the series in Eq. (97), by leaving only the g = 0 term in the
summation, which leads to the eigenproblem

1

αLL
d = 4π

3h3
K(q)d. (99)

Regularization of this type is in fact appropriate for small
spherical particles. If one also uses the quasistatic polarizabil-
ity of a sphere of radius a, namely,

αLL = a3 εa − 1

εa + 2
, (100)

then Eq. (99) becomes equivalent to the Clausius-Mossotti
relation and the EMT that follows from it is the standard
Maxwell-Garnett approximation.

One may be tempted to forget about the limits of applica-
bility of Eq. (99). In other words, once Eq. (99) is derived,
it is technically possible to use it with any polarizability αLL.
The latter can be obtained independently, i.e., by solving the
Laplace equation for a single isolated particle of arbitrary
shape. Unfortunately, this approach is mathematically incon-
sistent. Equation (99) was derived from Eq. (97) by applying
a regularization method that is appropriate only for small
spheres. Application of Eq. (99) to particles of nonspherical
shape is likely to result in errors.
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In summary, the model of point dipoles is capable of
reproducing the standard Maxwell-Garnett mixing rule for
small spheres. Radiative corrections to this result can also be
derived [35]. However, in three dimensions the model breaks
down and cannot be used when a substantial deviation from the
Maxwell-Garnett approximation is expected, i.e., for particles
whose volume fraction is not small or whose shape is different
from a sphere. In other words, the model does not provide a
mathematically consistent way of computing the self-energy
� that appears in Eqs. (23) or (33) and is therefore usable
only in the physical situations when � can be neglected.
Nevertheless, we note that in systems of lower dimensionality
(e.g., in nanoparticle chains), the point-dipole model is useful
and can provide significant physical insights.

VI. CONTINUED-FRACTION EXPANSION
OF THE SELF-ENERGY AND THE
MEAN-FIELD APPROXIMATION

A. Abstract notation

In this section we will find it convenient to rewrite
Eqs. (19b) and (21) in Dirac notation. First, we note that in
order to recover all components of the tensor � one must
solve Eq. (19b) for three different right-hand sides: F0 = x̂,
F0 = ŷ, and F0 = ẑ. To this end we introduce a triplet of
infinite-dimensional vectors |aβ〉; operators Q, M , and W ;
and vectors |bβ〉 (β = x,y,z) according to

〈αg|aβ〉 = M(g)δαβ, (101a)

〈αg|Q|α′g′〉 = δgg′ (1 − 3ĝαĝα′), (101b)

〈αg|M|α′g′〉 = δαα′M(g − g′), (101c)

W = QM, (101d)

|bβ〉 = Q|aβ〉. (101e)

Note that Q is diagonal in the index g and M is diagonal
in the index α, but the product of the two, W = QM , is not
diagonal. We must also keep in mind that the index g in the
above equations is not allowed to take the zero value. We
further define the vectors |Fβ〉 as the solutions to(

1

ρχ
− W

)
|Fβ〉 = |bβ〉. (102)

The above is equivalent to the set (19b). The tensor elements
of � are defined by

�αβ = 〈aα|Fβ〉 = 〈aα|
(

1

ρχ
− W

)−1

|bβ〉

= 〈aα|
(

1

ρχ
− QM

)−1

Q|aβ〉. (103)

It can be seen that � is computed as the resolvent of the
operator W = QM and plays the role of the self-energy, which
accounts for interactions between the inclusions.

B. Mean-field approximation

The mean-field approximation is often misunderstood. In
particular it is unrelated to Maxwell-Garnett theory. Rather it
allows one to replace certain operators by appropriately chosen
scalar multiples of the identity. The approximation reproduces

the exact zeroth and first moments of the resolvent and
serves as the first-order approximation in its continued-fraction
expansion. Here the approximation is explained following
Berry and Percival [50].

Let us seek the solution to Eq. (102) in the form |Fβ〉 =
λ|bβ〉, where λ is a scalar to be determined. Upon substitution
of this ansatz into Eq. (102), we obtain the equation(

1

ρχ
− 1

λ

)
|bβ〉 = W |bβ〉. (104)

Because |bβ〉 is generally not an eigenvector of W , there is no
such value of λ for which Eq. (104) would hold. The best we
can hope for is that a projection of this equation onto a given
vector would hold for some λ. Since we are interested not in
the whole vector |Fβ〉 but in its projection onto |aα〉, it seems
reasonable to project Eq. (104) onto the latter. This yields

λ = ρχ

1 − ρχ
〈aα |W |bβ 〉
〈aα |bβ 〉

(105)

and the corresponding mean-field approximation for the self-
energy is

�αβ = ρχ〈aα|bβ〉
1 − ρχ

〈aα |W |bβ 〉
〈aα |bβ 〉

= ρχ〈aα|Q|aβ〉
1 − ρχ

〈aα |QMQ|aβ 〉
〈aα |Q|aβ 〉

. (106)

As mentioned in Sec. III C, the matrix element

〈aα|Q|aβ〉 =
∑
g	=0

[M(−g)Q(g)M(g)]αβ (107)

is identically zero for inclusions with cubic symmetry (in
three-dimensional composites) so that Eq. (106) yields in this
case zero and is not useful. If 〈aα|Q|aβ〉 is zero, a nonvanishing
mean-field approximation can be obtained by shifting the
solution according to |Fβ〉 = ρχ |bβ〉 + |F ′

β〉. The self-energy
is then given by �αβ = 〈aα|F ′

β〉, where |F ′
β〉 satisfies(

1

ρχ
− W

)
|F ′

β〉 = ρχW |bβ〉. (108)

The mean-field approximation for the shifted equation (108)
is

�αβ = (ρχ )2〈aα|QMQ|aβ〉
1 − ρχ

〈aα |(QM)2Q|aβ 〉
〈aα |QMQ|aβ 〉

. (109)

C. Continued-fraction expansion of the self-energy

Continued-fraction expansions (CFEs) are very useful in
physics [51,52]. The mathematical underpinning of all CFEs
is the theory of the correspondence between the formal
Laurent series of meromorphic functions and certain continued
fractions [53]. There exists a deep mathematical relation
between CFEs and the problem of moments, that is, the
problem of finding a distribution from the knowledge of its
moments.

Continued-fraction expansions can be derived in different
ways. Haydock [51] has employed the Lanczos recursion
to transform a certain Hamiltonian to tridiagonal form. A
diagonal element of the inverse of a tridiagonal matrix can
be written as a J-fraction (a continued fraction of Jacobi
type). In Ref. [51] this procedure was applied to a Hermitian
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operator to compute a diagonal matrix element of the resolvent.
In this paper the operator W in Eq. (102) or (103) is not
symmetric or Hermitian and we are interested in off-diagonal
elements of the resolvent. Therefore, the numerical procedure
used by Haydock is not directly applicable. Perhaps it can be
generalized to become applicable to the problem at hand; we
have not explored this possibility. Instead, we will derive a
CFE for the right-hand side of Eq. (103) from the following
theorem, which does not require any symmetry properties
of the operators involved and yields a CFE for arbitrary
off-diagonal elements. The resultant expansion will be an
S-fraction (a continued fraction of Stieltjes type). Note that
an S-fraction can always be transformed into a J-fraction by
the so-called equivalence transformation.

Theorem 1. Let W be a linear operator acting on the Hilbert
space H and Z be a complex number. Suppose that |φ〉,
|ψ〉 ∈ H. If (i) 〈φ|ψ〉 	= 0 and (ii) (Z − W )−1 exists, then

〈φ|(Z − W )−1|ψ〉 = Z−1〈φ|ψ〉
1 − 〈φ|(Z−WT )−1W |ψ〉

〈φ|ψ〉
, (110)

where

T = 1 − |ψ〉〈φ|
〈φ|ψ〉 . (111)

The proof is given in Appendix C. Note that Eq. (110) has a
finite limit when Z → 0.

The factor 〈φ|(Z − WT )−1W |ψ〉 in the denominator of
Eq. (110) can be written as 〈φ|(Z − W1)−1|ψ1〉, where W1 =
WT and |ψ1〉 = W |ψ〉. The formula (110) can now be applied
to 〈φ|(Z − W1)−1|ψ1〉 and so on iteratively. After some
manipulation, this yields the following expansion:

〈φ|(Z − W )−1|ψ〉 = κ1

Z − κ2

1 − κ3
Z−···

, (112)

Note the interlacing factors of Z and 1. The coefficients
κj (j = 1,2, . . .) are obtained from a three-point recursion.
Namely, starting from |ψ0〉 = 0, |ψ1〉 = |ψ〉, and κ1 = 〈φ|ψ〉,
we compute for j = 1,2, . . .

|ψj+1〉 = W (|ψj 〉 − κj |ψj−1〉), κj+1 = 〈φ|ψj+1〉
〈φ|ψj 〉 . (113)

To obtain a CFE of the right-hand side of Eq. (103) we identify
Z = 1/ρχ , W = QM , |φ〉 = |aα〉, and |ψ〉 = |bβ〉 = Q|aβ〉.

With the above substitutions taken into account, it transpires
that the coefficients κj are determined only by the geometry
of the composite. Once a set of κj have been found for a
given geometry, the EMPs can be easily computed for any
material parameters of the composite constituents. This is a
characteristic feature of a spectral theory and the CFE (112) is
in fact a spectral representation of the self-energy �.

Finally, we note that in the case of three-dimensional
composites with cubic symmetry, the first condition of the
Theorem does not hold when the theorem is applied directly
to Eq. (103). In this case one can build a CFE starting from the
shifted equation (108).
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FIG. 4. (Color online) Two types of elementary cells used in
numerical simulations.

VII. NUMERICAL SIMULATIONS

A. General setup

Numerical simulations have been performed for a two-
dimensional composite. The composite is periodic in the xy

plane while the inclusions form infinitely long fibers that are
oriented parallel to the z axis and can have different cross
sections. The case when the electric field is parallel to the
fibers is not considered here since this polarization results in a
simple arithmetic average of the type (44). However, when the
electric field is polarized in the xy plane, the homogenization
problem is nontrivial and can be numerically challenging.
We will consider inclusions with circular and square cross
sections, as illustrated in Fig. 4. The functions M(g) for these
shapes are given in Appendix A.

It is assumed that the host medium is a vacuum and the
inclusions are metallic and characterized by a frequency-
dependent Drude permittivity of the form

εa = 1 − 3ω2
F

ω(ω + iγ )
, εb = 1. (114)

In Eq. (114) ωF = ωp/
√

3 is the Frohlich frequency, ωp is
the plasma frequency, and γ is the Drude relaxation constant.
We will compute the effective permittivity of the composite
ε̄ as a function of frequency for 0.1 � ω/ωF � 2 and for the
fixed ratio γ /ωF = 0.1. It is assumed that for all frequencies
used in the simulations, the basic condition for the validity of
a standard EMT, kbh,qh � 1, is satisfied.

Numerical simulations will be performed by truncating the
infinite set of equations (19b) so that the vectors g fill the box

−2πL/h � gx, gy � 2πL/h, (115)

where L is an integer. The total number of g vectors that
satisfy the above inequality is (2L + 1)2 and the total number
of algebraic equations to be solved is N = 2[(2L + 1)2 − 1],
where we have accounted for the fact that the vector g =
0 is excluded in the set of equations (19b). It can be seen
that N → 8L2 when L → ∞. In the simulations we will use
integer powers of 2 for L up to L = 28 = 256. The latter case
corresponds to N = 526 and 366 equations.

The truncated set of equations (19b) can be solved by any
direct numerical method. The computational complexity of
direct methods is O(N3) and the solution must be obtained
anew for every frequency used (we sample the frequency at
200 equidistant points in the interval 0.1 � ω/ωF � 2). This
is time consuming but possible for L � 64. For larger values of
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L, direct methods become impractical. We will therefore use
the CFE of Sec. VI C. The computational complexity of this
expansion is O(jmaxN

2), where jmax is the order of truncation
of the continued fraction. More specifically, the continued
fraction is truncated by assuming that κj = 0 for j > jmax,
so that only the first jmax coefficients are used in Eq. (112).
For the problem at hand, jmax ≈ 50 will prove sufficient.
Other iterative methods such as the conjugate gradient method
also have computational complexity O(jmaxN

2), with jmax

being the number of iterations. However, the computationally
intensive part of the conjugate-gradient solver [when applied
to Eq. (19b)] must be repeated for every value of ω, while the
coefficients κj in Eq. (112) need to be computed only once for
a given geometry.

The inclusions shown in Fig. 4 have cubic symmetry.
As discussed in Sec. III B, the self-energy � is reduced in
this case to a scalar. As a result, the effective medium is
isotropic in the xy plane. Of course anisotropy can still be
revealed if the polarization vector has a component along the
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Panels (a)–(d):
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FIG. 5. (Color online) Convergence of the CFE (112) with the
truncation order jmax for (a) and (b) circular and (c) and (d) quadratic
inclusions with the same volume density ρ = 0.16. The set of
equations (19b) has been truncated using L = 64. In (a) and (b)
the curves with jmax = 30,40,50 are indistinguishable.
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FIG. 6. (Color online) Absolute values of the coefficients κj

computed for circular inclusions with ρ = 0.16 and L = 64 on two
different computers (C1 and C2). The same FORTRAN code and input
data have been used in both cases.

z axis. In the simulations reported below, we have computed
� by solving Eq. (19b) and using the definition (21). The
effective permittivity for transversely polarized waves was
then computed by using Eq. (33).

B. Convergence and stability

The convergence of the CFE (112) with the truncation
order of the continued fraction jmax is illustrated in Fig. 5.
Here the real and imaginary parts of the effective permittivity
are plotted as functions of frequency. It can be seen that the
convergence is very fast for circular inclusions and somewhat
slower for square inclusions. In all cases jmax = 50 is sufficient
for convergence.

The three-point recurrence relation (113) is numerically
unstable for large values of j . This is illustrated in Fig. 6.
Shown in this figure are the coefficients κj obtained on two
different computers for the geometry described in the figure
caption. The same code and input data were used in both cases.
The coefficients from the two sets coincide for j � 50 with
high precision. However, differences start to appear at j ∼ 50
and at j ∼ 100 the coefficients are unreliable. The instability
occurs when an iteration step in Eq. (113) asks for a relatively
small difference of two large numbers and the numerical
precision of the floating-point arithmetic is exceeded.

The instability illustrated in Fig. 6 appears to be trouble-
some but is in fact of little concern. This is illustrated in Fig. 7,
which displays the effective permittivity computed by the CFE
(112) for various truncation orders jmax and the same quantity
computed by solving Eq. (19b) directly. One of the sets of κj ’s
displayed in Fig. 6 has been used for computing the data points
for Figs. 7(a) and 7(b). Despite the instability, the curves with
jmax = 50 and 100 are indistinguishable and very close to the
data points obtained by direct inversion of Eq. (19b). Thus
the unreliable coefficients κj do not influence the final result.
This is one of the nice properties of all CFEs: A numerical
instability does not result in numerical imprecision. It is true
that increasing the truncation order beyond jmax = 50 is not
useful, but it is not harmful either. This point and some related
issues are discussed in more detail in Sec. VIII below.

Having established the convergence properties of the CFE,
we next consider convergence with the size of the box L (up to
now, all plots have been computed for L = 64). In Figs. 8 and
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FIG. 7. (Color online) Effective permittivity of (a) and (b) circular
and (c) and (d) square inclusions computed using the CFE (112)
with the truncation orders jmax = 10 (dashed line) and jmax = 50,100
(solid line) and by direct inversion of Eq. (19b) (centered symbols).
In all cases ρ = 0.16 and L = 64. The data points for jmax = 50
and 100 are visually indistinguishable and therefore represented with
the same solid line. The displayed data points for direct inversion
(centered symbols) are sampled from the same set of 201 data points;
the sampling density in each panel is variable and chosen to accurately
represent variations of the corresponding function.

9, ε̄ is plotted as functions of frequency for various values of
the density ρ and the box size L. Also shown in these figures
are the results obtained from the generalized Maxwell-Garnett
formula

εν = εb

1 + 2ρ

3
εa−εb

εb+ν(εa−εb)

1 − ρ

3
(εa−εb)

εb+ν(εa−εb)

, (116)

which applies to ellipsoids, with ν being the appropriate
depolarization factor. In the case of three-dimensional spheres
ν = 1/3 and Eq. (116) coincides with Eq. (33), in which the
self-energy � is set to zero. In the case of infinite circular
cylinders, the depolarization factor, which corresponds to the
orthogonal electric polarization, is ν = 1/2.
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Panels (a) and (b):
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FIG. 8. (Color online) Convergence of the effective permittivity
ε̄ with the size of the box L for (a) and (b) circular and (c) and
(d) square inclusions with ρ = 0.16. The curves labeled as ν = 1/2
and ν = 1/3 (thick and thin dashed lines, respectively, with variable
spacing) have been obtained from the generalized Maxwell-Garnett
mixing formula (116) for the values of ν indicated.

Several conclusions can be drawn from Figs. 8 and 9. First,
convergence is obtained for boxes of reasonable size. In all
cases shown L = 256 yields very accurate results and in some
cases L = 64 is sufficient. However, it is important to note that
we have verified the convergence by doubling the size of the
box. Determination of convergence by using linearly sampled
values of L (say, L = 10,11,12, . . .) can be misleading. This is
a typical situation when boundary-value problems are solved
numerically. Convergence must be established by at least
doubling the size of the mesh used.

Second, it can be seen that convergence is faster for
ρ = 0.32 than for ρ = 0.16. Although the electromagnetic
interaction is stronger in the second case, the faster conver-
gence is to be expected. Indeed, the size of the box should
be selected so that the sum rules (A2) are satisfied with some
reasonable precision,; that is achieved at smaller values of L

for larger values of ρ. Even faster convergence is obtain for
ρ = 64 (data not shown). However, at the percolation threshold
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FIG. 9. (Color online) Same as in Fig. 8 but for ρ = 0.32 and
different values of L as indicated.

(ρ = π/4 ≈ 0.79 for circular inclusions), the convergence is
relatively slow.

Third, the generalized Maxwell-Garnett formula (116) with
ν = 1/2 yields a reasonable result for circular inclusions
with ρ = 0.16. Even better agreement has been obtained
for ρ = 0.08 and 0.04 (data not shown). However, as the
size of circular inclusions increases, the Maxwell-Garnett
approximation becomes less accurate. For square inclusion
the approximation is inaccurate even for very small values of
ρ. In all cases the electromagnetic interaction tends to shift
the absorption peaks from the Maxwell-Garnett prediction
towards the lower frequencies. At ρ = 0.32 the effect is
already quite pronounced.

C. Comparison of inclusions of various size

We finally compare the effective permittivity for circular
and square inclusions of different sizes. The results are
displayed in Figs. 10 and 11. In the case of circular inclusions
there exists a pronounced spectral peak that shifts towards
lower frequencies when ρ is increased. However, once the
inclusions touch (this happens at ρ = π/4 ≈ 0.79) the single
resonance is destroyed and a broad absorption band develops.

ρ ≈ 0.79
ρ = 0.64
ρ = 0.32
ρ = 0.16Re( )̄
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1
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FIG. 10. (Color online) Effective permittivity for circular inclu-
sions of different volume densities. The ρ ≈ 0.79 case corresponds
to the percolation threshold (touching circles).

The lower-frequency behavior of ε̄ is in this case metallic
since the percolating sample is characterized by a nonzero
static conductivity. This result cannot be obtained within the
Maxwell-Garnet approximation or the Bruggemann approxi-
mation, even at a qualitative level.

The square inclusions do not touch for ρ < 1. Correspond-
ingly, the low-frequency behavior of ε̄ is not metallic even
for large filling fractions, e.g., for ρ = 0.85. Interestingly, at
relatively small values of ρ, the absorption spectrum forms a
band with one main resonance and many minor resonances
that are shifted toward the shorter waves. However, as ρ

increases, the minor resonances become less pronounced. At
ρ = 0.85 the spectrum is dominated by a single Lorentzian-
type resonance. In the case of circular inclusions, the picture
is somewhat different. A single Lorentzian resonance exists at
small values of ρ and additional minor resonances develop as
ρ increases. These additional resonances are clearly visible in
the ρ = 0.64 curve shown in the left column of Fig. 10.

VIII. DISCUSSION

A few points that deserve additional discussion are ad-
dressed in this section, in no particular order.

A. Conditions of applicability

The EMT derived in this paper describes a composite
medium accurately if qh,kh � 1. There are no additional
conditions. In particular, there is no requirement that the per-
mittivity (or conductivity) of any constituent of the composite
be bounded. However, if a metallic inclusion has very small
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FIG. 11. (Color online) Same as in Fig. 10 but for square
inclusions.

losses (very high conductivity), then the effective permittivity
computed according to the formulas of this paper can have
one or more sharp spectral peaks. These peaks are caused by
electromagnetic resonances in the inclusions (which we have
not disregarded by any means) and can be seen in Figs. 5–11.
In the spectral regions where these resonances take place it
is possible that q � k. This effect is known as the resonance
wavelength shortening. Conceivably, the Bloch wave number
q can become so large due to this effect that the condition
qh � 1 would break. In this case our theory is inapplicable.

The above consideration can be construed as a justification
for the development of extended EMTs, e.g., by taking a
limit in which the conductivity of metal inclusions goes to
infinity first [23,24,27], or by using other trajectories in the
parameter space [26]. However, two important caveats exist.
First, in many known applications, EMPs of the order of
unity are required, e.g., ε̄ ≈ μ̄ ≈ −1 is required for operation
of a superlens. In this case, of course, q ≈ k, there is no
resonant wavelength shortening, and our theory applies. The
second caveat is that even if metal inclusions have very high
conductivity, the imaginary part of the obtained effective
permittivity is not small close to a resonance. This can be
clearly seen in Figs. 5–11. Therefore, there is not much hope to
obtain a resonant effect without simultaneously having strong
absorption in the medium. This observation is in agreement
with Stockman [54], although we do not pursue here a rigorous
mathematical consideration of this point.

Finally, in the case when qh is not actually small compared
to unity and our theory does not apply, it appears from
considering the exact reflection coefficients (76) and (82) that
any EMPs that can be introduced in any theory would depend
on the angle of incidence. More generally, the EMPs would

depend on the type of illumination. We conclude that the
medium is simply not electromagnetically homogeneous in
this case.

B. The case of small losses

Another problem associated with high conductivity of
metallic inclusions is numerical stability and convergence.
The simulations of Sec. VII have been performed for a
relatively large loss parameter γ /ωF = 0.1. If this number
is substantially reduced, the convergence with the truncation
order of the continued fraction jmax is expected to become
slower. A general rule of thumb is that the truncation order
should not be less than the number of clearly discernible
peaks in the function Imε̄(ω) (the absorption spectrum). This is
because the CFE truncated at the order jmax captures correctly
the first jmax moments of the above function. At sufficiently
large values of j , the three-point recursion (113) becomes
numerically unstable, as illustrated in Fig. 6. If the required
value of jmax is larger than the value of j at which the onset
of numerical instability occurs, then the CFE will not yield an
accurate numerical result.

The situation outlined above is common for all iterative
methods. For example, the convergence of the conjugate-
gradient method becomes extremely slow for small ratios
of γ /ωF ; at some point, the recurrence relations used in
the conjugate-gradient iterations also become numerically
unstable. One can hope to improve stability by noting that
the nth order tail of the CFE (112), that is, the expression

κn+1

Z − κn+2

1−···
,

is also an expansion of a certain resolvent and the instability
occurs because the parameter ε (defined in the proof of
Theorem 1, Appendix C) becomes numerically small. This can
be fixed by shifting the operator A as described in Sec. VI B.
In this way, a nested set of CFEs can be obtained, where each
CFE is numerically stable, as well as the whole expression.

C. Consideration of chirality and polarization conversion

Although the general formalism of this paper allows one
to take chiral media into consideration, all derivations that
were brought to a logical conclusion have been carried out
for the nonchiral case. This has provided a mathematical
simplification yet left untouched a wealth of interesting
physical phenomena that are associated with chirality and not
addressed in the present paper.

Even if the medium is nonchiral, it can exhibit the effect
of polarization conversion [55], which has been recently pre-
dicted and experimentally observed in deeply subwavelength
nanostructures in Ref. [13]. In Sec. IV C we have made an
assumption that the plane of incidence coincides with one of
the crystallographic planes of the medium. In this case the
s- and p-polarized waves are independent and polarization
conversion does not occur. However, the homogenization
result obtained in this paper is more general and in particular
it is applicable to any direction of incidence. If the plane
of incidence does not coincide with any crystallographic
plane, the geometry of the problem becomes similar to that
considered in Ref. [13] and polarization conversion can occur.
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In other words, the reflected and transmitted (in the case of a
finite slab) waves due to a purely s- or p-polarized incident
wave can have both s- and p-polarized components and at
least theoretically it is possible to design a medium with the
conversion coefficient close to unity.

D. Three-dimensional vs two-dimensional simulations

So far we have performed simulations only for 2D media.
One can argue that in the 3D case the size of the algebraic
problem would become so large as to render the method
unusable. Of course three-dimensional electromagnetic prob-
lems are always challenging. However, there is reason for
optimism. Namely, the formula for the effective permittivity
(33) uses the three-dimensional Maxwell-Garnett approxima-
tion as the point of departure. In other words, a nonzero
value of � provides a correction to the three-dimensional
Maxwell-Garnett formula. This happens to be true even
for two-dimensional media. However, the three-dimensional
Maxwell-Garnet formula is inaccurate in the 2D case even for
very thin cylinders, as clearly illustrated in Figs. 8 and 9. In the
numerical simulations of Sec. VII (for circular inclusions), a
lot of effort was spent to compute accurately the self-energy �

whose effect was essentially to transform the Maxwell-Garnett
from a 3D to a 2D form.

In the case of small three-dimensional inclusions one can
expect a much faster convergence with L. For example, if the
inclusions are small spheres, an accurate result is obtained
by starting with � = 0. As the spheres increase in size, the
Maxwell-Garnett approximation becomes less accurate and a
nonzero value of � must be used. However, as we have seen
in the numerical simulations, the required values of L are in
fact smaller for larger sizes of the inclusions.

Mathematically, the above considerations are related to
an interesting fact that was mentioned in Sec. VI. Namely,
the matrix element 〈aα|Q|aβ〉 is identically zero for three-
dimensional cells with cubic symmetry. Consequently, the
mean-field approximation and the continued-fraction expan-
sion must be derived for the shifted equation (108). As a result,
the mean-field formula (109) contains an overall factor of
(ρχ )2, while in the 2D simulations of Sec. VII this factor was
equal to ρχ .

IX. CONCLUSION

We can draw the following conclusions.
(i) A medium constructed from nonmagnetic components is

also nonmagnetic in the limit h → 0. This result is in line with
arguments put forth in Ref. [28], the simulations in Ref. [29],
and the more formal mathematical theory of Ref. [25].

(ii) The model of pointlike polarizable particles is ill suited
for homogenization of three-dimensional periodic composites
due to inherent divergences. The point-dipole approximation
can still be a useful theoretical tool for studying systems in
lower dimensions.

(iii) In agreement with the previous conclusion, we have
found numerically that the EMPs are sensitive to the shape of
inclusions even if the volume fraction is small. Thus circular
and square inclusions in Figs. 7 and 8 have very different
spectra of EMPs even though the volume fraction of the

inclusions is ρ = 0.16. When the volume fraction becomes
larger, the differences between the circular and the square
shapes are dramatic. Thus it is shown in Figs. 10 and 11 that
the percolation phenomenon occurs for the circular inclusions
at the volume fraction ρ = π/4 ≈ 0.79 when the inclusions
touch. The composite in this case is conducting. The composite
consisting of square inclusions of the volume fill fraction
(which do not touch) is still a dielectric.

(iv) We believe that the goal of homogenization theory
is to describe a given physical composite. Therefore, rather
than studying different limits, which correspond to different
trajectories in the parameter space, it is important to delineate
regions of the parameter space and to determine to which one of
these regions the particular composite belongs. Along similar
lines, we note that a satisfactory theory of homogenization
requires error estimates. That is, it is critical to understand how
the error in the homogenization limit depends upon contrast.
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APPENDIX A: MATHEMATICAL PROPERTIES
OF M(g) AND SOME SPECIAL CASES

From the definition (18) it follows that

M(0) = 1, M(−g) = M∗(g). (A1)

For the case of inclusions whose center of symmetry coincides
with the center of the unit cell we have M(−g) = M(g) and
therefore M(g) is real. If the center of symmetry is displaced
by a vector a, the function M(g) is transformed according to
M(g) → exp(−ia · g)M(g).

By applying the Poisson summation formula, we can derive
the following sum rules:

∑
g

M(g) =
{

1/ρ, 0 ∈ �

0, 0 /∈ �,
(A2a)

∑
g

M(−g)M(g) = 1

ρ
, (A2b)

∑
g′

M(g − g′)M(g′) = 1

ρ
M(g). (A2c)

These equations hold for inclusions of arbitrary shape. Now
define a complimentary function N (g) by

N (g) = 1

h3 − V

∫
C\�

exp(−ig · R)d3R. (A3)

Here C denotes the unit cell and C\� is the region com-
plimentary to the inclusion. It can be seen that N (g) has
all the properties of M(g) with the substitution ρ → 1 − ρ.
Additionally, the functions M(g) and N (g) are related by

ρM(g) + (1 − ρ)N (g) = δg0. (A4)
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From this we obtain the low- and high-density limits

lim
ρ→0

N (g) = lim
ρ→1

M(g) = δg0. (A5)

Of course the high-density limit is unreachable for most regular
shapes (with the exception of cubes). For example, in the case
of spheres, the maximum allowed value of ρ is π/6.

Some special cases of M(g) are given below. For an
inclusion in the shape of either a 3D sphere or a 2D circle
of radius a � h/2,

M3D(g) = 3[sin(ga) − ga cos(ga)]

(ga)3
, (A6a)

M2D(g) = 2J1(ga)

ga
, (A6b)

where J1(x) is the cylindrical Bessel function of the first kind.
For a parallelepiped or rectangle centered at the origin with all
faces parallel to the crystallographic planes and sides of length
2ax , 2ay , and 2az,

M3D(g) = sin(gxax)

gxax

sin(gyay)

gyay

sin(gzaz)

gzaz

, (A7a)

M2D(g) = sin(gxax)

gxax

sin(gyay)

gyay

. (A7b)

APPENDIX B: DETAILS OF SOME CALCULATIONS
PERTAINING TO THE CASE OF p POLARIZATION

To simplify notation we will denote (in this Appendix only)

1 + � ≡ S, ρχ ≡ κ, (B1)

so that

ηα = εb

1 + 2κSαα

1 − κSαα

. (B2)

We start by deriving Eq. (39). To this end we write the wave
vector of the p-polarized wave as q = qx x̂ + qzẑ (note that
qy = 0) and seek a nontrivial solution to Eq. (22). Multiplying
Eq. (22) by the nonzero factor q2 − k2

b and using Eq. (6), we
obtain the following equation:(

q2 − k2
b

)
F0 − κ

(
2k2

b + q2
)
SF0 + 3κq(q · SF0) = 0. (B3)

We now account for the fact that the tensors � and S = 1 + �

are diagonal in the laboratory frame and write

(SF0)α = SααF0α, α = x,y,z, (B4)

and

q · SF0 = qxSxxF0x + qzSzzF0z. (B5)

Using this result and projecting Eq. (B3) onto the y axis,
we immediately obtain F0y = 0. The two remaining Cartesian
components of F0 satisfy a system of two linear equations,
which are obtainable by projecting Eq. (B3) onto the x and
z axes. These two equations are not linearly independent
provided the dispersion relation (38) holds [otherwise, the
only solution to Eq. (B3) is trivial]. It is therefore sufficient to
consider one of these equations, say, by projecting Eq. (B3)

onto the x axis. The resultant equation is

AF0x + BF0z = 0, (B6)

where

A = (1 − κSxx)q2 + 3κSxxq
2
x − (1 + 2κSxx)k2

b, (B7a)

B = 3κSzzqxqz. (B7b)

We now simplify the expression (B7a) for the coefficient A.
Specifically, we substitute into this expression q2 = q2

z + q2
x

and k2
b = εbk

2 = εb(q2
z /ηx + q2

x/ηz), where we have used the
dispersion relation (38). This yields

A = (1 − κSxx)
(
q2

z + q2
x

) + 3κSxxq
2
x

− εb(1 + 2κSxx)

(
q2

z

ηx

+ q2
x

ηz

)
. (B8)

We now use Eq. (B2) to write the quantities ηx and ηz in
Eq. (B8) in terms of Sxx and Szz. It can be seen that the terms
proportional to q2

z cancel and we obtain

A = 3κSzz

1 + 2κSxx

1 + 2κSzz

q2
x . (B9)

We use this result and the expression (B7b) for B to compute

F0x

F0z

= −B

A
= − 1 + 2κSzz

1 + 2κSxx

qz

qx

. (B10)

Returning to the original notation in Eq. (B1), we obtain
Eq. (39).

Next we show how to derive Eq. (84) from Eq. (83).
Equation (83) contains the factor

R ≡ [kr × (1 + �)F0] · ŷ
[ki × (1 + �)F0] · ŷ

= [kr × SF0] · ŷ
[ki × SF0] · ŷ

, (B11)

which we will now evaluate. To compute the vector products
we note that ki = x̂kx + ẑkiz, kr = x̂kx − ẑkiz, and SF0 =
x̂SxxF0x + ẑSzzF0z. From this we find

R = kxSzzF0z + kizSxxF0x

kxSzzF0z − kizSxxF0x

. (B12)

Next we use the ratio F0x/F0z given by Eq. (B10), account
for the conservation of the wave vector projection onto the
interface, that is, qx = kx , and rewrite Eq. (B12) as

R = k2
xSzz(1 + 2κSxx) − kizqzSxx(1 + 2κSzz)

k2
xSzz(1 + 2κSxx) + kizqzSxx(1 + 2κSzz)

. (B13)

To proceed we need to exclude the variable k2
x from Eq. (B13).

Using the dispersion relations (38) and (52) for the refracted
and the incident waves (in the geometry considered, q2

x =
k2
⊥ = k2

x), we write

q2
z

ηx

+ k2
x

ηx

= k2 = 1

εb

k2
b = 1

εb

(
k2
x + k2

iz

)
. (B14)

Solving Eq. (B14) for k2
x , we obtain

k2
x = k2

iz

/
εb − q2

z

/
ηx

1/ηz − 1/εb

= 1 + 2κSzz

3κSzz

(
1 − κSxx

1 + 2κSxx

q2
z − k2

iz

)
,

(B15)

where we have used Eq. (B2) to obtain the second expression
from the first. We now substitute the result given in Eq. (B15)

066603-21



VADIM A. MARKEL AND JOHN C. SCHOTLAND PHYSICAL REVIEW E 85, 066603 (2012)

into Eq. (B13). The factors of 1 + 2κSzz in the numerator and
the denominator cancel and we obtain

R = (1 − κSxx)q2
z − (1 + 2κSxx)k2

iz − 3κSxxkizqz

(1 − κSxx)q2
z − (1 + 2κSxx)k2

iz + 3κSxxkizqz

. (B16)

At the next step we divide the numerator and the denominator
in Eq. (B16) by the factor 1 + 2κSxx and, accounting for the
identity

3κSxx

1 + 2κSxx

= εb

(
1

εb

− 1

ηx

)
, (B17)

obtain

R =
q2

z

ηx
− k2

iz

εb
− (

1
εb

− 1
ηx

)
kizqz

q2
z

ηx
− k2

iz

εb
+ (

1
εb

− 1
ηx

)
kizqz

. (B18)

The expressions in the numerator and denominator can now
be factorized and we arrive at the final result

R = −
(qz + kiz)

(
kiz

εb
− qz

ηx

)
(qz − kiz)

(
kiz

εb
+ qz

ηx

) . (B19)

Substitution of this expression into Eq. (83) immediately
results in Eq. (84).

APPENDIX C: PROOF OF THEOREM 1

1. An equivalence transformation

To derive the equality (110) we first introduce some
notation. Let

ε ≡ 〈φ|ψ〉, (C1a)

P ≡ |ψ〉〈φ|, (C1b)

R(Z; A) ≡ (Z − A)−1, (C1c)

B ≡ R(Z; W )W, (C1d)

σ ≡ 〈φ|R(Z; W )|ψ〉. (C1e)

Here R(Z; A) is the resolvent of the linear operator A and Z is
a complex number. In the new notation the operator T defined
in Eq. (111) takes the form

T = 1 − 1

ε
P (C2)

and Eq. (110) is rewritten as

σ = 1

Z
ε

1 − 1
ε
〈φ|R(Z; WT )W |ψ〉 . (C3)

Note that, by the first hypothesis of Theorem 1, ε 	= 0.
We now write the following chain of equalities in which the

second hypothesis of Theorem 1, namely, that R(Z; W ) exists,
has been used:

R(Z; WT ) = (Z − WT )−1 =
(
Z − W + 1

ε
WP

)−1

=
(

R−1(Z; W ) + 1

ε
WP

)−1

=
[
R−1(Z; W )

(
1 + 1

ε
R(Z; W )WP

)]−1

= ε[ε + R(Z; W )WP ]−1R(Z; W ). (C4)

Using the last equality in Eq. (C4) and the notation in
Eq. (C1d), we rewrite Eq. (C3) identically as

σ = 1

Z
ε

1 − 〈φ|(ε + BP )−1B|ψ〉 . (C5)

2. A useful identity

Below we will frequently use the following identity:

〈φ|B|ψ〉 = Zσ − ε. (C6)

The above equation is easily derived by noting that

〈φ|B|ψ〉 = 〈φ|(Z − W )−1W |ψ〉
=〈φ|(Z − W )−1(W −Z)|ψ〉+Z〈φ|(Z − W )−1|ψ〉
= −ε + Zσ. (C7a)

3. Main derivation

To proceed we need to express the operator (ε + BP )−1,
which appears on the right-hand side of Eq. (C5), in a more
tractable form. To this end consider the equation

(ε + BP )|x〉 = |b〉, (C8)

where |x〉 is viewed as the unknown and |b〉 	= 0 is an
otherwise arbitrary element of the same Hilbert space. Using
the definition of P in Eq. (C1b), we transform Eq. (C8) to

ε|x〉 + B|ψ〉〈φ|x〉 = |b〉, (C9)

project the result onto |φ〉, and find that

〈φ|x〉 = 〈φ|b〉
ε + 〈φ|B|ψ〉 . (C10)

We now use the previously derived identity (C6) on the right-
hand side of Eq. (C10) to obtain

〈φ|x〉 = 〈φ|b〉
Zσ

. (C11)

Upon substitution of Eq. (C11) into Eq. (C9) we find the
solution to Eq. (C8) or (C9), namely,

|x〉 = 1

ε

(
1 − B|ψ〉〈φ|

Zσ

)
|b〉. (C12)

Since the vector |b〉 in Eq. (C8) is arbitrary, we conclude that

(ε + BP )−1 = 1

ε

(
1 − B|ψ〉〈φ|

Zσ

)
. (C13)

This equality can be verified directly by substitution.
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4. Putting everything together

We can now put everything together and obtain Eq. (C5).
From Eq. (C13) we have

〈φ|(ε + BP )−1 = 1

ε

(
1 − 〈φ|B|ψ〉

Zσ

)
〈φ| = 〈φ|

Zσ
, (C14)

where we have again used Eq. (C6). Now we can write

〈φ|(ε + BP )−1B|ψ〉 = 〈φ|B|ψ〉
Zσ

= 1 − ε

Zσ
. (C15)

Upon substitution of this result into the right-hand side of
Eq. (C5), we find that the latter is indeed an identity and so are
Eqs. (C3) and (110).
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