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We consider the image recostruction problem for optical tomography with diffuse light. The associated
inverse scattering problem is analyzed by making use of particular symmetries of the scattering data. The
effects of sampling and limited data are analyzed for several different experimental modalities, and computa-
tionally efficient reconstruction algorithms are obtained. These algorithms are suitable for the reconstruction of
images from very large data sets.
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I. INTRODUCTION

A. Review of the problem

There has been considerable recent interest in the devel-
opment of optical methods for biomedical imaging[1–5].
The near-IR spectral region is of particular importance for
such applications in view of the presence of a “window of
transparency” in the absorption spectrum of biological tis-
sues between 700 and 900 nm. However, the propagation of
near-IR light in tissue is characterized by strong multiple
scattering which renders traditional imaging methods based
on ray optics invalid. Imaging modalities which utilize mul-
tiply scattered light in the diffusion regime are referred to as
optical diffusion tomography(ODT).

The propagation of electromagnetic radiation in strongly
scattering media can be described by the radiative transport
equation(RTE) or by the diffusion equation(DE) [6,7]. In
both approaches, information about the phase of the electro-
magnetic wave is lost and the transport of light is character-
ized by the specific intensityIsr , ŝd at the pointr flowing in
the directionŝ. This description relies on a fundamental as-
sumption — namely, that the intensity rather than the ampli-
tude of the radiation field satisfies the superposition prin-
ciple. An important consequence of this fact is that the
specific intensity may be expressed in terms of the Green’s
function of an appropriate differential or integro-differential
equation according to

Isr ,ŝd =E Gsr ,ŝ;r 8,ŝ8d«sr 8,ŝ8dd3r8d2ŝ8, s1d

where«sr , ŝd is an appropriate source function and we have
assumed that the specific intensity is stationary in time.

In a typical experiment, light is injected into an inhomo-
geneous medium by one or more optical fibers which act as
point sources. Additional fibers are employed for collection
and subsequent detection of the transmitted light. Thus, if a

source is located at the pointr s and produces a narrow col-
limated incident beam in the directionŝs and the detector
measures the specific intensity at the pointr d flowing in the
direction ŝd, the measurable quantity(up to a multiplicative
constant proportional to the total power of the source and the
efficiency of the detector) is the Green’s function
Gsr s, ŝs; r d, ŝdd. Reconstructing the optical properties of the
medium from measurements ofGsr s, ŝs; r d, ŝdd constitutes
the inverse problem of ODT.

The formulation of the inverse problem of ODT is based
on the fact thatG may be related to the optical properties of
the medium. This dependence is nonlinear[8], which signifi-
cantly complicates the inverse problem. Indeed, the Dyson
equation forG can be written in operator form as

G = G0 − G0VG, s2d

whereG0 is the Green’s function for a homogeneous medium
and V is the operator which describes the deviations of the
optical properties of the medium from their background val-
ues. From the relationG=s1+G0Vd−1G0, it can be seen that
G is a nonlinear functional ofV. It is possible to linearize the
inverse problem under the assumption thatV is small, as is
the case in many physical applications[9]. The simplest ap-
proach is to use the first Born approximation which is given
by

G = G0 − G0VG0. s3d

In this case the main equation of ODT can be formulated as

F = G0VG0, s4d

whereF=G0−G is the experimentally measurable data func-
tion. Note that other methods of linearization can also be
used, leading to an equation of the form(4) with a modified
expression forF (see Sec. II below).

Since the right-hand side of Eq.(4) contains only the
unperturbed Green’s functionG0, the properties ofG0 are of
primary importance. Although the functional form ofG0 can
be quite complicated, as in the case of the RTE, some useful
relations may be obtained from the underlying symmetry of
the problem. In a recent series of papers[10–14] we have
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exploited the translational invariance of the unperturbed me-
dium in the slab measurement geometry within the diffusion
approximation. Several reconstruction algorithms have been
proposed and numerically simulated. It was shown that tak-
ing into account translational invariance can result in a dra-
matic improvement of computational performance. In par-
ticular, it allows the reconstruction of data sets with a very
large number of source detector pairs, a situation in which
numerical reconstruction methods cannot be used due to
their high computational complexity. In Refs.[12,13] the ef-
fects of sampling and limited data were studied and it was
shown that the fundamental limit of transverse resolution is
given by the step size of the lattice on which sources or
detectors are placed. Therefore, a large number of source-
detector pairs is required to achieve the highest possible spa-
tial resolution.

Although the methods discussed in Refs.[10–14] may
appear to be distinctly different, they are, in fact, special
cases of a general family of inversion formulas which are
based on certain symmetries of the unperturbed medium. The
derivation of these results is, in some sense, independent of
the use of the diffusion approximation. Indeed, the only im-
portant property of the Green’s functionG0 which is used is
translational or rotational invariance. In a general curvilinear
system of orthogonal coordinatesx1,x2,x3 invariance with
respect to translation of one of the coordinates—say,x1—can
be mathematically expressed asG0sx1,x2,x3;x18 ,x28 ,x38d
= fsx1−x18 ;x2,x3;x28 ,x38d for some functionf. Geometries in
which translational invariance exists with respect to two co-
ordinates are of particular interest. For example, in the slab
measurement geometry discussed in Sec. III,G0 is invariant
with respect to translations parallel to the measurement
plane; in the cylindrical measurement geometry which is dis-
cussed in Sec. V,G0 is invariant with respect to rotations
about and translations parallel to the cylinder axis.

Apart from generalizations of previously obtained results
and placing them in a unified theoretical framework, this
paper contains the following new developments.

(i) We have shown that symmetry-based image recon-
struction methods are applicable not only to the DE but to
the more general RTE. An example of an integral kernel
derived from the RTE has been given.

(ii ) A novel method(applicable to both DE and RTE) of
linearization of the inverse problem has been proposed.

(iii ) The case when the sources and detectors are placed
on different lattices or when only the sources are placed on a
lattice is consistently treated.

(iv) A multiprojection imaging scheme is proposed in
which data from multiple rotations of a slab are used
self-consistently.

B. Green’s functions in radiative transport
and diffusion theory

We assume that all sources are harmonically modulated at
a frequencyv, typically in the radio-frequency range(not to
be confused with the electromagnetic frequency). This in-
cludes continuous-wave(cw) experiments withv=0 as a
special case. In general, all time-dependent quantities acquire

the usual factor exps−ivtd, and the RTE in the frequency
domain can be written as

fŝ · ¹ + sma + ms − iv/cdgIsr ,ŝd − msE Asŝ,ŝ8dIsr ,ŝ8dd2ŝ8

= «sr ,ŝd, s5d

where ma and ms are the absorption and scattering coeffi-
cients,c is the average speed of light in the medium, and
Asŝ, ŝ8d is the scattering kernel(also known as the phase
function) with the properties Asŝ, ŝ8d=Asŝ8 , ŝd and
eAsŝ, ŝ8dd2ŝ8=1 for all ŝ.

In radiative transport theory, it is customary to distinguish
the diffuse and reduced specific intensitiesId and Ir. The
latter can be defined in several different ways, which, in turn,
influences the definition ofId. The DE is obtained most natu-
rally if the reduced intensity is chosen so that

fŝ · ¹ + sm* − iv/cdgIr = «sr ,ŝd, s6d

wherem* =ma+s1−gdms, g=esŝ·ŝ8dAsŝ·ŝ8dd2s is the scatter-
ing asymmetry parameter, and the boundary conditions at the
surface]V where the incident radiation with specific inten-
sity I inc enters the scattering medium isuIrurP]V= I inc. Then
the diffuse intensityId satisfies

fŝ · ¹ + sm* − iv/cdgIdsr ,ŝd − ms8E A8sŝ,ŝ8dIdsr ,ŝ8dd2ŝ8

= «rsr ,ŝd, s7d

wherems8=s1−gdms is the reduced scattering coefficient and
A8sŝ, ŝ8d=fAsŝ, ŝ8d−gdsŝ− ŝ8dg / s1−gd, and the source term
due to the reduced intensity,«rsr , ŝd, is given by

«rsr ,ŝd = ms8E A8sŝ,ŝ8dIrsr ,ŝ8dd2ŝ8. s8d

Note that the modified scattering kernelA8sŝ, ŝ8d is still nor-
malized by the conditioneA8sŝ, ŝ8dd2s=1, but the first mo-
ment (asymmetry factor) esŝ·ŝ8dA8sŝ, ŝ8dd2s is identically
zero. We will assume everywhere below that the ballistic
component of the intensity given byIr at the location of
detectors is negligibly small and will focus on the diffuse
component descried by Eq.(7).

An inhomogeneous medium is characterized by the spa-
tial distribution masr d=ma0+dmasr d and mssr d=ms0+dmssr d.
Alternatively, we can consider the variablesm*sr d=m0

*

+dm*sr d andms8sr d=ms08 +dms8sr d as mathematically indepen-
dent. In particular, if onlyma varies (the case of absorbing
inhomogeneities), the quantitym* is also varying whilems8 is
constant. The Green’s function for the RTE,Gsr , ŝ; r 8 , ŝ8d,
satisfies the Dyson equation(2) with the operatorV given by
V=dm* −dms8A8. The operatorA8 with matrix elements
krŝuA8ur 8ŝ8l=dsr −r 8dA8sŝ, ŝ8d is assumed to be position in-
dependent. The unperturbed Green’s functionG0sr , ŝ; r 8 , ŝ8d
satisfies
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fŝ · ¹ + sm0
* − iv/cdgG0sr ,ŝ;r 8,ŝ8d

− ms08 E A8sŝ,ŝ9dG0sr ,ŝ9;r 8,ŝ8dd2ŝ9 = dsr − r 8ddsŝ− ŝ8d.

s9d

The DE is obtained by expandingIdsr , ŝd to first order in
ŝ (for nonzero modulation frequencies, an additional condi-
tion v!m*c must be fulfilled):

Idsr ,ŝd =
c

4p
u +

3

4p
J · ŝ, s10d

where

usr d =
1

c
E Idsr ,ŝdd2ŝ, Jsr d =E ŝIdsr ,ŝdd2ŝ. s11d

Then the density of electromagnetic energyu satisfies

− ¹ · fDsr d ¹ usr dg + fasr d − ivgusr d = Ssr d s12d

and the currentJ is given by

J = − D ¹ u, s13d

whereD=c/3m* anda=cma are the diffusion and absorption
coefficients, and

Ssr d =E «rsr ,ŝdd2ŝ s14d

is the source for the DE. Note that the specific choice of the
reduced intensity(6) has resulted in a simple form for the
source functionS which does not contain higher moments of
«r (compare with the analogous formulas in[6]).

The Green’s function for the DE does not depend on the
directions ŝ and ŝ8, and we denote its matrix elements by
Gsr ,r 8d. The Green’s function of the RTE for the diffuse
component of specific intensity can be related toGsr ,r 8d by
applying the formula(10) to the electromagnetic energy den-
sity usr d=eGsr ,r 8dSsr 8dd3r8. For a point unidirectional
source«sr , ŝd=dsr −r 0ddsŝ− ŝ0d and homogeneous boundary
conditionsI inc=0 one can easily find that

Ssr d = ms8Q„ŝ0 · sr − r 0d…expf− m* ŝ0 · sr − r 0dgd„r − ŝ0sŝ0 · r d

− r 0 + ŝ0sŝ0 · r 0d…, s15d

whereQsxd is the step function and we have used the con-
dition v!m*c.

Note that the same expression forSsr d is obtained by
assuming that there are no internal sourcess«=0d and using
the inhomogeneous boundary conditionsuIrurP]V= I inc where
I inc is the intensity of a collimated narrow beam entering the
medium at the pointr 0P]V in the incident directionŝ0.
By expanding the diffuse Green’s function near the point
r 8=r 0 according to Gsr ,r 8d=Gsr ,r 0d+sr 8−r 0d ·¹r8
3Gsr ,r 8dur 8=r 0 and using Eq.(10) the RTE Green’s func-
tion for the diffuse component can be expressed in terms of
the DE Green’s function as

Gsr ,ŝ;r 8,ŝ8d =
cms8,

*

4p
s1 + ,* ŝ ·¹rds1 − ,* ŝ8 ·¹r8dGsr ,r 8d,

s16d

where

,* ; 1/m* = 3D0/c. s17d

Note that Eq.(16) satisfies the general reciprocity relation
Gsr , ŝ; r 8 , ŝ8d=Gsr 8 ,−ŝ8 ; r ,−ŝd [15].

The DE(12) must be supplemented with boundary condi-
tions which, in the general case, have the form

usu + ,n̂ · ¹ udurP]V = 0, s18d

where, is the extrapolation distance[16] and n̂ is an out-
ward unit normal to the surface,]V, at the pointr . If we
assume thatr s,r dP]V, expression(16) can be simplified
with the use of Eq.(18), which Gsr ,r 8d must satisfy with
respect to both of its arguments. Namely, if the source and
detector optical fibers are oriented perpendicular to the mea-
surement surface, we haveŝ·n̂=−1 for the source and
ŝ8 ·n̂8=1 for the detector. Consequently, Eq.(16) takes the
form

Gsr ,ŝ;r 8,ŝ8dur ,r8P]V =
cms8,

*

4p
S1 +

,*

,
D2

Gsr ,r 8d. s19d

Thus, the Green’s function for the RTE has been expressed in
terms of the Green’s function for the DE and the parameters
, and ,* . Note that in the limit,→0 (purely absorbing
boundaries), the quantity on the right-hand side of Eq.(19) is
finite sinceGsr ,r 8d goes to zero as,2 for r ,r 8P]V.

Inhomogeneities of the medium are described in the DE
by spatial fluctuations of the absorption and diffusion coef-
ficients: asr d=a0+dasr d and Dsr d=D0+dDsr d. The unper-
turbed Green’s function satisfies

s− D0¹
2 + a0 − ivdG0sr ,r 8d = dsr − r 8d, s20d

and the full Green’s functionG satisfies the Dyson equation
(2) with the interaction operator given by

V = dasr d − ¹ · dDsr d ¹ . s21d

The remainder of this paper is organized as follows. In
Sec. II several methods for the linearization of the integral
equations of ODT are discussed. The formalism for the slab
measurement geometry is developed in Sec. III. Various par-
ticular cases are also consdidered, some of which have been
implemented earlier, such as Fourier and paraxial tomogra-
phy. In Sec. IV we suggest a novel multiprojection imaging
modality and derive related inversion formulas. In Sec. V the
cylindrical measurement geometry is considered. In Sec. VI
we give examples of calculating the kernels for the integral
equations considered in this paper. Finally, Sec. VII contains
a summary of the results of this paper.

II. LINEAR INTEGRAL EQUATIONS

In this section we review several methods for linearization
of integral equations for the operatorV. The first Born and
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first Rytov approximations are often used in ODT. In addi-
tion to these two methods we introduce a new approach
based on an analogy with the mean-field approximation. For
simplicity, we consider theŝ-independent Green’s function
for the DE,Gsr ,r 8d=kr uGur 8l and use Eq.(19) to relate it to
the measurable signal, but the same perturbative analysis ap-
plies to the Green’s functionGsr , ŝ; r 8 , ŝ8d.

In the coordinate representation, the first Born approxima-
tion (3) is of the form

Gsr s,r dd = G0sr s,r dd − kr suG0VG0ur dl, s22d

where

kr suG0VG0ur dl =E G0sr s,r dVsr dG0sr ,r ddd3r . s23d

Consequently, the data function defined by

fsr s,r dd = S1 +
,*

,
D2

fG0sr s,r dd − Gsr s,r ddg s24d

satisfies the linear integral equation

fsr s,r dd = S1 +
,*

,
D2E G0sr s,r dVsr dG0sr ,r ddd3r . s25d

Here the factors1+,* /,d2 is retained for the reasons dis-
cussed in Sec. I B and the constantcms8,

* /4p omitted. Equa-
tion (24) is used to calculatef from G, while in Eq.(25), f
must be regarded as given andV as unknown. Note that Eq.
(25) has the same form as Eq.(4).

The first Rytov approximation is also frequently used. In
this approximationG is given by

Gsr s,r dd = G0sr s,r ddexpF−
kr suG0VG0ur dl

G0sr s,r dd G . s26d

Equation(26) can be brought to the form(25) by using the
following definition for the data function:

fsr s,r dd = − S1 +
,*

,
D2

G0sr s,r ddlnF Gsr s,r dd
G0sr s,r ddG . s27d

Here the term inside the logarithm can be identified as the
transmission coefficient.

Another possible approach which is proposed in this pa-
per is analogous to the mean-field approximation as applied
in Ref. [17]. The mean-field approximation is obtained from
the Dyson equation(2) by fixing the position of source and
making the ansatzGsr ,r dd=asr s,r ddG0sr ,r dd. Substituting
this expression into Eq.(2) we can formally solve for
asr s,r dd and obtain:

Gsr s,r dd = G0sr s,r ddF1 +
kr suG0VG0ur dl

G0sr s,r dd G−1

. s28d

Equation(28) can be brought to the form(25) by defining the
data function according to

fsr s,r dd = S1 +
,*

,
D2G0sr s,r dd

Gsr s,r dd
fG0sr s,r dd − Gsr s,r ddg.

s29d

The application of different forms of perturbation theory, as
discussed above, to calculating the Green’s function for the
DE is illustrated in Fig. 1. We have considered a model situ-
ation of a spherical inhomogeneity of radiusR characterized
by the diffuse wave numberk2=Îa2/D2 embedded in an
infinite medium with the diffuse wave numberk1=Îa1/D1,
wherea1,2 andD1,2 are the absorption and diffusion coeffi-
cients in the background medium and inside the sphere, re-
spectively. The Green’s function can be found in this case
analytically from the scalar wave Mie solution for imaginary
wave numbers. Placing the origin at the center of the sphere,
we obtainGsr s,r dd=G0sr s,r dd−s2k1/pD1dSsr s,r dd. Here the
dimensionless relative shadowSsr s,r dd is given by

Ssr s,r dd = o
l=0

`
s2l + 1dal

4p
Plsr̂ s · r̂ dd, s30d

with al being the Mie coefficients:

al =
milsk1Rdi l8sk2Rd − i lsk2Rdi l8sk1Rd
mil8sk2Rdklsk1Rd − i lsk2Rdkl8sk1Rd

, s31d

where m=k2/k1, Plsxd are the Legendre polynomials,
i lsxd ,klsxd are the modified spherical Bessel and Hankel
functions of the first kind, the prime denotes differentiation
of functions with respect to the argument in the parentheses,

FIG. 1. The relative shadowS of a sphere of radiusR=0.4L
with its center at the origin, as a function ofk2/k1 for a source
located ats−L /2 ,0 ,zd and a detector located atsL /2 ,0 ,zd and dif-
ferent values ofz; k1L=1 (a) andk1L=2 (b).
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and the pointsr s,r d are outside of the spheresrs,rd.Rd.
In Fig. 1, S is plotted as a function of the ratiok2/k1 for

different source detector pairs. The locations of the sources
and detectors are specified in a Cartesian reference frame
sx,y,zd with the origin in the center of the sphere byr s

=s−L /2 ,0 ,zd and r d=sL /2 ,0 ,zd wherez can take different
values. The sphere radius was chosen to beR=0.4L. It can
be seen that, in most cases, the mean-field approximation is
superior to the first Rytov, and the first Rytov is, in turn,
superior to the Born. It should be kept in mind that to obtain
the contrast of the absorption or diffusion coefficient, the
value of k2/k1 must be squared. Thus a tenfold increase of
the absorption coefficient inside the sphere corresponds to
k2/k1<3.

III. PLANAR GEOMETRY

A. Integral equations in the planar geometry

The planar geometry is illustrated in Fig. 2. The medium
to be imaged is located between two parallel measurement
planes separated by the distanceL. Intensity measurements
are taken with multiple source-detector pairs denoted “S”
and “D.” We denote the coordinates of the sources and de-
tectors asr s=sxs,rsd and r d=sxd,rdd, respectively. Here
rs,d=sys,d,zs,dd are two-dimensional vectors parallel to the
measurement planes. Without loss of generality, we assume
that “transmission” measurements are performed withxs=
−L /2 andxd=L /2, while “reflection” measurements withxs
=xd=−L /2. A point inside the medium will be denotedr
=sx,rd, wherer=sy,zd is a two-dimensional vector parallel
to the measurement planes[18]. Further, it is assumed that
the source and detector optical fibers are oriented perpen-
dicular to the measurement surfaces and that their diameters
are small compared to all other physically relevant scales.
Therefore, the measured specific intensity is given, up to a
multiplicative constant, by the Green’s functionGsxs,rs, ŝs

= x̂ ;xd,rd, ŝd= ± x̂d, where plus corresponds to the transmis-
sion geometry and minus to the reflection geometry.

In each experiment, the parametersxs,xd, ŝs, and ŝd are
fixed. Therefore, we focus on the dependence of the data on

rs, rd, and v. Then, with use of one of the linearization
methods discussed in Sec. II, we obtain the integral equation

fsv,rs,rdd =E Gsv,rs,rd;r dhsr dd3r . s32d

A few remarks concerning the above equation are necessary.
First, the functionf is the experimentally measurable data
function. To determinef, it is necessary to know the full
Green’s functionGsxs,rs, ŝs;xd,rd, ŝdd as well as the unper-
turbed Green’s functionG0sxs,rs, ŝs;xd,rd, ŝdd. The latter
can be calculated analytically or, in some cases, measured
experimentally using a homogeneous medium. The exact ex-
pression forf in terms ofG andG0 depends on the linear-
ization method used. Second,hsr d is a vector representing
the deviations of optical coefficients from their background
values. Thus,

hsr d = Sdm*sr d
dms8sr d

Dsfor RTEd, hsr d = Sdasr d
dDsr d

Dsfor DEd.

s33d

Correspondingly,Gsv ,rs,rd; r d is a vector of functions that
multiply the respective coefficients. The specific form ofG
can be found ifG0 is known; we will give examples of such
calculations in Sec. VI. Here we define

Gsv,rs,rd;r d

=HsGm*sv,rs,rd;r d,Gms8
sv,rs,rd;r dd sfor RTEd,

sGasv,rs,rd;r d,GDsv,rs,rd;r dd sfor DEd.

s34d

A fundamental property of the kernelG is its translational
invariance. Mathematically, this means thatGsv ,rs,rd; r d
depends only onrs−r and rd−r rather than on the three
parametersrs, rd, andr separately, so that the simultaneous
transformationrs,d→rs,d+a, r→r+a leaves the kernel in-
variant. Therefore,Gsv ,rs,rd; r d can be written as the Fou-
rier integral

Gsv,rs,rd;r d =E d2qsd
2qd

s2pd4 ksv,qs,qd;xd

3expfiqs · sr − rsd + iqd · srd − rdg,

s35d

where k is the vector:k=skm* ,kms8
d for the RTE andk

=ska ,kDd for the DE. Note that the isotropy of space re-
quires thatk depend only on the absolute values of the two-
dimensional vectorsqs,d.

By introducing the new variablesDr, q, andp according
to rd=rs+Dr andqs=q+p, qd=p, we find that

Gsv,Dr,rs;r d =E d2q

s2pd2Ksv,Dr,q;xdexpfiq · sr − rsdg,

s36d

where

FIG. 2. Sketch of the experimental setup in the planar geometry
(transmission measurements).
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Ksv,Dr,q;xd =E d2p

s2pd2ksv,q + p,p;xdexpsip · Drd

s37d

and the integral Eq.(32) takes the form

fsv,Dr,rsd =E Gsv,Dr,rs;r dhsr dd3r . s38d

Note that in Eqs.(36)–(38) the list of formal arguments of
G andf has been changed. Thus, for example, the data func-
tion fsv ,rs,rs+Drd is replaced byfsv ,Dr ,rsd.

We now discuss the sampling of data. First, we assume
that the sources are located on a square lattice with lattice
spacingh so thatrs=hsŷny+ ẑnzd whereny and nz are inte-
gers. Second, the vectorsDr, which specify the source-
detector transverse separation, are assumed to belong to the
setS, DrPS. In particular,S can be a square lattice, com-
mensurate with the lattice of sources, with a spacingh8øh.
Another case arises when the detectors continuously occupy
the whole plane. Finally, the modulation frequencies belong
to a finite sethv j ; j =1,2, . . . ,Nvj.

We also consider an approach in whichNd different linear
combinations(with complex coefficientscij) of detector out-
puts are directly measured, allowing for the possibility of a
phased-array measurement scheme. In this case, Eqs.(36)
and (37) must be modified according to

Gsv,i,rs;r d =E d2q

s2pd2Ksv,i,q;xdexpfiq · sr − rsdg,

i = 1, . . . ,Nd, s39d

Ksv,i,q;xd =E d2p

s2pd2ksv,q + p,p;xd o
Dr jPS

cij expsip · Dr jd,

i = 1, . . . ,Nd, s40d

and the integral equation for phased-array measurements be-
comes

fsv,i,rsd =E Gsv,i,rs;r dhsr dd3r, i = 1, . . . ,Nd,

s41d

where

fsv,i,rsd = o
Dr jPS

cijfsv,Dr j,rsd, i = 1, . . . ,Nd. s42d

Note that the matrixcij does not need to be square; in the
case of a continuous setS, the summation must be replaced
by integration andcij by a vector of functionscisDrd.

B. Inversion formulas

It is convenient to define a new three-dimensional vari-
ablem=sv ,Drd or m=sv , id, with L the set of suchm, and
rewrite Eq.(42) as

fsm,rsd =E Gsm,rs;r dhsr dd3r . s43d

The integral operatorG defines a map between two different
Hilbert spacesH1 and H2. Equation(43) can be written in
Dirac notation as

ufl = Guhl. s44d

The pseudoinverse solution to Eq.(44) is given by

uhl = G+ufl. s45d

Here the pseudoinverse operatorG+ is given by

G+ = sG*Gd−1G* = G*sGG*d−1, s46d

where “ *” denotes Hermitian conjugation and the expres-
sionssG*Gd−1 andsGG*d−1 must be appropriately regularized.
The regularized singular-value decomposition(SVD) of the
pseudoinverse operator is given by

G+ = o
n

Qssn,ed
ugnlkfnu

sn
, s47d

whereQsx,ed is an appropriate regularizer,e is a small regu-
larization parameter, and the singular functionsufnl and ugnl
are eigenfunctions with eigenvaluessn

2 of the operatorsGG*

andG*G, respectively:

GG* ufnl = sn
2ufnl, G*Gugnl = sn

2ugnl. s48d

In addition, the following relations hold:

G* ufnl = snugnl, Gugnl = sufnl. s49d

To obtain the SVD for the pseudoinverse operator, we first
consider the eigenfunctions and eigenvalues of the operator
GG* . Its matrix elements in the basisumrsl are given by

kmrsuGG* um8rs8l =E d2q

s2pd2kmuM1sqdum8l

3expf− iq · srs − rs8dg, s50d

where

kmuM1sqdum8l =E
−L/2

L/2

Ksm,q;xdK*sm8,q;xddx. s51d

From Eq.(50), it can be seen that the effective dimensional-
ity of the eigenproblem can be reduced. That is, the
rs-dependent part of the eigenfunctions can be found analyti-
cally. Indeed, the ansatz

kmrsufnul =
h

2p
exps− iu · rsdkmuCnsudl, s52d

wheren andu are the indexes that label the eigenfunctions
with m ,nPL andu is a two-dimensional vector in the first
Brillouin zone(FBZ) of the lattice on which the sources are
placed, −p /høuy,uzøp /h. It can be verified thatufnul are
eigenfunctions ofGG* if uCnsudl are eigenvectors of the ma-
trix Msud defined by
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Msud = o
v

M1su + vd, s53d

where thev’s are reciprocal lattice vectors,v=s2p /hdsnyŷ
+nzẑd. We denote the eigenvalues of the non-negative defi-
nite matrix Msud by Mn

2sud and the singular values of the
problem(the eigenvalues ofGG*) by snu

2 . Then the following
relations hold:

MsuduCnsudl = Mn
2suduCnsudl, s54d

GG* ufnul = snu
2 ufnul, s55d

snu = h−1Mnsud. s56d

Note that the singular functionsufnul, Eq. (52), are normal-
ized according tokfnu u fn8u8l=dnn8dsu−u8d.

The second set of singular functions,ugnul, can be ob-
tained from the relations(49):

kxrugnul =
1

2phsnu
exps− iu · rdo

m

P*sm,u;x,rdkmuCnsudl,

s57d

where

Psm,u;x,rd = o
v

Ksm,u + v;xdexpsiv · rd. s58d

To obtain an inversion formula, according to Eq.(45) and
(47), we need to evaluate the scalar productkfnu ufl. It can
be shown by direct calculation that

kfnuufl =
h

2p
o

m

kCnsudumlf̃sm,ud, s59d

where f̃sm ,ud is the lattice Fourier transform offsm ,rsd
with respect tors:

f̃sm,ud = o
rs

fsm,rsdexpsiu · rsd. s60d

Finally, we arrive at the following inversion formula:

hsr d = o
n
E

FBZ

d2u

s2pd2

1

snu
2 Qssnu,edexps− iu · rd

3o
m,m8

P*sm,u;r dkmuCnsudlkCnsudum8lf̃sm8,ud.

s61d

The above result can be simplified by noting the relation

o
n

Qssnu,ed
uCnsudlkCnsudu

Mnu
2 = M−1sud. s62d

Using the above relation, the inversion formula(61) can be
rewritten as

hsr d = h2E
FBZ

d2u

s2pd2exps− iu · rdo
m,m8

P*sm,u;r d

3kmuM−1sudum8lf̃sm8,ud, s63d

which is our main result pertaining to the planar geometry.
Several comments on the above result are necessary.
(i) The pseudoinverse solution(63) was derived under

the assumption that the sources occupy an infinite lattice. In
practice, however, they must be restricted to a finite spatial
window. In this case, the inversion formula(63) is no longer
exact. However, if the edges of the window are sufficiently
far from the inhomogeneities of the medium, a good approxi-
mation to the pseudoinverse solution may be obtained. This
is due to the exponential decay of the Green’s functions in an
absorbing medium(for both the RTE and DE).

(ii ) The variableu is continuous, but, in practice, must be
discretized. The number of discrete vectorsu should roughly
correspond to the number of different sources used in the
experiment. As discussed above, this is a finite number
which we denote byN1. We will refer toN1 as the number of
external degrees of freedom. Next, let the variablem run
over N2 discrete points. HereN2 is the number of the “inter-
nal” degrees of freedom. A purely numerical SVD inversion
requires diagonalizing a matrix of sizeN1N2 which has com-
putational complexityO(sN1N2d3). However, the inversion
formula (63) requires onlyN1 diagonalizations of the matrix
Msud whose size isN2 (hence the terms “external” and “in-
ternal” degrees of freedom). The computational complexity
of this procedure isOsN1N2

3d, which isN1
2 times smaller than

that for the purely numerical method. For largeN1, this is an
enormous advantage. Note that one should add to the above
estimate the number of operations necessary to Fourier-
transform the data function and to sum over the variables
m ,m8 andu in Eq. (63). The computational cost of the first
task scales asOsN1 log N1d with the use of the fast Fourier
transform and, if logN1!N2

3, can be neglected. The second
task requiresOsN1N2

2d operations, which is also negligible.
(iii ) It can be seen from the inversion formula(63) that

the transverse resolution of the reconstruction is at most the
lattice steph. Therefore, it is necessary to evaluate the func-
tion hsr d=hsx,rd only at those pointsr which lie in the
source lattice. In this case, the factor expsiv ·rd in the defi-
nition of Psm ,u ;x,rd, Eq. (58), is equal to unity. Conse-
quently, P becomes independent ofr and is denoted
Psm ,u ;xd. Then the double sum in Eq.(63) is a function of
u andx only. This fact significantly improves the computa-
tional performance of the algorithm.

(iv) So far we have placed no restrictions onhsx,rd ex-
cept for square integrability. In some cases it is knowna
priori that hsx,rd is smooth. In particular, consider the case
when it is known that the Fourier transformĥsx,qd of the
function h vanishes ifuqyu.p /h or uqzu.p /h:

ĥsx,qd =E hsx,rdexpsiq · rdd2r = 0, if q ¹ FBZ.

s64d

Functions which satisfy Eq.s64d are said to be transversely
band limited to the FBZ of the source lattice. The operatorG
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maps the Hilbert space of such functions,H1
b, to the Hilbert

space of the data,H2, and can be written as

Gsm,rs;r d =E
FBZ

d2u

s2pd2Ksm,q;xdexpfiu · sr − rsdg.

s65d

Note that integration in Eq.s65d over d2u is limited to the
FBZ, in contrast to the analogous equations36d where inte-
gration overd2q is carried out over the entire Fourier space.
However, the two operatorss65d and s36d are equivalent if
they act on the spaceH1

b. This fact can be used to show that
the SVD pseudoinverse solution on the space of transversely
band-limited functionsh has the form

hsr d = h2E
FBZ

d2u

s2pd2exps− iu · rdo
m,m8

K*sm,u;xd

3kmuM1
−1sudum8lf̃sm8,ud, s66d

whereM1 is given by Eq.s51d. Thus, the summation over the
reciprocal lattice vectors that is required for the calculation
of P and M in the inversion formulas63d is avoided if it is
known thath is transversely band limited.

(v) Consider the limith→0, which corresponds to the
case of continuous data. In this case the reciprocal lattice
vectors become infinite, except forv=0. Since the functions
Ksm ,q ;xd decay exponentially withuqu, we have in this limit
Msud=M1sud and Psm ,u ;x,rd=Ksm ,u ;xd. We also use the

relation limh→0sh2f̃d=f̂, wheref̂ is the continuous Fourier
transform of the data function defined by

f̂sm,ud =E d2rsfsm,rsdexpsiu · rsd, s67d

to show that, in the limith→0, the inversion formulas63d
becomes

hsr d =E d2q

s2pd2exps− iq · rdo
m,m8

K*sm,q;xd

3kmuM1
−1sqdum8lf̂sm8,qd. s68d

This reconstruction formula was implemented inf10,11,14g.

C. Special cases

1. Fourier tomography

In this section we consider the case when the source and
detector lattices are commensurate and, further, that the lat-
tice of sources is a sublattice of the lattice of detectors. More
specifically, let rs=hssŷnsy+ ẑnszd and rd=hdsŷndy+ ẑndzd
wherensy, nsz, ndy, ndz, andhs/hd is an integershsùhdd. We
will show that the reconstruction formulas in the case con-
sidered here contain a double Fourier transform of the data
function fsv ,rs,rdd with respect to the variablesrs andrd.

First, consider the expression(37) for Ksv ,Dr ,q ;xd. For
commensurate lattices andhdøhs, it can be seen thatDr lies
in the same lattice asrd. Therefore, Eq.(37) can be rewritten
as

Ksv,Dr,q;xd =E
FBZshdd

d2w

s2pd2o
vd

ksv,q + w + vd,

w + vd;xdexpsiw · Drd. s69d

Here integration is carried out over the first Brillouin zone of
the lattice with spacinghd fFBZshddg and vd=s2p /hddsŷny

+ ẑnzd is a reciprocal lattice vector of the same lattice. Sub-
stituting Eq.(69) into Eqs.(51) and (53), we obtain the fol-
lowing expression for the elements of the matrixMsud:

kmuMsudum8l =E
FBZshdd

d2wd2w8

s2pd4 kvwuM̃suduv8w8l

3expfisw · Dr − w8 · Dr8dg, s70d

where

kvwuM̃suduv8w8l = o
vs

o
vd,vd8

kv,w + vduM̃1su + vsduv8,w8 + vd8l

s71d

and

kvpuM̃1sqduv8p8l =E
−L/2

L/2

ksv,q + p,p;xd

3k*sv8,q + p8,p8;xddx. s72d

Herevs is a reciprocal lattice vector for the lattice with spac-

ing hs, u lies in the FBZ(hs), and kvwuM̃suduv8w8l can be
viewed as the Fourier transform ofkvDr uMsud uv8Dr8l with
respect to the variablesDr andDr8.

It can be easily verified that the inverse of the matrix

Msud is given in terms of the inverse ofM̃sud by the follow-
ing formula:

kmuM−1sudum8l = hd
4E

FBZshdd
d2wd2w8kvwuM̃−1suduv8w8l

3expfisw · Dr − w8 · Dr8dg. s73d

Next we substitute Eq.(73) into the inversion formula(63)
and obtain the following result:

hsr d = shshdd2E
FBZshsd

d2u

s2pd2exps− iu · rd

3o
v,v8

E
FBZshdd

d2wE
FBZshdd

d2w8P̃*sv,w,u;r d

3 kvwuM̃−1suduv8w8lf̃sv8,u + w8,− w8d, s74d

where

P̃sv,w,u;r d = o
vs,vd

ksv,u + vs + w + vd,w + vd;xdexpsivs · rd

s75d

and
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f̃sv,qs,qdd = o
rs,rd

fsv,rs,rddexpfisqs · rs + qd · rddg.

s76d

Note that here we use the original notationf=fsv ,rs,rdd
wherers andrd are the coordinates of the source and detec-
tor, respectively.

An important feature of this inversion formula is that it
avoids numerical evaluation of the two-dimensional integral
(37) which must be performed for every value ofDr, q, and
x used in the inversion formulas. Note that the functions

P̃sv ,w ,u ; r d and M̃sud appearing in the inversion formula
(74) are expressed directly in terms of the functionsk. The

price of this simplification is that the operatorM̃ is continu-
ous (unlike the matrixM). This problem is, however, easily
avoided by replacing the integral overd2wd2w8 by a double
sum over a finite set of discrete vectorswl, l =1, . . . ,Nw:

hsr d = shshdd2E
FBZshsd

d2u

s2pd2exps− iu · rd

3o
v,v8

o
w,w8

P̃*sv,w,u;r dkvwuM̃−1suduv8w8l

3f̃sv8,u + w8,− w8d, s77d

The discrete vectorswl can be referred to as the “internal”
degrees of freedom, similar toDr. The number and choice of
w’s used in the reconstruction algorithm will influence the
depth resolution.

It is important to note that the expression(77) is no longer
an SVD pseudoinverse solution with respect to all the avail-
able datafsv ,rs,rdd. Instead, it can be shown that Eq.(77)
gives the pseudoinverse solution of the Fourier-transformed
dataf̃sv ,u+w ,−wd whereuPFBZshsd is continuous while
wPFBZshdd is discrete.

The drawback of the Fourier method is that in order to
obtain f̃sv ,u+w ,−wd, the data functionfsv ,rs,rdd must
be experimentally measured for all possible pointsrs,rd,
even if the number of discrete vectorsw is small. It can be
argued therefore that not all of the experimentally collected
data are well used by this method.

In general, the number of modulation frequencies used in
the Fourier method is arbitrary. However, two modulation
frequencies(one of which can be zero) are sufficient to si-
multaneously reconstruct both absorbing and scattering inho-
mogeneities[10,14]. If one can assume that only absorbing
inhomogeneities are present in the medium, a single modu-
lation frequency is sufficient.

The region of the outermost integration in formulas(74)
and (77) over d2u is FBZshsd. It can be formally concluded
that the transverse resolution in the reconstructed images is
determined by the step of the coarser lattice(in this case,hs).
However, the dependence of the functionsP on r through
the exponential factors expsivs·rd in conjunction with sum-
mation over discrete vectorsvs provides a possibility for su-
perresolution. In the limiting casehs→` when, essentially,
only one source is used, the transverse resolution should re-
main finite. However, multiple modulation frequenciesv

must be employed in this case to provide an additional de-
gree of freedom and make the inverse problem well deter-
mined. In general, one can expect the transverse resolution to
be somewhere in the intervalfhd,hsg.

Finally, we discuss the use of blocking functions in the
numerical implementation of reconstruction formulas(74)
and(77). The blocking functions were introduced in[12,19]
to avoid the use of redundant data. Indeed, the Fourier-
transformed data functionf̃ is periodic: f̃sv ,qs,qdd
=f̃sv ,qs+vs,qd+vdd wherevs andvd is any of the discrete
reciprocal lattice vectors defined above. Thus, if data are
taken in more than one Brillouin zone, there is a chance that
redundant(equivalent) data points will be used, which would
provide no additional information. It can be easily seen by
examining the limits of integration overd2u and d2w8 that
the argumentqs=u+w8 of the data function can be in both
the first and the second Brillouin zones of the reciprocal
lattice of sources, even in the casehs=hd. In order to force
this variable to stay in the FBZshsd, blocking functions were
introduced with the following properties:xsqs,qdd=1 is qs

PFBZshsd andqdPFBZshdd, andxsqs,qdd=0 otherwise. In

numerical implementations, the data functionf̃sv ,qs,qdd is

replaced by the productxsv ,qs,qddf̃sv ,qs,qdd. The inver-
sion formula(77) remains the pseudoinverse solution of the
Fourier-transformed data as discussed above. However, we
show below that the use of blocking functions is unnecessary
and no redundant data are used in any of the inversion for-
mulas discussed above. In fact, application of the blocking
function method results in the use of only half of all avail-
able data points.

The region of integration in the inversion formulas(74)
and (77) is illustrated in Fig. 3, where we have made the
variable transformationqs=u+w8, qd=−w8. We note that
−p /hsøuy,z,p /hs and −p /hdøwy,z8 ,p /hd. Thus, the area
of integration in Eq.(74) is the figureBHFDGE while the

FIG. 3. Illustration of integration regions in reconstruction for-
mula (74) with and without the blocking functions for the casehs

=2hd. Only z components of vectorsqs=u+w8 and qd=−w8 are
shown.
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first Brillouin zone isABCD (only z components of vectors
are shown for the specific casehs=2hd). The use of blocking
functions results in limiting the integration region toBHDG
which is completely within the first Brillouin zone. Note that
the area ofBHDG is half that ofABCD, so that half of all
available data points are discarded due to the use of blocking
functions. But because of the periodicity off̃ mentioned
above, the data in the triangleABGare equivalent to the data
in the triangleBCH, which does not have any common in-
ternal points withBHDG. Analogously, the data inDHF are
equivalent to the data inADG. Thus, integration over the
figure BHFDGE is equivalent to integration overABCD.
Therefore, the inversion formulas(74) and(77) do not utilize
any redundant data.

A reconstruction algorithm based on the inversion for-
mula (77) was implemented in[12]. In the limit hs, hd→0,
this inversion formula takes the form

hsr d =E d2q

s2pd2exps− iq · rdo
v,v8

o
p,p8

k*sv,q + p,p;xd

3kvpuM̃1
−1sqduv8p8lf̂sv8,q + p8,− p8d, s78d

where f̂sv ,qs,qdd is the continuous Fourier transform of
fsv ,rs,rdd with respect tors and rd. The continuous ver-
sion of the Fourier reconstruction algorithm was imple-
mented in[10,11].

2. Real-space tomography

This imaging modality is based on direct application of
the inversion formula(63), where the setS is assumed to
contain enough points to make the inverse problem at least
well determined. The main advantage of this method is that it
uses real-space measurements as the input data and thus uti-
lizes all experimental measurements in the most efficient
way. However, numerical evaluation of the functions
Ksv ,Dr ,q ;xd according to the definition(37) is compli-
cated, especially for large values ofuDru when the integral is
highly oscillatory.

3. Coaxial and paraxial tomography

The coaxial and paraxial measurement schemes are vari-
ants of the real-space method with the requirement that the
number of discrete vectorsDr which are used be small and
the source-detector transverse displacements satisfyuDru
!L. This inequality makes the numerical evaluation of the
oscillatory integral(37) much easier. The additional degrees
of freedom which are necessary to make the inverse problem
well defined are obtained by considering many different
modulation frequencies. Note that coaxial and paraxial to-
mography can be used only in the “transmission” geometry,
when sources and detectors are placed on different planes.

In the coaxial measurement geometry only one value of
Dr is used—namely,Dr=0. Thus, the source and detector
are always on axis. If only absorbing inhomogeneities are
present, it can be seen by counting the degrees of freedom
(two for source location plus one for modulation frequency)
that the inverse problem is well determined in this case.

However, there is a symmetry in the integral equations which
would result in the appearance of “twinning” artifacts in the
reconstructed images. Namely, the functionKsv ,0 ,q ;xd de-
fined by Eq. (37) is symmetric in x: Ksv ,0 ,q ;xd
=Ksv ,0 ,q ;−xd. Therefore, an inhomogeneityhsx,rd and its
mirror image with respect to the planex=0, h8sx,rd
=hs−x,rd would result in the same data functionf. In this
situation, the SVD pseudoinverse solution would yield(as-
suming infinite numerical precision of computations and an
infinite set of modulation frequencies) the functionh88=sh
+h8d /2. Thus, if a medium has an inhomogeneity at the
point sx0,y0,z0d, the pseudoinverse solution would show an
inhomogeneity at this point and at its mirror image
s−x0,y0,z0d. The problem is solved by using paraxial data
(with 0, uDru!L). As was shown in[13], small source-
detector separations of the order of one lattice steph are
sufficient to break the symmetry and eliminate the false im-
ages. If both absorbing and diffusing inhomogeneities are
present, at least two detectors per source are required to
make the problem well determined.

The paraxial methods are attractive due to their experi-
mental simplicity. Indeed, instead of independently scanning
the sources and detectors over the measurement planes, as is
required in both the Fourier and real-space methods, in the
paraxial measurement scheme one only needs to scan a fixed
source-detector “arm” as is illustrated in Fig. 4.

4. Plane-wave illumination scheme

An especially simple reconstruction algorithm is obtained
in the case when for each location of the source the output of
all possible detectors is summed. Experimentally, this can be
achieved with the use of a lens to either collect the outgoing
radiation or to illuminate the medium. Both approaches are
mathematically identical due to source-detector reciprocity.
Obviously, this method can be applied only in the transmis-
sion geometry, similar to the paraxial and coaxial methods.
The plane wave illumination scheme was first proposed in
[20] for time-resolved diffuse tomography; here, we show
that this method is a particular case of the phased-array mea-
surement scheme which is discussed in Sec. III A.

We will consider a point source which is scanned over the
measurement planex=−L /2 and an integrating detector at
x=L /2 which measures the quantityed2rdfsv ,rs,rdd. Ac-
cordingly, the summation in Eq.(40) over discrete values of
Dr j must be replaced by an integration overd2Dr and the
coefficientscij replaced by unity. This results in a simple

FIG. 4. Measurements scheme in the coaxial(a) and paraxial(b)
cases.
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expression forKsv ,q ;xd which is now independent of the
variablei:

Ksv,q;xd = ksv,q,0;xd. s79d

Similarly, the kernelG defined by Eq.(39) becomes indepen-
dent of i: G=Gsv ,rs; r d.

It can be seen that the numerical evaluation of the func-
tions K which is required in both real-space and paraxial
modalities is altogether avoided. Reconstructed images are
obtained by a straightforward application of the inversion
formula (63) wherem=v and, similarly to the coaxial and
paraxial imaging schemes, multiple modulation frequencies
must be employed.

IV. PLANAR GEOMETRY WITH ROTATIONS

The spatial resolution of images reconstructed in the pla-
nar geometry has been shown to be different in the directions
parallel and perpendicular to the measurement planes
[10–13]. The transverse resolution is limited by the step size
of the lattice on which the sources are placed. However, the
depth resolution is, generally, lower and is much more
strongly influenced by noise. The low depth resolution is not
a characteristic only of the planar measurement scheme. A
similar problem was observed in the cylindrical geometry
[14], and we expect that the depth resolution will remain low
for measurements taken on any closed surface. In this section
we propose a method aimed at improving the depth resolu-
tion. The method involves rotating two parallel measurement
planes around the inhomogenieties of the medium. Although
the reconstruction algorithm will be ultimately formulated in
cylindrical coordinates, the method discussed in this section
is not equivalent to taking measurements on the surface of a
cylinder (see Sec. V).

A sketch of the proposed experiment is shown in Fig. 5.

Here the medium is placed inside a cylinder of radiusL /2
whose axis coincides with thez axis. As in the previous
section, the measurements are taken on the surface of two
parallel planes which touch the surface of the cylinder and
can rotate around its axis. The space between the measure-
ment planes is filled with a homogeneous matching medium
while the inhomogeneities are located in the regionR,L /2.
It is important to emphasize that the boundary conditions are
imposed on the surface of the planes rather than on the sur-
face of the cylinder and that the inhomogeneities inside the
cylinder are assumed to not be disturbed as a result of the
rotation. We treat the measurements obtained for different
rotation anglesu as a single set of data and obtain an SVD
pseudoinverse solution for the unknown optical coefficients.

We start with reformulating the integral Eq.(43) in appro-
priate coordinates. Namely, we use cylindrical coordinates
w ,z,R such thatx=R cosw and y=R sin w. For a given
fixed orientation of the measurement planes with respect to
the medium, one can write

fsm,rsd =E
0

2p

dwE
−`

`

dzE
0

L/2

3RdRGsm,rs;w,z,Rdhsw,z,Rd, s80d

where the kernelG is given by

Gsm,rs;w,z,Rd =E dqydqz

s2pd2 Ksm,qy,qz;R coswd

3expfiqysR sin w − ysdgexpfiqzsz− zsdg.

s81d

Since the kernelG is periodic in the variablew, we can
expand it into a Fourier series according to

Gsm,rs;w,z,Rd = o
m=−`

` E dqydqz

s2pd3 asm,qy,qz,m;Rd

3expfismw − qyysd + iqzsz− zsdg,

s82d

where

asm,qy,qz,m;Rd =E
0

2p

Ksm,qy,qz;Rcoswd

3expfisqyRsinw − mwdgdw. s83d

Now we rotate the measurement planes by an angleu
(measured in the laboratory frame) around the axis of the
cylinder. The data function obviously depends onu and we
consider this variable as an additional degree of freedom.
Equation(80) is transformed according to

fsm,rs,ud =E
0

2p

dwE
−`

`

dzE
0

L/2

RdRGsm,rs,u;w,z,Rd

3hsw,z,Rd, s84d

with

FIG. 5. Sketch of the experimental setup and the coordinate
system for the planar geometry with rotations(transmission
measurements).
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Gsm,rs,u;w,z,Rd = o
m=−`

` E dqydqz

s2pd3 asm,qy,qz,m;Rd

3expfimsw − ud − iqyys + iqzsz− zsdg.

s85d

It can be seen from the structure of the kernelG that it is
translationally invariant in the variablesw andz but not iny.
Therefore, the variableys can be considered as an “internal”
degree of freedom. Ifys is sampled on an infinite lattice, we
can construct an analog of the Fourier method discussed in
Sec. III C 1 with the variableys taking the place ofDr. In
this section such a pseudoinverse solution will be con-
structed. However, a more general case can be considered
whenys does not lie on a lattice but takes a finite number of
discrete values. This approach corresponds to the real-space
method(Sec. III C 2) and is discussed in the Appendix.

Here we assume that, as in the rest of the paper, bothys
andzs lie on a square lattice with step sizeh. We also assume
that the rotation anglesu take the valuesu j =2ps j −1d /Nu,
j =1,2, . . . ,Nu. However, no assumptions about the detectors
are made at this point. The inversion formulas are derived
analogously to the case of a fixed geometry discussed in Sec.
III B. First, we calculate the matrix elements of the operator
GG* . A straightforward calculation shows that

kmrsuuGG* um8rs8u8l

= o
m=−`

` E dqydqy8dqz

s2pd4 kmqyuM̃1sqz,mdum8qy8l

3expf− isqyys − qy8ys8d − iqzszs − zs8d − imsu − u8dg,

s86d

where

kmqyuM̃1sqz,mdum8qy8l

=E
0

L/2

RdR asm,qy,qz,m;Rda*sm8,qy8,qz,m;Rd.

s87d

The eigenfunctions ofGG* , Eq. (86), are

kmrsuufuznll =
h expf− isuzzs + nudg

2pÎNu

E
−p/h

p/h

duyexps− iuyysd

3kmuyuClsuz,ndl, s88d

whereuzP f−p /h,p /hg, n=1,2, . . . ,Nu, and uClsuz,ndl are

the eigenfunctions of the operatorM̃suz,nd which has a
smaller dimensionality thanGG* and is defined by

kmuyuM̃suz,ndum8uy8l = o
k=−`

`

o
vy,vy8

o
vz

3 km,uy + vyuM̃1suz + vz,n + Nukdum8,uy8 + vy8l.

s89d

Here uy,uy8 ,uzP f−p /h,p /hg, vy,vy8, and vz are one-

dimensional reciprocal lattice vectors. We denote the eigen-

values of the non-negative definite operatorM̃suz,nd by
Ml

2suz,nd:

M̃suz,nduClsuz,ndl = Ml
2suz,nduClsuz,ndl. s90d

The singular values of the problem,suznl, are the eigenval-
ues of the operatorGG* . It can be verified by direct calcula-
tion that

GG* ufuznll = suznl
2 ufuznll, s91d

where

suznl
2 =

NuMl
2suz,nd

s2phd2 . s92d

The second set of singular functions,uguznll, can be found
from the relationsuznluguznll=G* ufuznll. The result is given
by

kwzRuguznll =
ÎNuexpf− isuzz+ nwdg

2phsuznl
o

m
E

−p/h

p/h

duy

3P̃*sm,u;w,RdkmuyuClsuz,ndl, s93d

where

P̃sm,u,n;w,z,Rd = o
k=−`

`

o
v

asm,u + v,n + Nuk;Rd

3expsiNukw + ivzzd. s94d

Next, we apply the definitions of the pseudoinverse solu-
tion (45) and(47). Omitting intermediate steps, we obtain the
following inversion formula:

hsr d =
h2

Nu
o
n=1

Nu E
−p/h

p/h

duzexpf− isuzz+ nwdg

3o
m,m8

E
−p/h

p/h

duyE
−p/h

p/h

duy8P̃
*sm,u,n;w,z,Rd

3kmuyuM̃−1suz,ndum8uy8lf̃sm8,uy8,uz,nd, s95d

where

f̃sm;u,nd = o
rs,u

fsm,rs,udexpfisu · rs + nudg s96d

is the Fourier-transformed data function.
As in Sec. III C 1 we can discretize the variableuy. In this

caseM becomes a finite matrix which can be diagonalized
by the usual methods of linear algebra. The discrete variable
uy is an “internal” degree of freedom and it is logical to
include it in the composite variablem :m=sv ,Dr ,uyd. Then
the inversion formula can be compactly written as
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hsr d =
h2

Nu
o
n=1

Nu E
−p/h

p/h

duzexpf− isuzz+ nwdg

3o
m,m8

P*sm,uz,n;w,z,RdkmuM̃−1suz,ndum8l

3f̃sm8,uz,nd. s97d

It may seem that the angular resolution of the recon-
structed images is limited by 2p /Nu since Eq.(97) contains
only factors exps−inwd with n=1,2, . . . ,Nu. However, this is
not so. In fact, the functions Psm ,uz,n;w ,z,Rd
also depend on w [see Eq. (94)]. The pro-
duct exps−inwdP*sm ,uz,n;w ,z,Rd contains the modes
exps−imwd with arbitrarym. Therefore, at least theoretically,
the angular resolution of the inversion formula(97) is not
limited, even if only a small number of rotations is used. In
the limit Nu=1, Eq. (97) becomes equivalent to the recon-
struction formula(77) for the geometry without rotations.
The first nontrivial caseNu=2 corresponds to the rotation of
the measurement planes by the anglep. Such a rotation can,
in principle, provide additional data(except for purely co-
axial measurements), but is not expected to produce a sig-
nificant increase in the depth resolution. Indeed, in theNu

=2 case thex axis is always perpendicular to the measure-
ment planes. One can expect that the depth resolution will
dramatically increase forNu=4. In this case, thex axis is
perpendicular to the measurement planes foru1=0 and u3
=p. However, it is parallel to the measurement planes for
u2=p /2 andu4=3p /2. Thus, thex andy directions become
completely equivalent, and one can expect to achieve the
fundamental resolution limit of one lattice step in all three
dimensions.

To conclude this section, we note that the analysis of the
special cases discussed in Sec. III C can be applied with
rotations, with one exception. Namely, ifNu.2, the symme-
try with respect to the planex=0 that resulted in twinned
images for the purely coaxial measurement scheme is no
longer present. Therefore, the coaxial method can be used in
conjunction with rotations if only absorbing inhomogeneities
are present. However, if both absorbing and scattering inho-
mogeneities are present, at least two detectors per source
must be used.

V. CYLINDRICAL GEOMETRY

The cylindrical geometry is illustrated in Fig. 6. The data
function is measured on an infinite surfaceR=L /2, where we
have used cylindrical coordinatesr =sw ,z,Rd. The data func-
tion can be written asf=fsv ,ws,zs,wd,zdd, where sws,zsd
characterize the location of the source andswd,zdd the loca-
tion of the detector. The data function satisfies the integral
equation

fsv,ws,zs,wd,zdd =E
0

2p

dwE
−`

`

dzE
0

L/2

RdR

3Gsv,ws,zs,wd,zd;w,z,Rdhsw,z,Rd.

s98d

The invariance of the unperturbed medium with respect to
translations along and rotations about thez axis requires that
the kernelG have a Fourier expansion of the form

Gsv,ws,zs,wd,zd;w,z,Rd

= o
ms,md

E dqsdqd

s2pd4 ksv,ms,qs,md,qd;Rdexpfiqssz− zsd

+ iqdszd − zd + imssw − wsd + imdswd − wdg. s99d

As in the case of planar measurements, we introduce the new
variablesDz, Dw, q, p, m, and n according tozd=zs+Dz,
wd=ws+Dw, qs=q+p, qd=p, ms=m+n, andmd=n. We also
introduce the composite variablem, which in the case of the
cylindrical geometry has the formm=sv ,Dw ,Dzd. Then the
kernelG acquires the form

Gsm,ws,zs;w,z,Rd = o
m
E dq

s2pd2Ksm,q,m;Rd

3exp fimsw − wsd + iqsz− zsdg,

s100d

where

Ksm,q,m;Rd = o
n
E dp

s2pd2ksv,m+ n,q + p,n,p;Rd

3exp fispDz+ nDwdg. s101d

Further derivations are very similar to those performed for
the geometry in Sec. III B. The only difference is that the
variable y which in the case of an infinite medium varies
from −` to ` is replaced byw which now varies from 0 to
2p. To construct an inversion formula, we assume thatzs is
on an infinite one-dimensional lattice with steph while ws
takes the values 2ps j −1d /Nw, j =1,2, . . . ,Nw, and consider
the eigenfunctions and eigenvalues of the operatorGG* .

FIG. 6. Sketch of the experimental setup in the cylindrical
geometry.
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Omitting intermediate calculations, we obtain the final result
(analogous to Eq.(63) for the planar geometry)

hsr d = ho
n=1

Nw E
−p/h

p/h du

s2pd2expf− isuz+ nwdgo
m,m8

P*sm,n,u;r d

3kmuM−1sn,udum8lf̃sm8,n,ud. s102d

Here

Psm,n,u;r d = o
k=−`

`

o
v

Ksm,u + v,n + Nwk;Rd

3exp fisvz+ Nwkwdg, s103d

Msn,ud = o
k=−`

`

o
v

M1sn + Nwk,u + vd, s104d

kmuM1sm,qdum8l =E
0

L/2

Ksm,q,m;RdK*sm8,q,m;RdRdR,

s105d

f̃sm,n,ud = o
ws,zs

fsm,ws,zsdexp fisnws + uzsdg. s106d

The analysis which applies to the inversion formulas in
the planar geometry is also applicable to Eq.(102) . For
example, the inverse matrixM−1sn,ud must be appropriately
regularized. The inversion formula(102) corresponds to the
real-space method in the plane geometry. However, other
special cases can be also considered. If eitherDw or Dz or
both lie on a lattice(which would require that the detectors
are placed on a lattice which is a subset of the lattice of the
sources), the Fourier method discussed in Sec. III C 1 can be
applied. The paraxial measurement scheme(Sec. III C 3)
corresponds to the case when only a few values ofDw=p
+dw andDz are used(wheredw!p andDz!L /2) in con-
junction with multiple modulation frequencies. In the coaxial
case a symmetry is present in Eq.(98) with respect to rota-
tion of hsr d by the anglep around thez axis. This symmetry
would result in the appearance of artifacts in the recon-
structed images. The problem is solved by the use of off-axis
data.

The only special case discussed in Sec. III C that cannot
be considered in the cylindrical geometry is the plane-wave
detection-illumination(Sec. III C 4) experiment. This fol-
lows from the fact that one can not integrate the detector
output over all values ofDw andDz (which will necessarily
include the location of the source). In the planar geometry
the sources and detectors can be placed on different planes
which do not intersect. This is not the case in the cylindrical
geometry. While it is possible to achieve similar mathemati-
cal simplifications by integrating the source and detector out-
puts over angles, whenzsÞzd (physically, this corresponds to
ring rather than pointlike sources and detectors), this will
lead to a complete loss of angular resolution in the recon-
structed images. Similarly, integration of the source and de-
tector outputs along lines parallel to the cylinder axis and

characterized by different angleswsÞwd will result in a com-
plete loss ofz resolution.

VI. EXAMPLES OF CALCULATING THE KERNELS

In this section we present several examples of calculating
the kernelG which appears in the integral equations(32) and
(98) and the related functionsk appearing in the Fourier
expansions ofG Eqs.(35) and(99). In the case of the DE we
use boundary conditions given by Eq.(18). We also provide
an analytic expression forG within the RTE forward model.
In the case of the RTE, we assume free boundaries(G0 is
calculated in an infinite medium) and assume that the phase

function Asŝ,s8̂d is constant(isotropic scattering).
Note that, as discussed in Sec. II, regardless of the linear-

ization method used, the integral equation that relates the
unknown operatorV to the measurable data function is given
by Eq. (25). Thus, to obtain expressions fork, we must cal-
culate the unperturbed Green’s functions for the DE or RTE
in appropriate coordinates.

A. Diffusion approximation: Planar geometry

In the planar geometry, the unperturbed Green’s function
can be written as[21]

G0sr ,r 8d =E d2q

s2pd2gsq;x,x8dexpfiq · sr8 − rdg.

s107d

Substituting this expression into the integral equation(25),
where the operatorV is defined by Eq.(21), and using the
definition of the functionsk Eq. (35), we find that k
=ska ,kDd is expressed in terms of the functionsg as

kasv,qs,qd;xd = S1 +
,*

,
D2

gsqs;xs,xdgsqd;x,xdd,

s108d

kDsv,qs,qd;xd = S1 +
,*

,
D2Fqs ·qdgsqs;xs,xdgsqd;x,xdd

+
] gsqs;xs,xd

] x

] gsqd;x,xdd
] x

G . s109d

Here an implicit dependence of the functionsg on the modu-
lation frequencyv is implied.

Thus, it is sufficient to find the functionsg which satisfy
the DE (20) and the boundary conditions(18). Substituting
Eq. (107) into Eq. (20), we find thatgsq ;x,x8d must satisfy
the one-dimensional equation

F ]2

] x2 − Q2sqdGgsq;x,x8d = −
dsx − x8d

D0
, s110d

where

Qsqd = sq2 + k2d1/2 s111d

and the diffuse wave numberk is given byk2=sa0− ivd /D0.
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It follows from Eq. (110) that the functiong is a linear
combination of exponentials exps±Qxd with coefficients de-
pending onx8. It is continuous atx=x8 but its first derivative
experiences a discontinuity at this point:

gsq;x8 + 0,x8d − gsq;x8 − 0,x8d = 0, s112d

g8sq;x8 + 0,x8d − g8sq;x8 − 0,x8d = − 1/D0. s113d

In addition, the boundary conditions(18) at x= ±L /2 read

gsq;− L/2,x8d − ,g8sq;− L/2,x8d = 0, s114d

gsq;L/2,x8d + ,g8sq;L/2,x8d = 0, s115d

where the prime denotes differentiation with respect tox.
The conditions(112)–(115) lead to the following expression
for g:

gsq;x,x8d =
f1 + sQ,d2gcoshfQsL − ux − x8udg − f1 − sQ,d2gcoshfQsx + x8dg + 2Q,sinhfQsL − ux − x8udg

2D0QfsinhsQLd + 2Q,coshsQLd + sQ,d2sinhsQLdg
. s116d

This expression can be simplified if we take into account that in Eq.(25) one of the arguments of the Green’s functions
(r or r 8) must be on the boundary. Thus, it is enough to consider the above expression in the limit when eitherx= ±L /2 or
x8= ±L /2. It can be seen that these two limits are given by the same expression—namely,

gsq;x,x8dx=±L/2 = gsq;x,x8dx8=±L/2 =
,

D0
gbsq;x,x8d, s117d

where

gbsq;x,x8d =
sinhfQsL − ux − x8udg + Q, coshfQsL − ux − x8udg

sinhsQLd + 2Q, coshsQLd + sQ,d2sinhsQLd
. s118d

Now the functionsk can be expressed in terms of the functionsgb as

kasv,qs,qd;xd = S, + ,*

D0
D2

gbsqs;xs,xdgbsqd;x,xdd, s119d

kDsv,qs,qd;xd = S, + ,*

D0
D2Fqs ·qdgbsqs;xs,xdgbsqd;x,xdd +

] gbsqs;xs,xd
] x

] gbsqd;x,xdd
] x

G . s120d

The above expressions are well defined in the limits,→0 and ,→`. For example, for purely absorbing boundaries
s,=0d and in the transmission geometry( xs=−L /2 andxd=L /2), we obtain

kasv,qs,qd;xd = S ,*

D0
D2sinhfQsqsdsL/2 − xdgsinhfQsqddsL/2 + xdg

sinhfQsqsdLgsinhfQsqddLg
, s121d

kDsv,qs,qd;xd=S ,*

D0
D2F−

QsqsdQsqddcoshfQsqsdsL/2 − xdgcoshfQsqddsL/2 + xdg
sinhfQsqsdLgsinhfQsqddLg

+
qs ·qdsinhfQsqsdsL/2 − xdgsinhfQsqddsL/2 + xdg

sinhfQsqsdLgsinhfQsqddLg G . s122d

In the opposite limit of purely reflecting boundaries, we obtain

kasv,qs,qd;xd =
coshfQsqsdsL/2 − xdgcoshfQsqddsL/2 + xdg
D0

2QsqsdQsqddsinhfQsqsdLgsinhfQsqsdLg
, s123d

kDsv,qs,qd;xd =
1

D0
2F−

sinhfQsqsdsL/2 − xdgsinhfQsqddsL/2 + xdg
sinhfQsqsdLgsinhfQsqddLg

+
qs ·qdcoshfQsqsdsL/2 − xdgcoshfQsqddsL/2 + xdg

QsqsdQsqddsinhfQsqsdLgsinhfQsqddLg G .

s124d
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B. Diffusion approximation: Cylindrical geometry

In the cylindrical geometry we use the following expan-
sion for the unperturbed Green’s function[21]:

G0sr ,r 8d = o
m=−`

` E dq

s2pd2expfimsw − w8dg

3expfiqsz− z8dggsm,q;R,R8d. s125d

We can express the functionsk appearing in Eq.(99) in
terms of the functionsg defined above as

kasv,ms,qs,md,qd;Rd = S1 +
,*

,
D2

gsms,qs;L/2,Rd

3gsmd,qd;R,L/2d, s126d

kDsv,ms,qs,md,qd;Rd

= S1 +
,*

,
D2F ] gsms,qs;L/2,Rd

] R

] gsmd,qd;R,L/2d
] R

+ Sqsqd +
msmd

R2 Dgsms,qs;L/2,Rdgsmd,qd;R,L/2dG .

s127d

Here we used the fact that for both sources and detectors,
Rs=Rd=L /2.

Upon substitution of Eq.(125) into the DE(20), we find
thatgsm,q;R,R8d must satisfy the one-dimensional equation

F 1

R

]

] R
R

]

] R
−

m2

R2 − Q2sqdGgsm,q;R,R8d = −
dsR− R8d

D0R
.

s128d

The solution to Eq.(125) is given by a combination of modi-
fied Bessel and Hankel functions of the first kind,ImsQRd
andKmsQRd, and is subject to the following conditions:

gsm,q;0,R8d , `, s129d

gsm,q;R8 + 0,R8d − gsm,q;R8 − 0,R8d = 0, s130d

g8sm,q;R8 + 0,R8d − g8sm,q;R8 − 0,R8d = − 1/D0R8,

s131d

gsm,q;L/2,R8d + ,g8sm,q;L/2,R8d = 0. s132d

The solution that satisfies the above conditions is

gsm,q;R,R8d =
1

D0
FKmsQR.dImsQR,d

−
KmsQL/2d + Q,Km8 sQL/2d
ImsQL/2d + Q,Im8 sQL/2d

3ImsQRdImsQR8dG , s133d

whereR. andR, are the greater and lesser ofR andR8. On
the measurement surface Eq.(133) becomes

gsm,q;r,L/2d = gsm,q;L/2,Rd =
,

D0
gbsm,q;Rd, s134d

where

gbsm,q;Rd =
2

L

ImsQRd
ImsQL/2d + Q,Im8 sQL/2d

. s135d

Now we can express the kernelk in terms of the simpler
functionsgb as follows:

kasv,ms,qs,md,qd;Rd = S, + ,*

D0
D2

gbsms,qs;Rdgbsmd,qd;Rd,

s136d

kDsv,ms,qs,md,qd;Rd

= S, + ,*

D0
D2F ] gbsms,qs;Rd

] R

] gbsmd,qd;Rd
] R

+ Sqsqd +
msmd

R2 Dgbsms,qs;Rdgbsmd,qd;RdG .

s137d

Again, the above expression is well defined in the limits
,→0 and,→`. Thus, for example, for absorbing bound-
aries, we have

kasv,ms,qs,md,qd;Rd = S 2,*

D0L
D2 Ims

fQsqsdRgImd
fQsqddRg

Ims
fQsqsdL/2gImd

fQsqddL/2g
,

s138d

kDsv,ms,qs,md,qd;Rd

= S 2,*

D0L
D2FQsqsdQsqddIms

8 fQsqsdRgImd
8 fQsqddRg

Ims
fQsqsdL/2gImd

fQsqddL/2g

+ Sqsqd +
msmd

R2 D Ims
fQsqsdRgImd

fQsqddRg

Ims
fQsqsdL/2gImd

fQsqddL/2gG .

s139d

In the case of reflecting boundariess,→`d, the analogous
expressions are
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kasv,ms,qs,md,qd;Rd

= S 2

D0L
D2 Ims

fQsqsdRgImd
fQsqddRg

QsqsdQsqddIms
8 fQsqsdL/2gImd

8 fQsqddL/2g
,

s140d

kDsv,ms,qs,md,qd;Rd

= S 2

D0L
D2F Ims

8 fQsqsdRgImd
8 fQsqddRg

Ims
8 fQsqsdL/2gImd

8 fQsqddL/2g

+
R2qsqd + msmd

R2QsqsdQsqdd

Ims
fQsqsdRgImd

fQsqddRg

Ims
8 fQsqsdL/2gImd

8 fQsqddL/2gG . s141d

C. Beyond the diffusion approximation

Consider Eq.(9) in an infinite medium with isotropic scat-
tering. In this case the unperturbed Green’s function can be
obtained[22] as a three-dimensional Fourier integral:

G0sr ,ŝ;r 8,ŝ8d

=E d3k

s2pd3expfik · sr 8 − r dg3 dsŝ− ŝ8d
mt − ik · ŝ

+
ms/4p

smt − ik · ŝdsmt − ik · ŝ8dS1 −
ms

k
arctan

k

mt
D4 .

s142d

The first term in the square brackets corresponds to “bal-
listic” photons and decays exponentially on the scale of
1/mt. We will ignore this term below. The second term ac-
counts for diffuse(multiply scattered) photons.

We consider the slab geometry with the measurement
planes located atx=xs=−L /2 andx=xd=L /2. By expanding
the three-dimensional vectork as k =kxx̂+q where x̂ ·q=0,
we can rewrite Eq.(142) as

G0sr ,ŝ;r 8,ŝ8d =E d2q

s2pd2gsq;x,ŝ;x8,ŝ8dexpfiq · sr8 − rdg,

s143d

where

gsq;x,ŝ;x8,ŝ8d =E
−`

` dkx

2p

expfikxsx8 − xdg

fmt − isq + kxx̂d · ŝgfmt − isq + kxx̂d ·s8̂gF1 −
ms

Îq2 + kx
2
arctan

Îq2 + kx
2

mt
G . s144d

Now recall that in Sec. I B the perturbation was defined
by V=dm* −dms8A8. However, the above expressions solution
depends onma=mt−ms andms directly. Therefore, it is more
convenient to considerma and ms as independent. For sim-
plicity, we assume thatdms=0 andv=0 (cw case). ThenV
=dm* =dma, and the integral equation relating the measurable
data todma takes the form(32) whereGsrs,rd; r d is given by
Eq. (35). In turn, kma

sqs,qd;xd is expressed in terms of the

functionsgsq ;x, ŝ;x8 ,s8̂d, Eq. (144), as

kma
sqs,qd;xd =E gsqs;xs,x̂;x,ŝdgsqd;x,ŝ;xd,x̂dd2s.

s145d

The angular integral in Eq.(145) can be evaluated with the
use of

E d2s

smt − iq1 · ŝdsmt − iq2 · ŝd

=
4p

Îsq1 3 q2d2 + mt
2sq1 − q2d2

3Farctan
Îsq1 3 q2d2 + mt

2sq1 − q2d2

q1 ·q2 + mt
2

+ pQs− q1 ·q2 − mt
2dG , s146d

whereQsxd is the step function.

VII. SUMMARY

We have presented a general theoretical framework for
image reconstruction methods in optical diffusion tomogra-
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phy. These methods require that the data are measured on
surfaces with translational or rorational invariance with re-
spect to one or more generalized coordinates. This approach
can have the effect of dramatically improving computational
efficiency, allowing the use of extremely large data sets.

It should be noted that the family of image reconstruction
methods described in this paper is only applicable to regular
measurement geometries, such as the slab or cylinder. Prob-
lems involving irregular boundaries or boundaries with com-
plicated shape cannot be treated using these methods. Such
problems should be solved by means of numerical methods.
Unfortunately, these methods preclude the treatment of large
data sets(more than 103–104 data points) due to high com-
putational complexity.

If, however, the boundaries are relatively simple, taking
account of translational invariance leads to a reduction in
computational complexity. In particular, it allows the re-
placement of the problem of diagonalizing a matrix of size
N1N2 whereN1 is the number of “external” degrees of free-
dom andN2 the number of “internal” degrees of freedom to
the problem of diagonalizingN1 matrices of sizeN2 each.
The computational complexity of the second problem is
smaller by a factor ofN1

2. In many problems,N1 is the num-
ber of sources used to illuminate the medium. For example,
if the sources are located on a 1003100 lattice, the compu-
tational complexity is smaller by a factor of 108. The possi-
bility of utilizing extremely large data sets suggests that the
highest possible spatial resolution can be achieved in simple
measurement geometries.

We have also presented the theory of multiprojection
ODT where all data are treated self-consistently. An SVD
pseudoinverse is obtained with all symmetries intrinsic to the
multiprojection measurement scheme. It is expected that
multiple projections can further improve image quality due
to the mutual interchange of the “depth” and “transverse”
directions.
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APPENDIX: INVERSION FORMULAS FOR THE PLANAR
GEOMETRY WITH ROTATIONS WHEN THE ys

VARIABLE IS NOT ON A LATTICE

An approach to treating the variableys alternative to the
one used in Sec. IV can be adopted. Namely, assume thatys
is not sampled on a lattice, but is in some finite set. Then we
can viewys as another “internal variable” and perform inte-
gration overdqy in Eq. (85) to obtain

Gsm,ys,zs,u;w,z,Rd

= o
m=−`

` E dqs

s2pd2Asm,ys,qz,m;Rd

3expfimsw − ud + iqzsz− zsdg, sA1d

where

Asm,ys,qz,m;Rd =E dqy

2p
asm,qy,qz,m;Rdexps− iqyysd.

sA2d

Since no translational invariance in the directiony is present,
it is logical to includeys in the list of “internal” variables and
write m=sv ,Dr ,ysd. Then Eq.(A1) can be compactly rewrit-
ten as

Gsm,zs,u;w,z,Rd = o
m=−`

` E dq

s2pd2Asm,q,m;Rd

3expfimsw − ud + iqsz− zsdg. sA3d

But this expansion has exactly the same form as the expan-
sion of the kernelG, Eq. (100) , which was obtained in cy-
lindrical geometry with the only distinction that
Asm ,q,m;Rd in Eq. (A3) is replaced byKsm ,q,m;Rd in Eq.
(100) and the list of “internal” variables collected inm is
different in these two cases. Nevertheless, it is straightfor-
ward to show that the reconstruction formulas(102)–(106)
obtained in cylindrical geometry apply in the case of a ro-
tated geometry with the substitutionK→A. It should be kept
in mind that the functionsK and A are different since they
are obtained by different transformations of respective func-
tions k. The latter are also different in the planar and cylin-
drical cases, as discussed in Sec. VI.
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