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Inverse scattering for the diffusion equation with general boundary conditions
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We consider the inverse scattering problem for the diffusion equation. A solution to this problem in the form
of an explicit inversion formula is derived. Computer simulations are used illustrate our approach in model

systems.
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The study of the propagation of diffuse light has attracted U+/n-Vu=0 )

considerable attention in the context of imaging of highly-
scattering systemd—5]. Such systems are ubiquitous in na- 4. specified on the planes=0 andz=L, N is a unit out-

ture and include biological tissue, the ocean, clouds, and ingarq normal, and” denotes a parameter with the dimensions
terstellar media. As a result, the inverse scattering problergs 5 length. The case of purely absorbing boundaries is ob-

for the diffusion equation is of fundamental importance. Theineq when/=0, while reflecting boundaries are obtained
physical problem under consideration is the reconstruction of han /= oo

the spatial distributiqn of the optical absorption and diffusion The average power at the pointhat flows in the direc-
coefficients of an object from a set of measurements takenon ~. . A N )
its surface. The equations describing the scattering of diffusion Sis given byl (r,_s) - (1/4”)((:9_3135' Vu), wherec IS
ing photons from fluctuations in the absorption and diffusionthe speed .Of diffusing particles in a nonscattering medium
coefficients are in general nonlinegs]. Consequently, nu- (SPeed of light for photong9,10]. We can now use Eq2)

merical reconstruction of these quantities is an extremel);0 obtain the intensity s that is measured by detectors lo-

complicated and computationally expensive matter. A procet21€d 0n one of the boundary surfaces that is expressed as
P P y &xp P s=(c/4m)(1+/*1/)u, where /*=3D/c. The inverse

dure based on linearization of the forward scattering problenll .
is often employed instedd,8]. The computational complex- problem can be formulated as the reconstructior(@f and

ity of the resultant image reconstruction algorithm, however2(r) given a set of measurements la{ps,2s;pq,24) Pro-

still limits its practical utility. duced by sources with c.oordlnaueg(ps,zs) and measured
In this Rapid Communication we present an explicit in-PY detectors with coordinateg=(pq4,2). _

version formula for the linearized inverse scattering problem W& now present the derivation of the inversion formula.

for the diffusion equation with general boundary conditions."e rewrite Eq.(1) in Dirac notation as

Our results are remarkable in three regards. First, the inver- _

sion formula leads directly to an imageg reconstruction algo- au®)+Hlu®)=IS(1), @

rithm that is computationally efficient and stable in the pres\yhere the energy density is given hy(r,t)={(r|u(t)),

ence of added noise. Second, the incorporation of generg t)=(r|s(t)), andH=—V-D(r)V + a(r). Equation(3)

boundary conditions is of considerable importance for exis the Schidinger equation in imaginary time wheee(r)

perimental studief5]. Third, although the main focus of this g1 pe interpreted as the interaction potential Brfd) as a

work is the inverse scattering problem for diffuse light, theposition-dependent mass. The time evolution|wft)) can

results presented are, in fact, very general. Similar equationgs gescribed by the Green’s functi@(t) = O (t)exp(—Ht),

describe, for example, the propagation of heat in a body Witr@(t) being the unit step function, according to
fluctuating thermal conductivity, or the flow of steady current

in a body with fluctuating electrical conductivity. In both % ) ) )
situations, the proposed solution to the inverse scattering |U(t)>:ﬁwG(t—t )|S(t"))dt. 4
problem can be used to reconstruct the distribution of these

conductivities from measurements taken on the boundary ofhe Green's functiorG(t) describes the results of a time-

the ObIECt-_ o _ o resolved experiment. Alternatively, we can perform measure-
We begin by considering the propagation of diffusing par-ments with a source that is harmonically modulated at the

ticles (photons in the case of lightvhose energy density frequencyw. In this case, the intensitys is obtained from

u(r,t) obeys the diffusion equation the Fourier-transformed Green's functiorG(w)= 1/(H
—iw), and the resulting solution is given bju(w))
au(r,)=V-(D(N)Vu(r,H))—a(nur,H)+S(r,t), 1) =GC(w)|[S(w)).
It is conventient to decompose(r) and D(r) as «a(r)
N = agt+da(r) andD(r)=Dgy+ éD(r), whereay andDg are
whereD(r) and a(r) are the position-dependent diffusion the packground values of the respective coefficients, and rep-
and absorption coefficients, ar®{r,t) is the source power resent the Hamiltonian in the form

density. We consider a slab geometry in which mixed bound-
ary conditions of the form H=Hy+V, ®)
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Ho=—DoV?+ ayo, (6) /+/*\?09(0s:2s,2) 39(dq32.2q)
kp(Qs,0dZs,24,2) = D 9z 9z
0
V=-=V-6D(r)V+Sa(r). (7)
The unperturbed Green’s functidBy(w)=1/(Ho—iw) can +0s°0q9(0s325,2)9(da32,29) |- (14

be calculated analytically given the boundary conditi@®)s
and the complete Green’s function satisfies the Dyson equajote that in order to obtain E¢12), an integration by parts

tion G=Go—GoVG. _ _ was performed to evaluate the action of the operator
The chgnge.m the measured |nten.5|ty.due to the presencey . spv. Also, the expressiofl1) for g is valid as long as
of fluctuations ina andD, Alg(rs.rg), is given by at least one of the variables in the pairs,g) or (z,z) is on

k2 the boundary surface, which is evidently the case in Egs.
CS(@) (), 7 (13 and(14)

Alg(rs.rg) == —| 1+ —| (r/Go=Glry). (8 - | |

™ / We now change variables according dg=p+q/2, qq

=p—q/2, where g and p are two independent two-

The extra factor of (3 /*//) can be explained by the gen- i\ oncional vectors and rewrite EQ2) as

eral reciprocity of sources and detectptd]. Next, we use

perturbation theory to expre€sto leading order iV asG

=Gy— GoVGy. We define thelata functiong(rs,r4), which $(p+al2p—al2)= J d3r exp(—iq- p)[ ka(P,0;2) (1)

is proportional to the experimentally measurable quantity

Alg(rg,rg), as +xp(p,g;2)oD(r)], (15

14 _*) 2<rs|GOVGO|rd>- ) yvith the _dependence an and_zd of all quantities under the

/ integral implied. Now we notice that the transverse part of

Eq. (15) is a Fourier transform that can be inverted sepa-
An equivalent, and more convenient description can beately from the longitudinal part. To this end we mf(tg,z)

obtained in the two-dimensional basis of the fotmz,) =[e '9Psa(p,z)d’p, b(q,z)=fe 9PsD(p,z)d%p and ar-

(a=s,d), where(r|q.z.)= 8(z—z,)expld.- p) andg, is a  rive at the equation

two-dimensional vector parallel to the plame 0. Note that

this description leads to Fourier transforming the data func- L )

tion with respect tgps and py. The matrix elements of the b(pFal2p=ai2)= JO [xa(p.0i2)a(q,2)

unperturbed Green'’s function in this basis can be readily ob-

tained: +xp(p,g;2)b(q,2)]dz.  (16)

d)(rsird):

2/ For fixedq, Eq. (16) defines an integral equation fa(q,z)

2
(0525 Go(w)|Quza) = Dy 8(ds—09a)9(ds;Zs,Zq), and b(qg,z). Recall that wherf and g belong to different
(10) Hilbert spaces, a solution to the equatidh= g is defined to
be a minimizer of|Af—g||. Among all such solutions it is

9(0;2s,2q) conventional to choose the one with minimum norm. This
. ) so-called generalized solution is unique and may be shown to
:5'”WQ(L_|ZS_Zd|)]+Q/ costQ(L —|zs—z4))] be given byf =A* (AA*) 1g whereA* denotes the adjoint
sin + ” CcOoS +(Q/)“sin of the operatoA [12]. Then it is readily seen that the mini-
inh(QL)+2Q/ coshQL)+(Q/)?sinQL) f th [12]. Then it i dil hat the mini
(11) mum L? norm solution to Eq(16) has the form
whereQ=Q(q) = (¢?+k3)*? and the wave number is given a(q Z):f d2pd2p’ k% (p.q:2)(p| T~X(q)|p’
by k3= (a—iw)/D,. Combining(9), (10), and(7), we ob- A (el P
tain the following integral equation that relates the unknown X (p' +a/2,p" —al2), (17)

functionséa, 8D to the data functior in the|q, ,z,) basis:

— 2nAd2n! o * . -1 ’
¢(qs,qd)=f & exfi(Gg—q0) - p] b(q,z)—f d*pdp’ k5 (p.a:2)(PIT ™ H(a)p")

X[ ka(Qs,0q+25,2q;2) Sa(T) X ¢(p'+0a/2p'—al2), (18)
+ kp(Qs,0d,2Zs,24;2) SD(r)], (120  Where the matrix elements d¥(q) are given by the overlap
integral
where L
F+/*\? <I0|T(q)||0’>=f0[KA(p,q;Z)K,’:(p’,q;z)
ka(Os,0s,Zs,24;2) = Be 0(0s:25,2)9(0q2,24),
(13 +xp(p.9;2)kp(p',q;2)]dz. (19
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It may be verified by direct substitution that Ed47) and z=0.5L z=0.5L z=0.5L
(18) satisfy Eq.(16). Note that the inversion formulad?)
and (18) can be easily generalized to the case of multiple
modulation frequencies by inserting additional integrations
over frequencies and taking into account the implicit depen-
dence of all quantities in the integrals an

Finally, we apply the inverse Fourier transform in the
transverse direction to arrive at our main result:

z=0.6L z=0.6L z=0.6L

qu iq- 2 27, K
5a(r)=f(2 )ze‘“’f d°pd°p’ka(p.9;2)

w

X(p|IT ) |p’)p(p' +al2p’ —al2), (20)

d’q |
5D(r)=f (Zw)ze'q'pf d?pd®p’ k}(p.q;2) 2=0.7L 2=0.7L

X(p|IT Ha)|p")p(p' +al2p’ —al2), (21)

which are the required inversion formulas.

Several comments on Eg&0) and (21) are necessary.
First, the solution we have constructed to the inverse prob-
lem is the minimumL? norm solution to Eq(12) given the

data functiong(gs,qq). This solution always exists and is  FiG. 2. Tomographic images of three point absorbers located in
unique [12]. Note that the uniqueness of solutions to thethez=0.5_ plane for different levels of noiseand different depths
nonlinearinverse problem is a different mattgs]. Existence  z (a) n=0 ande=10"*"; (b) n=1% ande=10"%; (c) n=5% and

and uniqueness of solutions to tlieear inverse problem is ¢=10"8. The field of view is 2 X 2L. A linear color scale is em-
guaranteed by the results [df3]. Second, the inversion for- ployed.

mulas(20) and(21) employ four-dimensional data to recon-

struct two unknown three-dimensional functions. If only oneresult in a loss of image quality. A single frequency is suffi-
modulation frequency is employed the problem is underdeeient for reconstructing eitheta or 5D alone, while at least
termined and simultaneous reconstructiorfafand 6D can  two frequencies are necessary for simultaneous reconstruc-
tion. Third, in practice one must deal with discrete data. The
discretized problem is, obviously, underdetermined and in
principle allows multiple solutions. Although these solutions
will satisfy Eq.(12) and will minimize the discrepancy norm,
the inversion formulas we have constructed will pick from
among these minimizers the unique solution which has the
smallestL? norm. To obtain this solution, the integrations in
Eqgs.(20) and(21) must be replaced by summations over the
discrete values op andqg. In addition the operatoll be-
comes a finite matrix that can be diagonalized by the usual
methods of linear algebra. Note that numerical inversion of
T(qg), whose determinant is extremely small, requires regu-
larization. This may be achieved by setting

i
Albssor

bin'g("y
T Y= ®(g(q,)_e)lc(q.q )){c(a.q")]
. q’

o%(9,9')

, (22

where|c(q,q’)) are eigenvectors of (q) and € is a small

B W regularization parameter. The optimum valueeois deter-

. Reffécting mined by several factors including the level of noise in the

o4 06 05 1 02 o4 06 o5 1 data. The regularization parameter also serves to set the spa-

tial resolution of the reconstruction. Fourth, it is important to

note that an image reconstruction algorithm based on Egs.
FIG. 1. Reconstruction of a point absorber that is located af20) and(21) has, with the use of the fast Fourier transform

z/L=0.2 (solid line), Z/L=0.5 (long dash, andzZ/L=0.8 (short ~t0 compute ¢(qs,qq), computational  complexity

dash. The reconstructed value éf is normalized by its maximum O(M logM), where M is the number of source-detector

value. pairs. This should be compared with tB¢M?3) complexity

Reflecting

z/L z/L

035601-3



RAPID COMMUNICATIONS

VADIM A. MARKEL AND JOHN C. SCHOTLAND PHYSICAL REVIEW E 64 035601R)

of a direct numerical inversion of the integral equatias). ments of sources and detectdian the same or different
Finally, the inversion formulas presented here may be useplanes. The plots in Fig. 1 represent the reconstructed value
as the basis for an alternative nonlinear reconstruction algmf Sa along the line perpendicular to the=0 plane and
rithm via a simplified Newton’s metho[,14] in which the  intersecting a single absorbing inhomogeneity. Evidently, the
generalized inverse of the functional derivative of the nonest resolution is obtained here with absorbing boundary
linear forward scattering operator is computed from Eqsconditions when the sources and detectors are located on
(20) and(21). _ . different planes.

To illustrate the use of the inversion formulas, we have 14 demonstrate the robustness of the inversion procedure
numerically simulated the reconstruction 8& for one or  j the presence of noise, we present three tomographic slices
more point absorbers of the fordu(r) = aod(r—ro) under g0 51,205 z=0.6L, andz=0.7L with the forward
the assumption thatD =0. The simulations were performed 415 calculated for three point absorbers located in the plane
with the single modulation frequeney= 0 for three types of —0.5. as shown in Fig. 2 and absorbing boundary condi-
boundary conditions: purely absorbing, purely reflecting, and;;ns  Gaussian noise of zero mean was added to the data
free. The forward date(ds,qq) Was calculated analytically, ¢,tion #(0s,q4) at various levels as indicated.
by replacingda in Eq. (15) by one or more delta functions. " conclusion. we have described an inverse scattering
The numerical integrations in EqR0) and(21) were carried method for the ’diffusion equation with general boundary
out by choosingj to lie on a rectangular grid with spacing ¢qngitions. We emphasize that our results are of general
Aq and inside the circlég|<MAq. The values of the pa- physical interest, since they are applicable to inverse scatter-

-1l _
rameters werdq=L""=2m/k, andM =40. We also used g with any multiply-scattered wave in the diffusion regime.
M discrete wave vectors which were chosen on a line rang-

ing in length from 0 toM Aq. We wish to thank Dr. P. Scott Carney for valuable discus-
In Fig. 1 we illustrate the depth resolution for the threesions. This research was supported in part by a grant from
types of the boundary conditions and two possible arrangethe NIH.
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