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Inverse scattering for the diffusion equation with general boundary conditions
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We consider the inverse scattering problem for the diffusion equation. A solution to this problem in the form
of an explicit inversion formula is derived. Computer simulations are used illustrate our approach in model
systems.
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The study of the propagation of diffuse light has attrac
considerable attention in the context of imaging of high
scattering systems@1–5#. Such systems are ubiquitous in n
ture and include biological tissue, the ocean, clouds, and
terstellar media. As a result, the inverse scattering prob
for the diffusion equation is of fundamental importance. T
physical problem under consideration is the reconstructio
the spatial distribution of the optical absorption and diffusi
coefficients of an object from a set of measurements take
its surface. The equations describing the scattering of dif
ing photons from fluctuations in the absorption and diffus
coefficients are in general nonlinear@6#. Consequently, nu-
merical reconstruction of these quantities is an extrem
complicated and computationally expensive matter. A pro
dure based on linearization of the forward scattering prob
is often employed instead@7,8#. The computational complex
ity of the resultant image reconstruction algorithm, howev
still limits its practical utility.

In this Rapid Communication we present an explicit
version formula for the linearized inverse scattering probl
for the diffusion equation with general boundary condition
Our results are remarkable in three regards. First, the in
sion formula leads directly to an image reconstruction al
rithm that is computationally efficient and stable in the pr
ence of added noise. Second, the incorporation of gen
boundary conditions is of considerable importance for
perimental studies@5#. Third, although the main focus of thi
work is the inverse scattering problem for diffuse light, t
results presented are, in fact, very general. Similar equat
describe, for example, the propagation of heat in a body w
fluctuating thermal conductivity, or the flow of steady curre
in a body with fluctuating electrical conductivity. In bot
situations, the proposed solution to the inverse scatte
problem can be used to reconstruct the distribution of th
conductivities from measurements taken on the boundar
the object.

We begin by considering the propagation of diffusing p
ticles ~photons in the case of light! whose energy density
u(r ,t) obeys the diffusion equation

] tu~r ,t !5“•„D~r !“u~r ,t !…2a~r !u~r ,t !1S~r ,t !, ~1!

where D(r ) and a(r ) are the position-dependent diffusio
and absorption coefficients, andS(r ,t) is the source powe
density. We consider a slab geometry in which mixed bou
ary conditions of the form
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u1l n̂•“u50, ~2!

are specified on the planesz50 andz5L, n̂ is a unit out-
ward normal, andl denotes a parameter with the dimensio
of a length. The case of purely absorbing boundaries is
tained whenl 50, while reflecting boundaries are obtaine
when l 5`.

The average power at the pointr that flows in the direc-
tion ŝ is given byI (r ,ŝ)5(1/4p)(cu23D ŝ•“u), wherec is
the speed of diffusing particles in a nonscattering medi
~speed of light for photons! @9,10#. We can now use Eq.~2!
to obtain the intensityI S that is measured by detectors lo
cated on one of the boundary surfaces that is expresse
I S5(c/4p)(11l * /l )u, where l * [3D/c. The inverse
problem can be formulated as the reconstruction ofa(r ) and
D(r ) given a set of measurements ofI S(rs ,zs ;rd ,zd) pro-
duced by sources with coordinatesr s5(rs ,zs) and measured
by detectors with coordinatesrd5(rd ,zd).

We now present the derivation of the inversion formu
We rewrite Eq.~1! in Dirac notation as

] tuu~ t !&1Huu~ t !&5uS~ t !&, ~3!

where the energy density is given byu(r ,t)5^r uu(t)&,
S(r ,t)5^r uS(t)&, andH52“•D(r )“1a(r ). Equation~3!
is the Schro¨dinger equation in imaginary time wherea(r )
can be interpreted as the interaction potential andD(r ) as a
position-dependent mass. The time evolution ofuu(t)& can
be described by the Green’s functionG(t)5Q(t)exp(2Ht),
Q(t) being the unit step function, according to

uu~ t !&5E
2`

`

G~ t2t8!uS~ t8!&dt8. ~4!

The Green’s functionG(t) describes the results of a time
resolved experiment. Alternatively, we can perform measu
ments with a source that is harmonically modulated at
frequencyv. In this case, the intensityI S is obtained from
the Fourier-transformed Green’s function,G(v)51/(H
2 iv), and the resulting solution is given byuu(v)&
5G(v)uS(v)&.

It is conventient to decomposea(r ) and D(r ) as a(r )
5a01da(r ) andD(r )5D01dD(r ), wherea0 andD0 are
the background values of the respective coefficients, and
resent the Hamiltonian in the form

H5H01V, ~5!
©2001 The American Physical Society01-1
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H052D0¹21a0 , ~6!

V52“•dD~r !“1da~r !. ~7!

The unperturbed Green’s functionG0(v)51/(H02 iv) can
be calculated analytically given the boundary conditions~2!,
and the complete Green’s function satisfies the Dyson eq
tion G5G02G0VG.

The change in the measured intensity due to the pres
of fluctuations ina andD, DI S(r s ,rd), is given by

DI S~r s ,rd!5
cS0~v!

4p S 11
l *

l
D 2

^r suG02Gurd&. ~8!

The extra factor of (11l * /l ) can be explained by the gen
eral reciprocity of sources and detectors@11#. Next, we use
perturbation theory to expressG to leading order inV asG
5G02G0VG0. We define thedata functionf(r s ,rd), which
is proportional to the experimentally measurable quan
DI S(r s ,rd), as

f~r s ,rd!5S 11
l *

l
D 2

^r suG0VG0urd&. ~9!

An equivalent, and more convenient description can
obtained in the two-dimensional basis of the formuqaza&
(a5s,d), where^r uqaza&5d(z2za)exp(iqa•r) and qa is a
two-dimensional vector parallel to the planez50. Note that
this description leads to Fourier transforming the data fu
tion with respect tors and rd . The matrix elements of the
unperturbed Green’s function in this basis can be readily
tained:

^qszsuG0~v!uqdzd&5
~2p!2l

D0
d~qs2qd!g~qs ;zs ,zd!,

~10!

g~q;zs ,zd!

5
sinh@Q~L2uzs2zdu!#1Ql cosh@Q~L2uzs2zdu!#

sinh~QL!12Ql cosh~QL!1~Ql !2 sinh~QL!
,

~11!

whereQ[Q(q)5(q21k0
2)1/2 and the wave number is give

by k0
25(a02 iv)/D0. Combining~9!, ~10!, and~7!, we ob-

tain the following integral equation that relates the unkno
functionsda, dD to the data functionf in the uqa ,za& basis:

f~qs ,qd!5E d3r exp@ i ~qd2qs!•r#

3@kA~qs ,qd ,zs ,zd ;z!da~r !

1kD~qs ,qd ,zs ,zd ;z!dD~r !#, ~12!

where

kA~qs ,qs ,zs ,zd ;z!5S l 1l *

D0
D 2

g~qs ;zs ,z!g~qd ;z,zd!,

~13!
03560
a-

ce

y

e

-

-

n

kD~qs ,qd ,zs ,zd ;z!5S l 1l *

D0
D 2F]g~qs ;zs ,z!

]z

]g~qd ;z,zd!

]z

1qs•qdg~qs ;zs ,z!g~qd ;z,zd!G . ~14!

Note that in order to obtain Eq.~12!, an integration by parts
was performed to evaluate the action of the opera
2“•dD“. Also, the expression~11! for g is valid as long as
at least one of the variables in the pairs (zs ,z) or (z,zd) is on
the boundary surface, which is evidently the case in E
~13! and ~14!.

We now change variables according toqs5p1q/2, qd
5p2q/2, where q and p are two independent two
dimensional vectors and rewrite Eq.~12! as

f~p1q/2,p2q/2!5E d3r exp~2 iq•r!@kA~p,q;z!da~r !

1kD~p,q;z!dD~r !#, ~15!

with the dependence onzs andzd of all quantities under the
integral implied. Now we notice that the transverse part
Eq. ~15! is a Fourier transform that can be inverted sep
rately from the longitudinal part. To this end we puta(q,z)
5*e2 iq•rda(r,z)d2r, b(q,z)5*e2 iq•rdD(r,z)d2r and ar-
rive at the equation

f~p1q/2,p2q/2!5E
0

L

@kA~p,q;z!a~q,z!

1kD~p,q;z!b~q,z!#dz. ~16!

For fixedq, Eq. ~16! defines an integral equation fora(q,z)
and b(q,z). Recall that whenf and g belong to different
Hilbert spaces, a solution to the equationA f5g is defined to
be a minimizer ofiA f2gi . Among all such solutions it is
conventional to choose the one with minimum norm. Th
so-called generalized solution is unique and may be show
be given byf 5A* (AA* )21g whereA* denotes the adjoin
of the operatorA @12#. Then it is readily seen that the min
mum L2 norm solution to Eq.~16! has the form

a~q,z!5E d2pd2p8kA* ~p,q;z!^puT21~q!up8&

3f~p81q/2,p82q/2!, ~17!

b~q,z!5E d2pd2p8kD* ~p,q;z!^puT21~q!up8&

3f~p81q/2,p82q/2!, ~18!

where the matrix elements ofT(q) are given by the overlap
integral

^puT~q!up8&5E
0

L

@kA~p,q;z!kA* ~p8,q;z!

1kD~p,q;z!kD* ~p8,q;z!#dz. ~19!
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It may be verified by direct substitution that Eqs.~17! and
~18! satisfy Eq.~16!. Note that the inversion formulas~17!
and ~18! can be easily generalized to the case of multi
modulation frequencies by inserting additional integratio
over frequencies and taking into account the implicit dep
dence of all quantities in the integrals onv.

Finally, we apply the inverse Fourier transform in th
transverse direction to arrive at our main result:

da~r !5E d2q

~2p!2 eiq•rE d2pd2p8kA* ~p,q;z!

3^puT21~q!up8&f~p81q/2,p82q/2!, ~20!

dD~r !5E d2q

~2p!2 eiq•rE d2pd2p8kD* ~p,q;z!

3^puT21~q!up8&f~p81q/2,p82q/2!, ~21!

which are the required inversion formulas.
Several comments on Eqs.~20! and ~21! are necessary

First, the solution we have constructed to the inverse pr
lem is the minimumL2 norm solution to Eq.~12! given the
data functionf(qs ,qd). This solution always exists and i
unique @12#. Note that the uniqueness of solutions to t
nonlinearinverse problem is a different matter@5#. Existence
and uniqueness of solutions to thelinear inverse problem is
guaranteed by the results of@13#. Second, the inversion for
mulas~20! and~21! employ four-dimensional data to recon
struct two unknown three-dimensional functions. If only o
modulation frequency is employed the problem is under
termined and simultaneous reconstruction ofda anddD can

FIG. 1. Reconstruction of a point absorber that is located
z/L50.2 ~solid line!, z/L50.5 ~long dash!, and z/L50.8 ~short
dash!. The reconstructed value ofda is normalized by its maximum
value.
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result in a loss of image quality. A single frequency is suf
cient for reconstructing eitherda or dD alone, while at least
two frequencies are necessary for simultaneous recons
tion. Third, in practice one must deal with discrete data. T
discretized problem is, obviously, underdetermined and
principle allows multiple solutions. Although these solutio
will satisfy Eq.~12! and will minimize the discrepancy norm
the inversion formulas we have constructed will pick fro
among these minimizers the unique solution which has
smallestL2 norm. To obtain this solution, the integrations
Eqs.~20! and~21! must be replaced by summations over t
discrete values ofp and q. In addition the operatorT be-
comes a finite matrix that can be diagonalized by the us
methods of linear algebra. Note that numerical inversion
T(q), whose determinant is extremely small, requires re
larization. This may be achieved by setting

T21~q!5(
q8

Q„s~q8!2e…
uc~q,q8!&^c~q,q8!u

s2~q,q8!
, ~22!

where uc(q,q8)& are eigenvectors ofT(q) and e is a small
regularization parameter. The optimum value ofe is deter-
mined by several factors including the level of noise in t
data. The regularization parameter also serves to set the
tial resolution of the reconstruction. Fourth, it is important
note that an image reconstruction algorithm based on E
~20! and ~21! has, with the use of the fast Fourier transfor
to compute f(qs ,qd), computational complexity
O(M logM), where M is the number of source-detecto
pairs. This should be compared with theO(M3) complexity

t

FIG. 2. Tomographic images of three point absorbers locate
thez50.5L plane for different levels of noisen and different depths
z. ~a! n50 ande510217; ~b! n51% ande51028; ~c! n55% and
e51028. The field of view is 2L32L. A linear color scale is em-
ployed.
1-3
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of a direct numerical inversion of the integral equation~15!.
Finally, the inversion formulas presented here may be u
as the basis for an alternative nonlinear reconstruction a
rithm via a simplified Newton’s method@5,14# in which the
generalized inverse of the functional derivative of the no
linear forward scattering operator is computed from E
~20! and ~21!.

To illustrate the use of the inversion formulas, we ha
numerically simulated the reconstruction ofda for one or
more point absorbers of the formda(r )5a0d(r2r0) under
the assumption thatdD50. The simulations were performe
with the single modulation frequencyv50 for three types of
boundary conditions: purely absorbing, purely reflecting, a
free. The forward dataf(qs ,qd) was calculated analytically
by replacingda in Eq. ~15! by one or more delta functions
The numerical integrations in Eqs.~20! and~21! were carried
out by choosingq to lie on a rectangular grid with spacin
Dq and inside the circleuqu,MDq. The values of the pa
rameters wereDq5L2152p/k0 and M540. We also used
M discrete wave vectorsp which were chosen on a line rang
ing in length from 0 toMDq.

In Fig. 1 we illustrate the depth resolution for the thr
types of the boundary conditions and two possible arran
Ti
rg

d

03560
d
o-

-
.

e

d

e-

ments of sources and detectors~on the same or differen
planes!. The plots in Fig. 1 represent the reconstructed va
of da along the line perpendicular to thez50 plane and
intersecting a single absorbing inhomogeneity. Evidently,
best resolution is obtained here with absorbing bound
conditions when the sources and detectors are located
different planes.

To demonstrate the robustness of the inversion proced
in the presence of noise, we present three tomographic s
drawn atz50.5L, z50.6L, and z50.7L with the forward
data calculated for three point absorbers located in the p
z50.5L as shown in Fig. 2 and absorbing boundary con
tions. Gaussian noise of zero mean was added to the
function f(qs ,qd) at various levels as indicated.

In conclusion, we have described an inverse scatte
method for the diffusion equation with general bounda
conditions. We emphasize that our results are of gen
physical interest, since they are applicable to inverse sca
ing with any multiply-scattered wave in the diffusion regim
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