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Numerical investigation of electrostatic force density in ionic crystals such as NaCl
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We investigate the density of electrostatic force in a continuous medium modeled as an ionic crystal similar
to that of NaCl. The theoretical model is three-dimensional and consists of a lattice of ions of alternating signs.
The ions can interact with each other and the externally applied electric field and pressure via elastic springs,
which model short-range chemical bonds, and long-range Coulomb interactions. The condition of equilibrium
can be solved numerically to yield the basic physical parameters of the structure including Young’s modulus,
the dielectric permittivity, and the electrically induced strain. We then compare these results to the theoretical
predictions obtained according to various formulas for the electrostatic force density that can be found in the
literature. It is shown that Helmholtz force density predicts the numerically computed strain almost perfectly
while other expressions result in large errors. The numerical simulations are limited to statics.
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I. INTRODUCTION

Although the form of electromagnetic force density in
continuous media is an old topic, it still continues to attract
significant attention [1]. Many relevant works consider the
general case of time-dependent fields in media with non-
trivial electric and magnetic properties, but assume the objects
to be absolutely rigid (except when interpreting experimental
deflection of a flexible cantilever in terms of the applied force)
[2–4]. In this case, only the total force acting on a material
body is important. In a recent paper [5], we argued that the
two main competing expressions for the force density (the
standard Lorentz and the Einstein-Laub force densities [6])
are consistent with all conservation laws including conserva-
tion of energy, momentum, and linear motion of the center of
energy of the system “object + field.” Therefore theoretical
arguments cannot be used to determine which expression for
the force density is correct. One of the formulations does re-
sult in a geometrical shift of the rigid object upon transmission
of a transient pulse (the Balazs thought experiment), but this
shift is compensated by the energy transferred from the field to
the object. From the experimental point of view, it is doubtful
that the geometrical shift mentioned above can be observed
since the measurements are likely to be sensitive to the overall
center of energy and, in a addition, the geometrical shift in
question is extremely small.

However, if we abandon the assumption of absolute rigid-
ity, different theories for the force density would predict
different elastic deformations, which can be verified in realis-
tic experiments. To see the effect, it is sufficient to consider the
simplest case of a non-magnetic dielectric in a static electric
field. Things are somewhat complicated though because there
are more than just two competing expressions for the force
density that are applicable to this case. The two main com-
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peting theories mentioned above (Lorentz and Einstein-Laub)
result in the force densities denoted by fa(r) and fb(r) below.
These densities integrate to the same total force under very
general conditions, but predict different elastic deformations
(as shown below, incorrectly). In addition, there are two more
commonly encountered definitions of the force density, de-
noted below by fc(r) and fd (r), which predict the same total
force as the former two under the assumptions of linearity
and stationarity, but not more generally. On top of that, there
also exists the electrostriction force felstr (r), which integrates
to zero over the entire body and for this reason is often ex-
cluded from consideration (i.e., see Ref. [4]). Since felstr (r)
always generates zero total force, it must be added to one of
the above force densities. The special combination fH (r) =
fc(r) + felstr (r) is known as the Helmholtz force density; the
corresponding expression was derived for compressible fluids
as early as in 1881 [7].

Given the uncertainty associated with the above choices,
it is desirable to verify the predictions of various expressions
for the force density not only experimentally but theoretically.
An important step in this direction was made by Barnett and
Loudon [8]. Reference [8] considers the force of attraction
between a point charge and a dielectric half-space. However,
as all tests that are based on the total force or torque, the
test of Ref. [8] did not discriminate conclusively between the
different expressions. It appears to be impossible to decide
theoretically which of the competing force densities is correct
while staying entirely within the framework of macroscopic
electrodynamics. A more detailed microscopic model of the
medium is needed.

In this paper, we construct and investigate numerically such
a model. Briefly, the model consists of an ionic lattice similar
to that of NaCl in which the ions are connected by short-
range elastic forces that model the chemical bonds and can
interact via the Coulomb interaction with each other and an
externally applied field. External pressure can also be included
into consideration. The model is purely classical but accounts
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self-consistently for stability of matter, electric polarization
and electro-mechanical phenomena such as electrostriction
(since the considered structure has a center of symmetry, there
is no piezoelectric effect; the latter can be introduced into the
model by modifying the crystal geometry). Numerical simu-
lations demonstrate conclusively that the only expression that
predicts the elastic deformations correctly is the Helmholtz
force density.

It should be noted that constructing a solvable classical
model for a crystal is not a trivial task. In crystallog-
raphy, atom layers or atom chains are often considered
independently. For example, consideration of atom layers as
homogeneously charged infinitely thin planes is the basis of
the classical Tasker condition of stability [9] telling which
kinds of crystal surfaces are stable. Some theories also con-
sider independent or quasi-independent chains of ions [10]. In
the model of this paper, it is essential that ions are treated as
discrete and that all interactions including the lateral bonds
are taken into account. Therefore although we also consider
equivalent chains of ions, all ions are coupled by various
forces and all relevant interactions are taken into account in
three dimensions.

The paper is organized as follows. In Sec. II, we review
the competing expressions for the force density and establish
mathematical relations between these expressions. In particu-
lar, it is shown that, in statics, all these expressions predict the
same total force but different elastic deformations. In Sec. III,
we describe a thought experiment in which a material slab is
placed in a constant electric field and summarize the predic-
tions for the electrically induced surface pressure that follow
from the various force densities. In Sec. IV, we describe the
microscopic model of an ionic crystal that is used to test the
theoretical predictions. In Sec. V, we give a detailed mathe-
matical description of all forces that are included in the model.
Section VI describes the numerical algorithms that are used
to find the equilibrium positions of the ions at given values
of externally applied electric field and pressure. Section VII
presents the results of numerical simulations of the basic phys-
ical properties of the model structure, which include the lattice
unit, Young’s modulus, the dielectric permittivity, and the
electrostrictive coefficient. Sec. VIII presents the central result
of this paper. Here we compare the numerically computed
strain induced by an external electric field to various theo-
retical predictions and show that the Helmholtz force density
provides the best (and very accurate) fit. Finally, Sec. IX con-
tains a brief discussion. Appendix contains expressions that
generalize Helmholtz force density beyond the assumptions
adopted in this paper. Reference [11] contains a computational
package, scripts and instructions, which can be used to regen-
erate all data used in the plots below and to rebuild graphics,
as well as to run similar custom simulations.

Gaussian system of units is used throughout the paper.
However, figures display only dimensionless quantities and
therefore are not affected by this choice.

II. COMPETING EXPRESSIONS

We consider a solid, elastically deformable, finite dielectric
body embedded in vacuum. The dielectric can be polarized by
an externally applied electric field. The two most frequently

encountered expressions for the force density acting in such
objects are

fa(r) = −(∇ · P(r)) E(r), (1a)

fb(r) = (P(r) · ∇ ) E(r), (1b)

where P(r) is the vector of electric polarization and E(r) is
the electric field. Since we consider in this paper static fields,
time dependence is omitted in the notations. We emphasize
that E(r) in (1) is the total electric field rather than its external
(applied) component. The distinction is important. Indeed, the
total force acting on a finite body can be computed as the force
exerted by the applied field on the induced charges whereas
the internal forces cancel out by Newton’s third law. However,
if we are interested in the density of force, it is not correct to
disregard internal interactions. Consequently, the total electric
field must be used in (1).

As was noted by Barnett and Loudon [8], the expression
(1a) is based on “treating the medium as formed from indi-
vidual charges” while the second expression (which can be
viewed as more conventional since it appears in many text-
books) is based on “treating the medium as being formed from
individual dipoles”. Indeed, −∇ · P(r) is the conventional
expression for the induced electric charge density. Therefore
(1a) is a continuous version of Coulomb’s law. The expression
(1b) is derived differently. Here one assumes that a volume
element δV drawn around the point r has the dipole moment
δd(r) = P(r)δV . Then the element of force acting on δV
is computed as δF(r) = (δd(r) · ∇ )E(r), and the differential
density of force as f (r) = δF(r)/δV , which leads to (1b).

However, the physical reasoning behind the expressions in
(1) is flawed. Consider first (1a). The direct application of
Coulomb’s law to the induced charge density, on which this
formula is based, ignores the fact that, classically (that is,
without quantum mechanics), a system of charged particles
cannot hold itself together in a stable equilibrium. We must
therefore introduce, in addition to fa(r), some phenomenolog-
ical force density to account for stability of matter. This force
density will integrate to zero over the whole dielectric, but it
cannot be disregarded locally, and must therefore be included
in the definition of f (r). Consequently, (1a) is not the complete
expression. The formula (1b) can also be challenged. First, the
physical picture of a continuous medium consisting of rigid
dipoles is simplistic and in some cases plainly incorrect. Sec-
ond, there is no reason to treat the bonds that hold charges in a
dipole together as absolutely rigid. Finally, there still remains
the question of what force holds the dipoles together. Thus,
in both cases, some additional forces must be introduced, and
which part of these forces is purely elastic (i.e., can be related
directly to the elastic strain for zero applied field) and which
is induced by the applied electric field is not possible to tell
without introducing a more detailed microscopic model of the
medium.

Before proceeding, it is instructive to consider the total
force acting on the dielectric body, which is defined by the
spatial integral

Ftot =
∫

f (r)d3r. (2)
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A necessary condition for any expression for the force density
to be correct is that it predict the total force correctly. Both
expressions in (1) satisfy this condition for static or slowly
varying fields [12]. This can be seen most easily from (1a),
since any force density that can be added to it is necessarily
internal and, therefore, would cancel out by Newtons third
law when integrated according to (2). We can make an even
stronger statement: fa(r) and fb(r) integrate to the same in-
stantaneous value (now, not necessarily the total force acting
on the body) for arbitrary time-dependent fields, arbitrary
nonlinear relation between P(r) and E(r), or even in the
hypothetical case when there is no such deterministic relation.
All that is required is that P(r) vanish in vacuum. Indeed, fa(r)
and fb(r) differ by divergence of a tensor:

fb(r) = fa(r) + ∇ · T̂1(r), (3)

where

T̂1(r) = P(r) ⊗ E(r). (4)

Here the symbol ⊗ denotes tensor product and we have
adopted the convention according to which

(∇ · T̂ (r))i =
∑

j

∂Tji(r)

∂r j
. (5)

The divergence term in (3) integrates to zero over any finite
body as long as P(r) vanishes in vacuum. Consequently, spa-
tial integrals of fa(r) and fb(r) are the same.

The above example suggests that we can generate ad-
ditional expressions for f (r) that predict the same Ftot by
exploring the transformation f (r) → f (r) + ∇ · T̂ (r). In (3),
we have taken T̂ (r) = T̂1(r) where T̂1(r) is defined in (4).
Assuming that T̂ (r) is quadratic in the fields E(r), P(r), and
contains no additional parameters related to properties of the
medium, the only other choice (up to a numerical factor) is

T̂2(r) = − 1
2 (P(r) · E(r))Î, (6)

where Î is the unit tensor and the minus sign has been
introduced for convenience. Although the expression (6) is
simple, it cannot be developed into anything looking famil-
iar in general. However, we can obtain simplifications by
utilizing the assumptions of linearity and stationarity [13].
According to the first assumption, P(r) = χ (r)E(r), where
χ (r) = [ε(r) − 1]/4π and ε(r) is the dielectric permittivity
of the medium. The condition of stationarity can be written as
∇ × E(r) = 0. Under these assumptions, we have

∇ · T̂2(r) = −E2(r)

8π
∇ε(r) − χ (r)(E(r) · ∇ )E(r). (7)

To see that (7) is correct, consider the following chain of
equalities:

∇ · T̂2(r) = −1

2
∇(P(r) · E(r)) (8a)

= −1

2
∇(χ (r)E2(r)) (8b)

= −E2(r)

2
∇χ (r) − 1

2
χ (r)∇E2(r) (8c)

= −E2(r)

8π
∇ε(r) − χ (r)(E(r) · ∇ )E(r). (8d)

In transitioning from (8a) to (8b), we have used the assump-
tion of linearity and in transitioning from (8c) to (8d), we have
used the vector identity ∇E2(r) = 2(E(r) · ∇ )E(r), which
holds for irrotational fields. Evaluating fb(r) to the same level
of approximation (in this case, using only linearity), we find
that

fc(r)
def= fb(r) + ∇ · T̂2(r) = −E2(r)

8π
∇ε(r). (9)

This is another frequently encountered expression for the den-
sity of force.

We will refer below to fa(r), fb(r), and fc(r) as to expan-
sion forces as they, generally, try to increase the volume of a
dielectric. There exists another kind of force density, known as
electrostriction, which does the opposite. However, to define
this force, we must introduce an additional medium parameter
α(r), which does not appear directly in Maxwell’s equa-
tions or in the electromagnetic constitutive relations. Namely,
let

T̂elstr (r) = 1

8π
α(r) E2(r) Î. (10)

The force density associated with T̂elstr (r),

felstr (r) = ∇ · T̂elstr (r) = 1

8π
∇[α(r) E2(r)], (11)

is known as the electrostriction force. The coefficient α(r),
which gives induced stress in terms of the electric field, can
be referred to as the electrostrictive coefficient. However, it is
more conventional to reserve this term for the coefficient μ(r),
which gives the induced strain [14]. In the case of uniaxial
or uniform compression or dilation, the two coefficients are
related quite simply as α = μη, where η is Young’s modulus.
A more general relation applicable to solids is given in Ap-
pendix. We will use the term “electrostriction coefficient” for
both α and μ in this paper.

While the electrostriction coefficient is an independent
property of the medium, it can be shown that α(r) and ε(r)
are related as

α(r) = ρ(r)
∂ε(r)

∂ρ(r)
, (12)

where ρ(r) is the mass density, the derivative must be com-
puted at a fixed temperature, and the density is assumed to
change as a result of uniform or uniaxial compression or dila-
tion. Equation (12) can be viewed as the operational definition
of α(r). That is, if ε(r) can be measured or simulated at dif-
ferent levels of strain, we can use (12) to determine α(r). This
approach is adopted in the simulations below. Note that α(r)
is not well defined by (12) if ρ(r) = 0. We should, however,
require on physical grounds that α(r) vanish in vacuum. Then
felstr (r) integrates to zero over the entire body. It follows that
felstr (r) cannot be the complete expression for the electrically
induced force density; rather, it must be added to one of the
expansion forces fa(r), fb(r), or fc(r).

One such combination is of particular significance. Adding
together fc(r) and felstr (r) with α(r) defined in (12), we obtain
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what is known as the Helmholtz force density.

fH (r)
def= fc(r) + felstr (r)

= 1

8π

{
∇

[
ρ(r)

∂ε(r)

∂ρ(r)
E2(r)

]
− E2(r)∇ε(r)

}
. (13)

Expression (13) was derived by Helmholtz in 1881 [7] for
the case compressible fluids from a combination of thermo-
dynamic and virtual work principles. Many contemporary
textbooks expound this derivation, see Refs. [[15], §6.6],
[[16], §2.13], and [[17], §15]. The key idea here is that the
change of internal energy of a dielectric due to the dependence
of its permittivity on the strain is not negligible in comparison
to other similar terms. Correspondingly, the electrostriction
force is not negligible in comparison to other commonly con-
sidered forces. Note that (13) relies on the assumptions of
linear local relation between P(r) and E(r) [as it contains ε(r)
explicitly] and uniform or uniaxial strain. The model consid-
ered below satisfies these conditions. More general relations
for the electrostriction and Helmholtz forces are adduced in
Appendix.

As noted above, the electrostrictive coefficient α(r) does
not appear in Maxwell’s equations or in constitutive relations
and cannot be, in general, expressed in terms of ε(r) itself
(rather than in terms of its derivatives). However, in the special
case of a simple relation between ε(r) and ρ(r) of the form

ε(r) = 1 + βρ(r), (14a)

where β is some constant, we have

α(r) = ε(r) − 1. (14b)

The dependence (14a) is characteristic of gases rather than
solids [and thus assumes that ε(r) − 1 is small], but we can
use the result (14b) formally in (12) to obtain the following
approximate expression for the electrostriction force:

f (appr)
elstr (r) = ∇

[
ε(r) − 1

8π
E2(r)

]
. (15)

We can further use (15) to generate yet another familiar-
looking expression for the force density by writing

fd (r)
def= f (appr)

H (r)

= fc(r) + f (appr)
elstr (r) = ε(r) − 1

8π
∇E2(r). (16)

In writing (16), we have already adopted the linear approx-
imation (or else ε(r) would not be a good characteristic of
the medium). If we, in addition, assume stationarity so that
the electric field is irrotational, then it is easy to show that
fd (r) = fb(r). Thus fb(r) and fd (r) can be viewed as low-
density approximation of the Helmholtz force, f (appr)

H (r).
We can also use in (12) a slightly more complicated rela-

tion between ε(r) and ρ(r) of the form

ε(r) = 1 + 2βρ(r)

1 − βρ(r)
, (17a)

which is known as the Clausius-Mossotti approximation. This
yields

α(r) = (ε(r) − 1)
ε(r) + 2

3
. (17b)

FIG. 1. Schematic relationship between various force densities
discussed in Sec. II. The expansion forces fa(r), fb(r), fc(r), and fd (r)
can be obtained from each other by adding divergences of tensors as
indicated by the arrows and the accompanying labels. The densities
labeled as “(gen.)” yield the same total force for general fields; those
labeled “(cond.)” require linearity and stationarity in order to predict
the same total force as fa(r) and fb(r). Equivalence between fd (r) and
fb(r) holds only under the assumptions of linearity and stationarity.

However, adding (17b) to any of the expansion force densities
fa(r), fb(r) or fa(r) does not result in a familiar or commonly
used formula.

It is useful to keep in mind that, unlike the piezoelectric ef-
fect, electrostriction is not reciprocal. In other words, applied
electric field can cause strain but applying external pressure
does not induce electric field or polarlization of the dielectric.
This is evident already from the quadratic dependence of the
electrostriction force density on the electric field. Also, if the
dielectric is internally homogeneous, the force densities fa(r)
and fc(r) are applied only at the surface. However, the forces
fb(r), fd (r), felstr (r), and fH (r) do not generally vanish in the
bulk of a homogeneous medium.

The schematic relation between all expressions for the
force density that were introduced above is illustrated in
Fig. 1. There are four expansion force densities, fa(r), fb(r),
fc(r), and fd (r). Under the assumptions of linearity and
stationarity, fd (r) is equivalent to fb(r). Under the same con-
ditions, the expansion force densities predict the same total
force Ftot. One can add to any of the expansion forces the
electrostriction force density felstr (r) without affecting Ftot .
Accounting for the equivalence of fd (r) and fb(r), which we
assume, this creates six distinct possibilities for the force
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FIG. 2. Schematic illustration of the proposed setup. A dielectric
slab of width �0 is placed in a uniform, normally directed electric
field Eext.

density. One of these possibilities, obtained by adding fc(r)
and felstr (r), is special and known as the Helmholtz force
density fH (r). If we make the approximation α(r) = ε(r) − 1
in the expression (13) for fH (r), the force density fd (r) is
obtained. We emphasize that shown in Fig. 1 are not all
possible forms of the force density that are consistent with
the total force Ftot as predicted by fa(r) or fb(r), which we
assume to be generally correct. Rather, Fig. 1 summarizes
various competing expressions that appear in the literature.

In what follows, we assume that, in the absence of external
pressure or electric field, the dielectric is homogeneous and
characterized by some constant values ρ, ε, and α, so that we
can write

α(r) = αθ (r), ε(r) = 1 + (ε − 1)θ (r), (18)

etc., where θ (r) is the shape function: it is 1 inside the di-
electric and 0 in vacuum. In general, when write ε(r) or ε(z),
etc., we imply a spatially varying quantity whereas when the
argument is omitted, as in ε, it is the constant value inside the
material.

III. ELECTRICALLY INDUCED PRESSURE
ON A DIELECTRIC SLAB

In Ref. [8], Barnett and Loudon considered the static force
of attraction between a point charge and a dielectric half-
space. The force densities fa(r) and fb(r) predicted the same
total force. The force density fc(r) was not considered, but it
would have predicted the same result, and we know that fd (r)
is equivalent to fb(r) under the assumptions of Ref. [8]. As
electrostriction does not generate a total force, its inclusion
would not have influenced the results. More recently, Park
et al. showed that the lateral pulling force on a dielectric
slab partially inserted in a flat capacitor is the same for dif-
ferent expressions for the force density [18]. These results
are consistent with the derivations of Sec. II where we have
shown that all competing expressions for the force density
differ by divergence of a tensor and therefore predict the same
total force. However, different force densities predict different
elastic deformations, and this effect will be explored below.

Consider the simple setup illustrated in Fig. 2. Here a
flat capacitor of width  is charged to a potential differ-
ence V . A dielectric slab of the width �0 <  and dielectric

TABLE I. Three-dimensional form, projection onto the Z axis
in the setup of Fig. 2, and the electrically induced surface pressure
�ind [see Eq. (19) and Fig. 2] for various force densities introduced
in Sec. II. Positive pressure implies compression and negative pres-
sure implies extension of the slab. Linearity and stationarity are
assumed. Line H corresponds to the Helmholtz force density (13).
One-dimensional projections of the force density have been written
accounting for the condition d[ε(z)Ez(z)]/dz = 0.

Force 3D, f (r) 1D, fz(z) �ind

(a) −(∇ · P)E
1

8π

d

dz
E 2

z (z) −E 2
ext

8π

ε2 − 1

ε2

(b) and (d) (P · ∇ )E
ε(z) − 1

8π

d

dz
E 2

z (z) −E 2
ext

8π

(ε − 1)2

ε2

(c) − E 2

8π
∇ε − 1

8π
E 2

z (z)
d

dz
ε(z) −E 2

ext

8π

ε − 1

ε

elstr
1

8π
∇(αE 2)

1

8π

d

dz
α(z)E 2

z (z)
E 2

ext

8π

α

ε2

H (c) + (elstr) (c) + (elstr)
E 2

ext

8π

α − (ε − 1)ε

ε2

constant ε is inserted in the capacitor. Here �0 is the slab
width in the absence of external electric field and pressure;
a more general notation that accounts for possible elastic
deformations will be introduced below. The electric field is
perpendicular to the slab. In the vacuum gaps, the field is
Ez = Eext = V/[ + �0(1/ε − 1)] and inside the dielectric
it is Ez = Eext/ε. Without loss of generality, we can assume
that the applied field Eext is the mathematically independent
variable that can be controlled in an experiment. In this setup,
the total force acting on the slab is zero. However, different
expressions for the force density predict different values of
the electrically induced pressure on the surfaces of the slab
as is summarized in Table I. Note that, in the geometry of
Fig. 2, all force densities have nonzero contributions only
on the slab surfaces and vanish in the bulk. The electrically
induced pressure on the slab at the surface z = z0 is defined as

�ind =
∫ z0+δ

z0−δ

fz(z)dz, (19)

where fz(z) is listed in the third column of Table I and δ is an
infinitesimally small constant. Here we have used the Greek
letter � to distinguish pressure from the electric polarization
of the medium. The small constant δ has been introduced to
account for the fact that the function fz(z) has a singularity
exactly at z = z0 and is zero elsewhere. Since this singularity
can be always represented as derivative of a discontinuous
function, integration by parts can be used to evaluate (19).
This approach is consistent with other methods such as defin-
ing the singular contributions directly and then working with
generalized functions according to usual rules or introducing
a smooth transition layer and thus avoiding singularities alto-
gether. The pressure on the opposite face of the slab exactly
counteracts �ind so that the total force on the slab is zero.
Note that, assuming that ε > 1 and α > 0, the electrostriction
force predicts a positive pressure (leading to a contraction of
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the slab) while all expansion forces predict negative pressures
(leading to an expansion).

In what follows, we will devise a microscopic model of the
medium in which the Young modulus, the dielectric constant,
the electrostrictive coefficient and the relative extension or
contraction of the slab under an applied electric field can be
directly computed. Comparing the latter result to the theoret-
ical predictions obtained from the induced surface pressures
summarized in Table I and the computed Young’s modulus,
we will be able to tell which expression for the force density
is more consistent with the simulations.

IV. MICROSCOPIC MODEL

We now describe a microscopic model, which will be used
to test the theoretical predictions summarized in Table I. We
consider an ionic crystal similar to that of NaCl and consisting
of N atom layers as shown in Fig. 3. The ions are pointlike and
have the electric charges ±q where q > 0 for definitiveness.
The structure is infinite in the X and Y directions but finite in
Z . In principle, the number of layers N can be even or odd.
Asymmetric termination (with an odd N) does not contradict
the classical stability requirement of Tasker [9]. However,
since physical properties of the crystal are not expected to
depend on the termination, we consider below only even N .
In Fig. 3, a symmetric termination with an even N is shown.

The following forces are included in the model. First, the
neighboring ions are connected by harmonic springs, which
model chemical bonds. The equilibrium length of each spring
is h and the spring constant is k. Thus each ion, except for
those in the surface layers n = 1 and n = N , is connected by
springs to six other ions. Those on the surface have only five
such connections. In addition, the ions can interact electrostat-
ically with each other and with the external electric field Eext,
which we assume to be constant and directed along Z . Finally,
we can apply some phenomenological non-electromagnetic
forces to the surface layer ions in order to model external
pressure �ext.

Given the interactions described above, the model is com-
pletely characterized by the single scalar parameter

κ = q2/kh3. (20)

The parameter κ quantifies the strength of electrostatic inter-
action of the ions relative to the stiffness of the lattice. In
the limit κ → 0, the crystal is not polarizable and has the
dielectric constant ε = 1. Note that we could simplify the
model by considering a finite charge q (so that there is still in-
teraction with the applied field) but disregarding electrostatic
interactions of the ions. The crystal in this simplified model
can be deformed by the applied field but is not polarizable,
so that its ε = 1 regardless of κ . Therefore accounting for the
electrostatic interactions is essential for the model to describe
a polarizable dielectric.

As illustrated in Fig. 3(a), we assume that the ion positions
make a perfect square lattice of unit step h in the XY plane
regardless of the applied field. We will see below that, even in
the absence of applied field, the equilibrium lattice step in the
Z direction, denoted by u, is smaller than h due to electrostatic
interactions of the layers. Consequently, the unit cell of the
structure is not cubic. This is different from the real NaCl

(a)

(b)

FIG. 3. Schematic illustration of the model. The structure con-
sists of N infinite layers of ions stacked in the Z direction to form a
slab. Positive ions of the charge +q are shown by blue (filled) circles
and negative ions of the charge −q by red (open) circles. The X and
Y coordinates of all ions lie on a square lattice of the step h while the
Z coordinates can be displaced from the square lattice nodes by the
external field Eext and electrostatic interactions. The letters A and B
label sublattices and chains of ions (see text). (a) XY plane (layer n =
N, top view) and (b) XZ plane.

crystals. The reason for this discrepancy is that we do not
allow motion of the ions in the lateral directions as this would
be too difficult to simulate. To justify the assumption, we can
imagine that the edges of a large, square-shaped slab are glued
rigidly to the planes x = ±R/2, y = ±R/2, where R � �0,
so that the lattice step in the XY plane is fixed to h. However,
the ions far away from these fixation planes can move in the Z
direction under the action of all forces mentioned above. Then
the equilibrium Z coordinates of the ions are not required to
be on a lattice. In particular, the unit cells that are close to
the surfaces are different from those deep in the bulk. Similar
dependence is known to exist in real crystals where the cells
adjacent to the crystalline surfaces, edges and corners are
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different from each other and from those in the bulk [19–21].
Still, in slabs with many atom layers, the equilibrium lattice
unit u is well defined as is shown in Sec. VII A below.

Although we do not consider motion of the ions in the XY
plane, the model is still three-dimensional as we account for
the interactions of all pointlike ions. This is different from
the, essentially, one-dimensional models in which a crystal
is viewed as a stack of homogeneous planes [9] or an array
noninteracting chains [10].

Each ion in the structure belongs to an atom layer n, to
one of two sublattices of that layer, and also to a chain of ions,
where chains are one-dimensional substructures parallel to the
Z-axis. We will distinguish between two types of sublattices
and two types of chains.

Consider first the sublattices. Each atom layer can be par-
titioned into two square sublattices of the step

√
2h, so that

each sublattice contains ions of the same charge and all ions
in a given sublattice have the same Z coordinate, even in the
presence of an applied field. Assume for definiteness that the
positive and negative ions of the layer n = 1 form the sub-
lattices A and B, respectively. Then the odd-numbered layers
have positive ions in sublattices A and negative ions in sub-
lattices B. Conversely, even-numbered layers have negative
ions in the sublattices A and positive ions in the sublattices
B. Thus, assuming N is even, the negative ions shown in
Fig. 3(a) by open red circles form the sublattice A while
the positive ions (filled blue circles) form the sublattice B.
The applied electric field can shift the sublattices of a given
atom layer with respect to each other along the Z-axis as is
shown in Fig. 3(b). However, two sublattices belonging to the
same layer are connected by electrostatic attraction and lateral
springs, which do not allow this displacement to become too
large. Without any of these forces, the structure would be
unstable.

Likewise, we can define chains of ions of the types A and
B. An A-type chain has a positive ion in the atom layer n = 1
and a negative ion in the layer n = N . A B-type chain has
a negative ion in the layer n = 1 and a positive ion in the
layer n = N . All ions in an A-type chain belong to A-type
sublattices, and all ions in A-type sublattices belong to A-
type chains; a similar relation holds for the B-type sublattices
and chains. This classification is illustrated in Fig. 3(b). All
chains of the same type are equivalent, and we denote the Z
coordinates of ions in the A-type and B-type chains by zA

n and
zB

n , respectively. The same coordinates divided by h and thus
dimensionless are denoted as ξA

n = zA
n /h and ξB

n = zB
n /h.

Depending on polarity, an applied electric field will con-
tract the chains of one type and expand the chains of the
other type. In Fig. 3(b), the applied field contracts the A-
type chains and extend the B-type chains. If we consider
each chain in isolation for a large N and a nonzero applied
field, the equilibrium lengths of the different-type chains
can differ by more than h. This cannot happen in real
crystals and is inconsistent with mechanical stability. How-
ever, the lateral bonds and the electrostatic interaction of
sublattices counter-act the applied field and do not allow
the length difference to become large. Therefore it is in-
correct to consider the chains in isolation; rather, we must
account for all the interactions that were introduced above
self-consistently.

V. DEFINITION OF DIMENSIONLESS FORCES

In this section, we define all forces in units of the atomic
force Fat = kh. Since we will be looking for the condition of
equilibrium where the net force acting on each ion is zero, the
units in which the forces are expressed are unimportant. It is
however useful to keep in mind that the actual physical force
is obtained by multiplying the expressions given below by Fat.

A. Internal electrostatic forces

Consider an arbitrary test ion located at the normalized
depth ξ = z/h. The electrostatic force exerted by all other
ions onto the test ion can be represented as a sum over all
sublattices except for the one to which the test ion belongs.
The force exerted on any ion by its own sublattice is obviously
zero. Let there be a sublattice of an arbitrary type at the
normalized depth ξ ′ �= ξ . We denote the absolute value of the
force exerted by this sublattice on the test ion by Fs(ξ, ξ ′) or
Fd(ξ, ξ ′) where s and d stand for “same” and “different.” The
subscript s indicates that the test ion at ξ is in a sublattice
of the same type as the one at ξ ′ and d indicates that the
two sublattices are of different types. We have by a direct
calculation

Fs,d(ξ, ξ ′) = κ �s,d(|ξ − ξ ′|), (21a)

where the model parameter κ is defined in (20) and

�s(�) =
∞∑

m,n=−∞

�

[2(m2 + n2) + �2]3/2
, (21b)

�d(�) =
∞∑

m,n=−∞

�

[2m(m − 1) + 2n(n − 1) + 1 + �2]3/2
.

(21c)

Here � = |ξ − ξ ′| = |z − z′|/h.
A few comments are necessary at this point. First,

Fs,d(ξ, ξ ′) and �s,d(�) are positive by definition. Projection
of the force onto the Z axis can be positive or negative de-
pending on ξ , ξ ′ and signs of the charges involved. This will
be accounted for below. Second, as mentioned above, own
sublattice exerts zero force on any ion, but this result is not
a special case of (21b). Rather, (21b) should not be applied
to the own sublattice, in which case the calculation should
be different (and known to yield zero). However, (21c) gives
correctly the force on the test ion from the other sublattice of
the same atom layer. This force is always attractive and, for
small �, it is harmonic.

The functions �s,d(�) satisfy the following asymptotic re-
lations:

�s(�) −−→
�→0

1/�2, (22a)

�d(�) −−→
�→0

πb1�, (22b)

�s,d(�) −−−→
�→∞

π, (22c)

where b1 ≈ 1.85885. Also, �s(�) − π approaches zero expo-
nentially fast when � → ∞. Utilizing these observations, it is
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convenient to write

�s(�) = π + 1

�2
Ss(�), �d(�) = π (1 − Sd(�)), (23)

where the functions Ss,d(�) satisfy

Ss(�) −−→
�→0

1 − π�2, (24a)

Sd(�) −−→
�→0

1 − b1�, (24b)

Ss,d(�) −−−→
�→∞

0. (24c)

It follows from (22c) that, at large distances, both functions
Fs,d(z, z′) approach the limit in which the discrete sublattice
is replaced by a continuous surface charge density σ = q/2h.
This limit is reached with good precision already for � > 2, as
will be demonstrated below.

Evaluating the lattice sums similar to those in (21b) and
(21c) is a formidable task. Following the original work of
Ewald [22], elaborate methods have been developed for com-
puting electric fields or potential in ionic lattices [23–25]. In
this work, we make use of the power of modern computers and
do not rely on analytical methods of summation. Rather, we
compute the lattice sums numerically in an interval of � where
the functions Ss,d(�) are substantially larger than zero and then
fit the results to an ad hoc analytical formula with the correct
asymptotes. This approach provides satisfactory precision and
efficiency allowing us to use the functions Ss,d(�) in iterative
computations of the equilibrium.

Details of the numerical procedure are as follows. First, we
evaluated the series (21b) and (21c) by truncated the summa-
tion according to the condition |n|, |m| � nmax, where nmax is a
large integer. Summation was performed using high-precision
arithmetic. Therefore, while the computed samples can de-
pend on the truncation parameter nmax, they are not affected by
round-off errors. Results are shown in Fig. 4 for several values
of nmax. It can be seen that, in the interval 0 � � � 2, the
series is converged with good precision for nmax = 128 000.
When � > 2, the computed data points still noticeably depend
on nmax, but are relatively small, i.e., � 10−4. Accurate de-
termination of Ss,d(�) for � > 2 requires significantly larger
values of nmax, which is problematic from both the compu-
tational and physical points of view. For example, assuming
the lattice unit of NaCl, which is 0.564 nm, the truncation
parameter nmax = 128 000 corresponds to a sample with the
lateral dimensions of 0.14 mm. Increasing nmax further entails
consideration of samples with macroscopic dimensions. This
indicates that the functions Ss,d(�) at large values of �, while
defined mathematically, can be affected by the edge effects in
finite three-dimensional samples.

Therefore we use the data for 0 � � � 2, which are known
reliably, to approximate Ss,d(�) by the analytical functions
S(appr)

s,d (�) defined as

S(appr)
s (�) = 1 + (λs − a1)�

1 − a1� + a2�2 − a3�3 + a4�4
e−λs�, (25a)

S(appr)
d (�) = 1 + (λd − b1)� + c2�

2

1 + b2�2 + b3�3 + b4�4
e−λd�. (25b)

Numerical values of the coefficients were obtained by the
nonlinear fitting function implemented in Gnuplot and are
listed in Table II. The constant b1 is the same as in (22b). The

nmax = 16 · 103
nmax = 32 · 103
nmax = 64 · 103
nmax = 128 · 103

(a)
Ss( )

1

10−1

10−2

10−3

10−4

10−5

(b)
Sd( )

32.521.510.50

10−1

10−2

10−3

10−4

10−5

FIG. 4. Numerically computed functions Ss(�) (a) and Sd(�)
(b) for different truncation parameters nmax.

coefficients satisfy the constraint a2 − a1λs + λ2
s /2 ≈ π . Note

that S(appr)
s,d (�) satisfy the asymptotic relations (24). Quality of

the fit is illustrated in Fig. 5.
We can now define the internal electrostatic force that

acts on every ion. Let F A
n and F B

n be the electrostatic forces
(projections onto the Z axis) acting on nth ion in chains A
and B due to all other ions in the lattice (interaction with the
external field will be introduced separately). We then have

F A
n = Fd

(
ξA

n , ξB
n

)
sgn

(
ξB

n − ξA
n

) +
∑
m �=n

sgn(m − n)

× (−1)m−n
[
Fd

(
ξA

n , ξB
m

) − Fs
(
ξA

n , ξA
m

)]
, (26a)

F B
n = Fd

(
ξB

n , ξA
n

)
sgn

(
ξA

n − ξB
n

) +
∑
m �=n

sgn(m − n)

× (−1)m−n
[
Fd

(
ξB

n , ξA
m

) − Fs
(
ξB

n , ξB
m

)]
. (26b)

TABLE II. Numerical coefficients used in the analytical approx-
imation (25) and in all simulations of this paper.

c2 λs λd

1.47784 2.79038 3.90852

k 1 2 3 4

ak 0.609725 0.961619 0.366649 0.135
bk 1.85885 1.09622 0.0821155 0.128119
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S
(appr)
d ( )

S
(appr)
s ( )

Samples of Sd( )

Samples of Ss( )

21.510.50

1

0.8

0.6

0.4

0.2

0

FIG. 5. Illustrating the quality of fit of Ss,d(�) by the analytical
approximations S(appr)

s,d (�) (25).

Here the first terms in each expression describe interaction
with the other sublayer of the same (nth) atom layer whereas
the sum over m captures the interaction over all other atom
layers in the structure. Using the expressions (21) and (V A),
we can also write

F A
n = κ

{
π

[
1 − Sd

(∣∣ξA
n − ξB

n

∣∣)]sgn
(
ξB

n − ξA
n

)
−

∑
m �=n

(−1)m−nsgn(m − n)

×
[
πSd

(∣∣ξA
n − ξB

m

∣∣) + Ss
(∣∣ξA

n − ξA
m

∣∣)∣∣ξA
n − ξA

m

∣∣2

]}
, (27a)

F B
n = κ

{
π

[
1 − Sd

(∣∣ξB
n − ξA

n

∣∣)]sgn
(
ξA

n − ξB
n

)
−

∑
m �=n

(−1)m−nsgn(m − n)

×
[
πSd

(∣∣ξB
n − ξA

m

∣∣) + Ss
(∣∣ξB

n − ξB
m

∣∣)∣∣ξB
n − ξB

m

∣∣2

]}
. (27b)

Note that the above formulas rely on the assumption that
ξA

n , ξB
n < ξA

n+1, ξ
B
n+1. Although one can envisage deformations

of the lattice that violate this inequality, the structure be-
comes mechanically unstable at much smaller deformations
and, in practice, we may assume that the above condition
always holds. In the simulations, we use the expressions (27)
to compute the internal electrostatic forces where Ss,d(�) are
approximated as (25) in the interval 0 � � � 2 and taken to
be zero for � > 2.

B. Elastic forces (chemical bonds)

The elastic forces can be decomposed into a sum of forces
that originate from the bonds to other ions in the same chain

as the test ion (these forces are denoted by LA,B
n for the chains

of the A or B type, respectively) and forces due to the lateral
springs that connect each test ion to four neighboring ions of
the same atom layer (these forces are denoted by KA,B

n ). We
have

LA,B
1 = ξA,B

2 − ξA,B
1 − 1, (28a)

LA,B
n = ξA,B

n−1 − 2ξA,B
n + ξA,B

n+1 , 1 < n < N ; (28b)

LA,B
N = 1 + ξA,B

N−1 − ξA,B
N . (28c)

and

KA
n = 4

⎛
⎜⎝1 − 1√(

ξB
n − ξA

n

)2 + 1

⎞
⎟⎠(

ξB
n − ξA

n

)
, (28d)

KB
n = 4

⎛
⎜⎝1 − 1√(

ξA
n − ξB

n

)2 + 1

⎞
⎟⎠(

ξA
n − ξB

n

)
. (28e)

The expressions for KA,B
n are valid for all n including the

surface layers, that is, for 1 � n � N . Obviously, we have
KA

n = −KB
n . For small deformations, we have KA

n = −KB
n ≈

2(ξB
n − ξA

n )3. However, in the simulations, we use the exact
formulas involving the square root.

C. External electric field and pressure

So far in this section, we considered only internal forces
that are exerted by the ions on each other either by elec-
trostatic or by elastic interactions. The model also involves
external forces, which are produced by the applied electric
field and externally applied pressure. While the applied elec-
tric field interacts with each ion in the lattice, the external
pressure applies forces only on the boundary atom layers
n = 1 and n = N .

Denote the total external force on an ion in nth layer and
belonging to either A-type or B-type chain by MA,B

n . Then

MA
n = (δn1 − δnN ) p − (−1)nκ e, (29)

MB
n = (δn1 − δnN ) p + (−1)nκ e, (30)

where p and e are dimensionless external pressure and electric
field defined as the following ratios:

p = �exth/k, e = Eexth
2/q. (31)

Here �ext and Eext are the applied pressure (not to be confused
with the electrically induced pressure �ind) and the applied
electric field in physical units.

VI. ITERATIVE COMPUTATION OF THE COORDINATES

In this section, we state the condition of equilibrium and
introduce iterative algorithms for finding the ion coordinates
at a given applied electric field and pressure. Since all chains
of the same type are equivalent, the problem involves only 2N
unknowns. However, finding these unknowns numerically is
not an easy task. The equation of equilibrium is nonlinear and
cannot be solved analytically while simple iterative schemes
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possess numerical instabilities. This is why we go into con-
siderable lengths to define stable and convergent numerical
methods that can solve the problem, in particular, in the more
difficult case when the applied field is not zero and the A and
B chains are not equivalent.

A. Condition of equilibrium

The condition of equilibrium is that the net force acting on
each ion is zero:

F A,B
n + LA,B

n + KA,B
n + MA,B

n = 0. (32)

This equation must be solved with respect to the set of 2N
coordinates, which we denote as

{ξ} = {
ξA

1 , ξA
2 , . . . , ξA

N , ξB
1 , ξB

2 , . . . , ξB
N

}
. (33)

Solving (32) analytically is of course an impossible task.
We can however define an iterative scheme for computing
the equilibrium set {ξ}eq. To this end, we group separately
the terms in (32) that are linear in {ξ} and those that are
nonlinear or independent of {ξ}. The elastic forces LA,B

n are
always linear, and therefore they go into the first group.
An additional linear contribution is hidden in the elec-
trostatic forces F A,B

n , specifically, in the first term in the
figure brackets of (27). If this contribution is not properly
grouped with LA,B

n , the resulting iterations would be un-
stable. To obtain the required linearization, we recall the
asymptotic formula (24b) for Sd(�). This asymptote implies
that, at small separations, the interaction of two sublayers
of the same atom layer is harmonic; it is this harmonic
attraction that helps stabilize the iterations. We therefore
rewrite (27) as

F A
n = πb1κ

(
ξB

n − ξA
n

) + F̃ A
n , (34a)

F B
n = πb1κ

(
ξA

n − ξB
n

) + F̃ B
n , (34b)

where F̃ A,B
n are given by the same expressions as in (27)

except that, in the first term in the figure brackets, we
must replace [1 − Sd(|ξA,B

n − ξB,A
n |)] with S̃d (|ξA,B

n − ξB,A
n |),

where

S̃d(�) = 1 − b1� − Sd(�). (35)

Note that

S̃d(�) −−→
�→0

(
b2 − c2 − λdb1 + λ2

d/2
)
�2. (36)

Numerical values of all constants are listed in Table II.
Given the above development, we can group all nonlinear

terms as follows:

T A,B
n = −(

F̃ A,B
n + KA,B

n + MA,B
n

)
. (37)

For economy of space, we introduce a new constant

β = πb1κ. (38)

It should be kept in mind that β is proportional to the model
parameter κ . Then we write the linear terms explicitly and
obtain the following stability condition:

n = 1 :

ξA
2 − ξA

1 − 1 + β
(
ξB

1 − ξA
1

) = T A
1 [{ξ}], (39a)

ξB
2 − ξB

1 − 1 + β
(
ξA

1 − ξB
1

) = T B
1 [{ξ}], (39b)

1 < n < N :

ξA
n−1 − 2ξA

n + ξA
n+1 + β

(
ξB

n − ξA
n

) = T A
n [{ξ}], (39c)

ξB
n−1 − 2ξB

n + ξB
n+1 + β

(
ξA

n − ξB
n

) = T B
n [{ξ}], (39d)

n = N :

1 + ξA
N−1 − ξA

N + β
(
ξB

N − ξA
N

) = T A
N [{ξ}], (39e)

1 + ξB
N−1 − ξB

N + β
(
ξA

N − ξB
N

) = T B
N [{ξ}]. (39f)

Note that, for small lattice distortions T A,B
n [{ξ}] = MA,B

n +
O({ξ 2}).

The system of equation (39) is the starting point of all iter-
ations. However, the iterations are run differently depending
on whether the applied electric field is zero or not. Even if the
applied field is not zero, we first run the iterations to determine
{ξ}eq for given external pressure and zero external field; this
result is then used as the initial guess for nonzero applied field.
If this sequence is not followed, numerical instabilities may
arise. Therefore we describe below the algorithms for zero and
nonzero applied fields separately.

B. Algorithms for zero applied field

In the case e = 0, the A-type and B-type chains are equiv-
alent and we can write ξA

n = ξB
n = ξn and T A

n = T B
n = Tn.

Equations (39) simplify as

ξ2 − ξ1 − 1 = T1[{ξ}], (40a)

ξn−1 − 2ξn + ξn+1 = Tn[{ξ}], 1 < n < N, (40b)

1 + ξN−1 − ξN = TN [{ξ}]. (40c)

The left-hand side defines a simple three-point recursion. Due
to translational invariance of all physical properties, we can
set without loss of generality the initial guess to be (ξn)0 =
n − 1 and then, for i = 1, 2, . . ., define the recursive step as

(ξ1)i+1 = 0, (41a)

(ξ2)i+1 = 1 + T1[{ξ}i] (41b)

(ξn)i+1 = 2(ξn−1)i − (ξn−2)i + Tn−1[{ξ}i],

for 3 � n � N. (41c)

It can be seen that the force TN [{ξ}i] does not appear in (41).
However, it can be used in a consistency check, which is of
the form

1 + (ξN−1)i+1 − (ξN )i+1 + TN [{ξ}i] = 0. (42)

Assuming the consistency check is successful with some pre-
determined precision, we repeat the iteration step (41) until
the stop condition ‖{ξ}i+1 − {ξ}i‖2 � ε is met, where ε is
some small predetermined constant and ‖ · ‖2 is the L2 norm.
Note that computation of Tn[{ξ}] is simplified in the absence
of applied field. In particular, we have KA,B

n = 0 (lateral
springs do not exert any force). Also, in (34), F A

n = F B
n = Fn,

the first term (proportional to πb1κ) is zero and, in the expres-
sion for F̃n, we have S̃d (|ξA,B

n − ξB,A
n |) = 0.
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Algorithm 1. Computing equilibrium coordinates for zero ap-
plied field.

Require: Input parameters N , p, κ; e = 0.
1: Initialize 0 < ε � 1, i = 0 and imax � 1
2: Initialize {ξ} as ξn ← n − 1 for 1 � n � N
3: Initialize {ξ}old ← {ξ}
4: loop
5: i ← i + 1
6: If i > imax then
7: return error � Max num. iter. exceeded; stop
8: end if
9: for n = 1 to N do

10: tn ← Tn[{ξ}]
11: end for
12: ξ1 ← 0; ξ2 ← 1 + t1

13: for n = 3 to N do
14: ξn ← 2ξn−1 − ξn−2 + tn−1

15: end for
16: δ ← |1 + ξN−1 − ξN + tN |
17: if δ > ε then
18: return error � Consistency test failed; stop
19: end if
20: test ← ‖{ξ} − {ξ}old‖2

21: if test > ε then
22: {ξ}old ← {ξ} � Continue iterations
23: else
24: return {ξ}eq ← {ξ} � All ions at equilibrium
25: end if
26: end Loop

We can now define an algorithm for computing ξn at e = 0.
The corresponding pseudocode is given in Algorithm 1. Note
that, in the (i + 1)th iteration, we use the vector Tn[{ξ}i] that
was computed right after the ith iteration (in lines 9–11). The
forces Tn[{ξ}i] are not updated in lines 12–15. Algorithm 1
is stable and convergent. The stop condition test � ε (lines
20–25) is met at a modest number of iterations. Consequently,
the stop condition based on the number of iterations (lines
6–8) is typically not used. Convergence can be achieved at
or close to the machine precision, but selecting ε = 10−8 is
sufficient in practice.

C. Algorithm for nonzero applied field

In Algorithm 1, we make a complete iterative step updating
the coordinates {ξ} of a complete chain using the nonlinear
forces Tn[{ξ}] determined at the previous iteration. This ap-
proach will not work in the case of nonzero applied field.
The main reason is that the A-type and B-type chains are
no longer equivalent in this case. The applied field tries to
extend one chain and contract the other. If we solve the three-
point recursion for each chain separately, the resulting chains
would be of different lengths. Even if the relative difference
of the lengths of A-type amd B-type chains is small, the
absolute difference can become comparable or larger than h.
Obviously, such an intermediate solution is far away from the
equilibrium. Updating the nonlinear forces and repeating the
iteration will result in runaway oscillations and, eventually,
will violate the basic assumption ξA

n , ξB
n < ξA

n+1, ξ
B
n+1 under

which the electrostatic forces are computed. We will therefore
proceed by updating the coordinates of one atom layer at a
time.

Still, (39) is too complicated to be solved efficiently by
iterations. The linearized left-hand side is no longer a simple
three-point recursion and it cannot be analytically inverted.
The left-hand side of (39) can be viewed as a matrix-vector
product where an 2N × 2N matrix A acts on the vector
{ξ}. This matrix can be, in principle, inverted to yield a
recursion generator of the form {ξ} = A−1T [{ξ}]. However,
a more computationally efficient and stable approach is to
seek equilibrium of one atom layer at a time while updating
the nonlinear forces after each update of the coordinates. To
this end, we make one additional (identical) transformation
of (39). Viewing each line of this set as a linear equation for
ξA

n and ξB
n , moving all other terms to the right-hand side, we

obtain

ξA
1 = β

1 + 2β

(
ξB

2 − 1 − T B
1 [{ξ}])

+ 1 + β

1 + 2β

(
ξA

2 − 1 − T A
1 [{ξ}]) ≡ RA

1 [{ξ}], (43a)

ξB
1 = β

1 + 2β

(
ξA

2 − 1 − T A
1 [{ξ}])

+ 1 + β

1 + 2β

(
ξB

2 − 1 − T B
1 [{ξ}]) ≡ RB

1 [{ξ}], (43b)

ξA
n = β

4(1 + β )

(
ξB

n−1 + ξB
n+1 − T B

n [{ξ}])
+ 2 + β

4(1 + β )

(
ξA

n−1 + ξA
n+1 − T A

n [{ξ}]) ≡ RA
n [{ξ}],

(43c)

ξB
n = β

4(1 + β )

(
ξA

n−1 + ξA
n+1 − T A

n [{ξ}])
+ 2 + β

4(1 + β )

(
ξB

n−1 + ξB
n+1 − T B

n [{ξ}]) ≡ RB
n [{ξ}],

(43d)

ξA
N = β

1 + 2β

(
ξB

N−1 + 1 − T B
N [{ξ}])

+ 1 + β

1 + 2β

(
ξA

N−1 + 1 − T A
N [{ξ}]) ≡ RA

N [{ξ}], (43e)

ξB
N = β

1 + 2β

(
ξA

N−1 + 1 − T A
N [{ξ}])

+ 1 + β

1 + 2β

(
ξB

N−1 + 1 − T B
N [{ξ}]) ≡ RB

N [{ξ}]. (43f)

This can be rewritten succinctly as

ξA,B
n = RA,B

n [{ξ}], (44)

where RA,B
n [{ξ}] are defined in right-hand sides of (43). We

emphasize that (44) is not an approximation but an identical
transformation of (39). The advantage of (44) is that it can
be iterated for each atom layer until it reaches an equilibrium
given the coordinates of all other layers (which may not yet
be at equilibrium). We then cycle over all layers until the
equilibrium is found.
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Algorithm 2. Computing equilibrium coordinates for nonzero
applied field.

Require: Input parameters N , p, e, κ

Require: Use Algorithm 1 with e = 0 (alternatively, use
Algorithm 2 with previous, smaller value of e) to compute
the initial guess {ξ}0

1: Initialize 0 < ε1, ε2 � 1, and imax, jmax � 1
2: Initialize {ξ} ← {ξ}0; {ξ}old ← {ξ}; i = 0
3: loop L1
4: i ← i + 1
5: if i > imax then
6: return error � Max iter. exceeded
7: end if
8: for n = 1 to N do � Loop over atom layers
9: ζ A

n ← ξA
n ; ζ B

n ← ξB
n ; j = 0

10: loop L2 (for layer n)
11: j ← j + 1
12: if j > jmax then
13: return error � Max iter. exceeded
14: end if
15: ξA

n ← RA
n [{ξ}]; ξB

n ← RB
n [{ξ}]

16: test ← √
(ξA

n − ζ A
n )2 + (ξB

n − ζ B
n )2

17: If test � ε1then
18: Exit Loop L2 (nth layer at equilibrium)
19: else
20: ζ A

n ← ξA
n ; ζ B

n ← ξB
n � Continue iterations

21: end if
22: end loop L2
23: end for
24: test ← ‖{ξ} − {ξ}old‖2

25: if test � ε2 then
26: return {ξ}eq ← {ξ} � All ions at equilibrium
27: else
28: {ξ}old ← {ξ} � Continue iterations
29: end if
30: end loop L1

These ideas give rise to Algorithm 2. Here we utilize the
equilibrium positions obtained by Algorithm 1 (alternatively,
from Algorithm (2) for a previously used, smaller value of
e, i.e., in a scan over e) as the initial guess. Importantly,
the term RA,B

n [{ξ}] in line 15 is updated before the assign-
ment operation using the current values of all coordinates
{ξ}. This is different from Algorithm 1 and more compu-
tationally demanding but helps maintain stability. Note that
the translational invariance along Z is not explicitly used in
Algorithm 2. This is so because we start with a given initial
guess and adjust each layer to its equilibrium one-by-one. For
this reason, Algorithm 2 does not have or need a consistency
check. The manifestation of translational invariance (which is,
of course, present in the model) is that the obtained solutions
are shifted along Z by  if we shift the initial guess by
, but the physical properties of the structure are invariant
to this shift. Algorithm 2 is stable and convergent; selecting
ε1 = ε2 = 10−8 typically results in a reasonable run time and
high precision of the obtained solutions. However, computing
strain to high precision at relatively small values of e (first few
data points in Fig. 12 below) may require ε1 = ε2 = 10−12.
Computations run in seconds to a minute per one value of

N = 600
N = 150

u/h

κ

0.250.20.150.10.050

1

0.95

0.9

0.85

FIG. 6. Lattice unit in Z direction, u, computed according to
(45a) as a function of the model parameter κ . At κ = 0 (no electro-
static interaction), u = h both theoretically and numerically. The dots
for N = 150 represent data points. The line for N = 600 connects
data points that are sampled at a 10-times higher rate and therefore
not shown explicitly.

e and N = 150, depending on the value of κ and required
precision.

VII. PHYSICAL PROPERTIES

In this section, we compute the basic physical properties of
the model. We will use the results of this section in Sec. VIII
below to verify various theoretical predictions for the electri-
cally induced pressure.

A. Lattice unit

As was mentioned in Sec. IV, the lattice unit of the model
structure is fixed to h in the X and Y directions. However,
in the Z direction, the attractive electrostatic interaction can
reduce the interlayer separation. We denote by �(p, e) the
equilibrium width of the slab (in physical units) at applied
dimensionless pressure p and dimensionless electric field e,
which are defined in (31). Note that the slab width shown
in Fig. 2 is �0 = �(0, 0). The lattice unit can be defined as
either

u = �(0, 0)/(N − 1) (45a)

or as

u = h(ξN/2+1 − ξN/2)|p=e=0. (45b)

Note that, at e = 0, ξA
n = ξB

n = ξn. The definition (45a) as-
sumes that the atomic planes make a perfect lattice of step u.
This is not quite so as the lattice cells close to the slab surfaces
are different from those in the bulk. However, for N = 150,
which is the number of layers for which most numerical
results below have been obtained, the difference between the
definitions (45a) and (45b) is negligible. We can say that the
bulk limit has been reached at N = 150.

The lattice unit u has been computed by Algorithm 1 for
various values of the model parameter κ . In Fig. 6, numerical
results are shown for N = 150 atom layers (dots) and verified
for N = 600 (line). As expected, u → h when κ → 0. At
κ = 0.25, we have u ≈ 0.87h. If we increase κ further, the
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0.240

0.220

0.200

0.160

0.128 0.064

0.001

Λ(p, 0)
Λ(0, 0)

p 0.20.150.10.050

1

0.9

0.8

FIG. 7. Equilibrium width of the slab �(p, 0) as a function of
applied dimensionless pressure p for different model parameters κ

(values labeled near each curve), N = 150 and e = 0. The function
is normalized to the equilibrium width at p = e = 0, �(0, 0) =
(N − 1)u, where the lattice unit u is shown in Fig. 6. Dots show the
computed data points and lines are drawn to guide the eye.

system would lose mechanical stability as the electrostatic at-
traction overcomes the elastic repulsion. This is an artifact the
simplistic assumption that the elastic forces remain harmonic
regardless of the inter-ion distance. The assumption can be
fixed in future refinements of the model by including addi-
tional nonlinear terms in KA,B

n to account for more realistic
inter-ionic potentials. In this paper, we limit consideration to
κ � 0.25.

B. Young’s modulus

We next study the equilibrium width of the slab under
applied external pressure and zero applied field, �(p, 0).
We apply the external pressure to both surfaces of the slab,
so that the total force is zero. As e = 0, we can still use
Algorithm 1 for the computations. Figure 7 shows the ratio
�(p, 0)/�(0, 0) as a function of the dimensionless pressure
p for several values of the model parameter κ . Each curve is
plotted up to the critical pressure above which the structure
collapses. Obviously, the critical pressure becomes smaller
when κ is increased.

Young’s modulus η can be computed from the slopes of the
curves shown in Fig. 7 near the point p = 0. The definition
(for the dimensionless combination hη/k) is

hη

k
= −

[
∂

∂ p

�(p, 0)

�(0, 0)

∣∣∣∣
p=0

]−1

≈ δp �(0, 0)

�(0, 0) − �(δp, 0)
,

(46)

where δp is a small increment of the dimensionless pressure.
Note that, at κ = 0, the derivative in square brackets is equal
to −1 and the corresponding theoretical limit is η(κ = 0) =
k/h. This is, approximately, the case for the curve with κ =
0.001 in Fig. 7. As we increase κ , η is expected to decrease.
This is illustrated in Fig. 8 where we plot hη/k as a function of
κ . We have computed the derivative in (46) using δp = 0.001.
It can be seen that the lattice loses stiffness as κ is increased.
For κ > 0.25, Young’s modulus goes quickly to zero and the
structure becomes mechanically unstable.

N = 600
N = 150

hη/k

κ

0.250.20.150.10.050

1

0.8

0.6

0.4

FIG. 8. Young’s modulus η normalized to k/h (the theoretical
value at κ = 0) as a function of κ . The dots for N = 150 represent
data points. The line for N = 600 connects data points that are
sampled at a 10-times higher rate and therefore not shown explicitly.

C. Dielectric permittivity

Defining dielectric permittivity in terms of dipole moment
per unit volume is not always a robust approach [26,27], but
in the physical model of this paper, this method can be used
safely. The total dipole moments of the chains A and B are
given by

dA = −hq
N∑

n=1

(−1)nξA
n , dB = hq

N∑
n=1

(−1)nξB
n . (47)

The volume per two neighboring chains is

V = h3(ξA
N − ξA

1 + ξB
N − ξB

1

)
. (48)

In order to account for the electrically induced surface rough-
ness, we have taken in (48) the width of the slab to be the
average length of the chains A and B. However, in the bulk
limit, the effect of surface roughness is minor. From (47) and
(48), we find the electric polarization along Z as

Pz = dA + dB

V
= Eat

∑N
n=1(−1)n

(
ξB

n − ξA
n

)
ξA

N − ξA
1 + ξB

N − ξB
1

, (49a)

where Eat = q/h2 is the atomic field. On the other hand,
polarization of a homogeneous slab in the geometry of Fig. 2
is

Pz = ε − 1

4π ε
Eext, (49b)

where ε is the dielectric permittivity. Comparing (49a) and
(49b) and recalling the definition e = Eext/Eat, we find the
expression for ε,

ε = 1

1 − 4πD0
, (50a)

where

D0 = ∂D
∂e

∣∣∣∣
e=0

≈ δD
δe

(50b)

and

D =
∑N

n=1(−1)n
(
ξB

n − ξA
n

)
ξA

N − ξA
1 + ξB

N − ξB
1

. (50c)
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κ = 0.25
κ = 0.20
κ = 0.15
κ = 0.10
κ = 0.05

D

e

0.40.30.20.10

0.02

0.01

0

FIG. 9. Dimensionless dipole moment D as a function of dimen-
sionless applied field e for different values of the model parameter κ

for N = 150. Every tenth computed data point is shown as a dot.

Here δD is the value of D at a small increment δe of the
dimensionless electric field. We have implicitly assumed that,
at small e, D ≈ D0e with D0 �= 0 (the first derivative does not
vanish at e = 0), which indeed follows from symmetry since
D must change sign when e changes sign.

Computation of D requires the use of Algorithm 2 as now
we must take e �= 0. This is somewhat slower than using
Algorithm 1 but runs in seconds per a data point in the most
challenging cases of relatively large κ and e and N = 150. In
Fig. 9, we plot D as a function of e in the interval 0 � e � 0.4.
It can be seen that D is an approximately linear function of
e in a wide range of parameters. The dielectric permittivity
ε is determined by the slopes of the lines shown in Fig. 9
near the point e = 0, although this slope stays nearly con-
stant in the whole range of e considered (small deviations
from linearity exist but are not visually discernible from the
figure).

We now have everything we need to compute the dielectric
permittivity. We have evaluated the derivative in (50b) using
δe = 0.02. The results are shown in Fig. 10 for N = 150 and
N = 600. It can be seen that the dielectric permittivity is more
sensitive to the number of atom layers N than the purely

N = 600
N = 150

κ

0.250.20.150.10.050

3

2

1

FIG. 10. Dielectric permittivity of the model structure as a func-
tion of κ at zero external pressure. Dots show every tenth computed
data point for N = 150. Continuous connects all computed data
points for N = 600.

Approx. (17b)
Approx. (14b)

Exactα

κ

0.250.20.150.10.050

20

15

10

5

0

FIG. 11. Electrostrictive coefficient α as a function of κ for N =
150. For comparison, approximations (14b) and (17b) are also plot-
ted where the data of Fig. 10 for ε have been used. Approximations
are inaccurate for κ � 0.02.

mechanical properties: there is a small but visible difference
between the cases N = 150 and 600. Increasing N even fur-
ther (i.e., to N = 1200) does not change ε visibly but slows
down the computations (data not shown). Considering that
the difference between the N = 150 and 600 cases is already
minor, we use N = 150 in the remainder of this paper.

It can also be commented that the maximum obtained value
of ε (slightly larger than 3.0 at κ = 0.25) is still significantly
smaller than the static dielectric constant of NaCl (between
4.0 and 5.0). However, in physical NaCl crystals, polarization
occurs due to both lattice distortion and perturbation of the
electron density. In the present model, we do not account
for the electronic mechanism of polarization, and it could be
expected that the obtained value of ε is underestimated.

D. Electrostrictive coefficient

We can compute the electrostrictive coefficient α by com-
puting the change of ε due to externally applied pressure. The
dielectric constant shown in Fig. 10 was computed at zero
external pressure. Now let us increase the dimensionless pres-
sure from 0 to δp and let the corresponding changes of the slab
width and dielectric constant be δ� and δε. Obviously, δ� is
negative and δε is positive. We can compute the coefficients
of interest using the relation

α = −�0
δε

δ�
. (51)

Note that α is dimensionless. Also, �0 = �(0, 0) is the equi-
librium slab width at zero applied pressure and zero applied
electric field.

The coefficient α computed computed by Algorithm 2
according to (51) is plotted in Fig. 11 as a function of κ .
We have used the increment of pressure δp = 0.001, which
provides good accuracy (at least, three significant figures).
The increment of the dimensionless electric field used to com-
pute ε according to (50b) at both values of external pressure
(p = 0 and p = δp) was e = 0.02. For comparison, we have
also plotted the approximations (14b) and (17b). It can be
seen that both approximations are inaccurate for κ � 0.02.
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TABLE III. Numerical values of the dimensionless Young’s modulus hη/k, dielectric permittivity ε, the coefficient α appearing in the
electrostriction force (11), and forms and numerical values of the function g(ε, α) that correspond to the competing expressions for the force
density (compare to Table I). All numbers are rounded off to four significant figures. Symbol H corresponds to the Helmholtz force density
(13). All physical parameters displayed in this table are also shown in various plots of Sec. VII and have been computed for N = 150.

g(ε, α)

(a) (b) and (d) (c) elstr H

κ hη/k ε α − ε2 − 1

ε2
− (ε − 1)2

ε2
− ε − 1

ε

α

ε2

α − ε(ε − 1)

ε2

0.05 0.9170 1.174 0.2451 0.2746 0.02198 0.1483 −0.1778 −0.02955
0.1 0.8231 1.383 0.7374 0.4771 0.07668 0.2769 −0.3855 −0.1086
0.2 0.5782 2.088 4.254 0.7706 0.2714 0.5210 −0.9760 −0.4550

In particular, the Clausius-Mossotti approximation does not
work well in the model considered here.

VIII. ELECTRICALLY INDUCED STRAIN

In this section, we present the central result of this paper.
We now consider the case when the applied electric field
is varied at zero external pressure. Even though we apply
no external mechanical pressure, the applied electric field is
expected to produce strain in the slab, which we denote by
σ (e),

σ (e) = �(0, e)/�(0, 0) − 1. (52a)

We interpret this strain as being caused by the electrically
induced pressure �ind(e) according to

σ (e) = −1

η
�ind(e), (52b)

where η is Young’s modulus whose value is displayed in
Fig. 8 as a function of the model parameter κ . Note that,
according to the convention, positive surface pressure induces
negative strain (compression) and vice versa. Various theoret-
ical expressions for �ind(e) corresponding to the competing
expressions for the electrostatic force density are summarized
in Table I. It follows from Table I and (52b) that the theoretical
relationship between σ (e) and e is of the form

σ (e) = κ g(ε, α)

8π (hη/k)
e2, (53)

where g(ε, α) is a dimensionless function whose form de-
pends on the theoretical expression for �ind(e). Obviously, the
physical parameters η, α and ε depend on κ as is illustrated
in Figs. 8, 10, and 11. Below, we compute the electrically
induced strain numerically for the following three values of
κ: 0.05, 0.1, and 0.2. Table III summarizes numerical values
of the corresponding physical parameters as well as the theo-
retical forms and numerical values of g(ε, α).

The electrically induced strain σ (e) (52a) was computed by
Algorithm 2, where we have defined �(0, e) as the average of
the lengths of A and B chains. In Fig. 12, we plot σ (e) for the
three values of κ shown in Table III and compare the results
to various theoretical predictions. It can be seen that σ (e) is
quadratic in e (as one could expect from symmetry) and much
smaller in magnitude than the strain that can be induced by
external pressure at comparable values of the dimensionless
external pressure and field, p ∼ e. Although all theoretical

predictions for the strain are not orders of magnitude apart,
the Helmholtz force density is clearly the winner and, in fact,
yields remarkably accurate predictions.

fH

felstr + fa

felstr + fb

felstr

σ × 105 (a) κ = 0.05
1

0

-1

-2

fH

felstr + fa

felstr + fb
felstr

σ × 104 (b) κ = 0.10
1

0

-1

-2

fH

felstr + fa

felstr + fb

felstr

e

σ × 103

(c) κ = 0.20

0.40.30.20.10

0

-1

-2

FIG. 12. Comparison of numerically computed electrically in-
duced strain σ (e) (52a) (points) and various theoretical predictions
(lines) for κ = 0.05 (a), 0.1 (b), and 0.2 (c), as functions of the
dimensionless applied field e = h2Eext/q. N = 150.
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We now discuss the data of Fig. 12 in more detail. First,
at all three values of κ considered, we have σ (e) < 0. This
corresponds to compression of the slab. We can conclude that
the expansion forces fa(r), fb(r) = fd (r) and fc(r) cannot ade-
quately describe elastic deformation of the slab. However, the
electrostriction force alone strongly overestimates the effect.
We must therefore add the electrostriction force to one of the
expansion forces to obtain the correct prediction. It can be
seen that adding together felstr (r) with fc(r), which results
in the Helmholtz force density according to (13), yields an
accurate precision in all considered cases.

Second, the approximations (14b) and (17b) for the
coefficient α are both inaccurate. In fact, using these approx-
imations for α in the Helmholtz force density would still
predict positive strain (expansion rather than contraction). It
can be concluded that the Clausius-Mossotti approximation is
not accurate for ionic crystals.

Finally, it should be emphasized that the results of Fig. 12
are not circular. We did not use any of the previously com-
puted physical parameters (η, ε, α) to compute the strain σ (e).
Rather, we have used these quantities in the theoretical pre-
dictions for σ (e). The remarkable accuracy of the Helmholtz
force density is not an artifact but a consequence of the deep
physical insight of the underlying theory.

IX. DISCUSSION

Following the original work of Helmholtz [7], electrostatic
forces in dielectrics are often considered macroscopically
from very general first principles of thermodynamics and en-
ergy conservation [[17], §15]. However, the electrostriction
forces can also be understood microscopically as conse-
quences of anaharmonicity of ionic interactions [28]. The
anaharmonicity-based argument can be readily understood
from the schematics of Fig. 3. In a nonpolarized lattice, there
is a force of attraction between adjacent atom layers, which
ultimately establishes the lattice unit u (displayed in Fig. 6
above). When we apply external electric field, the ions shift
from their positions. Considering two adjacent layers, we see
that some pairs of oppositely charged ions move closer to
each other (in the direction parallel to the applied field) and
some move further apart. If the interion potential was ideally
harmonic, the overall force of attraction between the two
layers would not change. But due to the anaharmonicity, the
increase in the attraction between the ions that move closer
is not compensated by the decrease in attraction between the
two ions that move further apart. As a result, the overall
force of attraction between two adjacent layers is increased,
which results in a smaller lattice unit—an effect that can be
interpreted as electrically induced strain.

As is often the case, the macroscopic and microscopic the-
ories cannot be easily derived from each other. The proposed
model provides a bridge between these two descriptions. An
interesting feature of this model is that it is purely classical yet
captures the essential physics correctly. Quantum description
based on the density-functional theory is more fundamental
but leads to substantial complexity, especially, when bound-
aries are introduced. However, accounting for boundaries and
finite size of the objects is essential for understanding the

electrically induced forces. The model of this paper allows
one to consider boundaries with relative ease.

While simulations reported above concern one-
dimensional compression of a plane-parallel layer and a
specific microstructure, it is hoped that the model can
be extended to crystals of more general macroscopic and
microscopic geometry. Considering macroscopic samples
that are finite in all three dimensions will create more
complicated strain and stress. This will also allow one to
account quantitatively for the fact that different lattice cells
(near the corners, edges, flat surfaces or in the bulk) have
different geometrical and physical properties. The associated
effects can influence the macroscopic properties of crystals,
including stability conditions, which determine which kinds
of surfaces are possible (the generalized Tasker condition)
and also bulk polarization [19]. The model can also be
extended to different and more complicated microstructures.
The author believes that the accuracy of the Helmholtz
formula is not an artifact of the specific crystal structure
of NaCl but will persist for other crystals, in particular, for
those with more than two different ions. It is also possible
to introduce phenomenologically electronic polarization
into the model. Some more generally applicable theoretical
formulas for the force density are given in Appendix. The
Helmholtz force density is expected to remain accurate at
least in statics and in linear systems with a center of symmetry
(in noncentrosymmetric crystals, we also need to account for
the piezoelectric effect, which is typically much stronger).
However, verification of these prediction requires additional
simulations.

The model developed in this paper can be viewed as a
generalization of the Lorentz model of molecular polarization
to a macroscopic crystal. While the Lorentz model can be
easily solved analytically, the model of this paper requires
numerical simulations. Another difference is that the Lorentz
model concerns a pointlike object (a molecule) and therefore
can describe effects such as electric polarization, radiation
and scattering. The model of this paper describes an extended
object and can, in addition, capture electro-mechanical effects
such as electrostriction. For a different crystal geometry, the
model can also become applicable to the piezoelectric effect,
which is linear in the applied field and absent in crystals with a
center of symmetry such as NaCl. We also hope that the model
can be generalzied beyond statics and used in the dynamic
theory of electrostriction, which is a topic of current interest
[29].

The numerical methods developed in this paper are based
on seeking the zero of force rather than the minimum of
potential. The two methods are related as force is the gradient
of the potential. Both algorithms described in Sec. VI are
some forms of descent although we do not prove that the
descent is steepest and do not seek the global minimum. In
fact, the total potential of the model has many singularities
(when two ions of opposite charge coalesce) and the total po-
tential energy is not a convex function of the ionic coordinates.
Instead of searching for a unique global minimum (which we
know does not exist), we seek the local minimum that is not
too far from the unperturbed configuration and satisfies some
consistency conditions such as ξA

n , ξB
n < ξA

n+1, ξ
B
n+1. Whether

this approach can be generalized to objects that are finite in
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all three dimensions remains to be seen. It is clear that general
iterative schemes of the form {ξ}i+1 = A−1({ξ}i + R[{ξ}i]),
where R[{ξ}] is a nonlinear term, can be derived. The question
is whether the condition number of A can be made sufficiently
small for convergence and whether the computation time can
be made reasonable.

In summary, we have reproduced the Helmholtz force den-
sity from microscopic but purely classical principles. This
result establishes a connection between macroscopic and mi-
croscopic theories of electrostriction and other electrically
induced forces in continuous media. It can be concluded
that the forces fa(r) and fb(r), which appear in the standard
Lorentz and Einstein-Laub force densities [6] but do not pre-
dict the correct strain should be understood only in the integral
sense. This is similar to the vector of electric polarization
P(r), which always gives correctly the total dipole moment
of a finite body but should not be interpreted literally as
a density of dipole moment. Just as the spatial integral of
P(r) retains its validity for arbitrarily time-varying fields and
beyond the linear approximation, the integrals of fa(r) and
fb(r) are generally valid—but the functions themselves should
not be interpreted pointwise. In contrast, the Helmholtz force
density fH (r) can be interpreted as a pointwise density of force
(at least, in liquids or crystals with simple symmetry such
as NaCl) but is unlikely to retain validity beyond statics and
linear approximation.

APPENDIX: GENERAL EXPRESSION FOR THE
ELECTROSTRICTION AND HELMHOLTZ

FORCE DENSITY

In this Appendix, we provide expressions for the
Helmholtz and the electrostriction force densities, which are
applicable beyond the main assumptions adopted in this paper.
In particular, these expressions can be used in the case of
more general strain and stress tensors and, at least formally, in
the case of nonlinear relation between P and E. However, the
formulas should not be applied to strongly nonlinear phenom-
ena such as spontaneous polarization in ferroelectrics, phase
transitions and hysteresis. We also stay within the framework
of linear elasticity (the relation between strain and stress is
linear) as otherwise the theory becomes exceedingly compli-
cated.

We have seen in Sec. II that the electrostatic force density
can be decomposed into a term with nonvanishing volume
integral, which yields the total force Ftot according to (2), and
a divergence of some tensor of rank 2, T̂ (r), which vanishes
outside of the body. The latter term integrates to zero. Under
very general conditions, the force densities fa(r), fb(r) defined
in (1) integrate to the same (correct) value Ftot. All other force
densities can be written as either fa(r) or fb(r) plus divergence
of a tensor. If we start from fa(r), the Helmholtz force density
is of the form

fH (r) = −(∇ · P(r))E(r) + ∇ · T̂ (r), (A1a)

where

T̂ (r) = P(r) ⊗ E(r) − 1

2
(P(r) · E(r))Î + ŝ(r)

8π
, (A1b)

and ŝ(r) is the stress tensor associated with the effect of
electrostriction. The factor of 1/8π has been introduced in
(A1b) for later convenience and consistency with other no-
tations. Expression (A1) does not yet contain the dielectric
permittivity ε explicitly and can, at least formally, be applied
to an arbitrary relation between P(r) and E(r).

In linear elasticity, the electrostrictive stress tensor ŝ(r) is
coupled to the electrostrictive strain σ̂ (r) by the constitutive
relations

si j (r) = Ci jkl σkl (r),

σi j (r) = Di jkl skl (r),
(A2)

where summation over repeated indexes is implied. Here Ĉ
and D̂ are the stiffness (the elastic moduli) and the compliance
tensors of the medium. The electrostrictive stress and stain are
both quadratic in the electric field, viz,

si j (r) = αi jkl Ek (r)El (r),

σi j (r) = μi jkl Ek (r)El (r). (A3)

Here α̂ and μ̂ are the electrostrictive coefficients (tensors
of rank 4). The relation between α̂ and μ̂ follows from the
constitutive relations (A2):

αi jkl = Ci jmn μmnkl , μi jkl = Di jmn αmnkl . (A4)

The tensors α̂ and μ̂ in terms of derivatives of electric polar-
ization of the medium with respect to the stress or strain and
electric field can be obtained from various thermodynamic
identities [14]. Specifically

αi jkl = −4π ∂2Pk (r)

∂σi j∂El (r)
, μi jkl = −4π ∂2Pk (r)

∂si j∂El (r)
. (A5)

Here the derivative with respect to El (r) is evaluated in every
point in space. If the relation between Pk (r) and El (r) is
nonlinear, the resulting electrostrictive coefficients are also
r-dependent and not truly linear coefficients of the medium.
This is a serious complication. If however the polarization
response is linear or we can linearize this relation for the
relevant magnitudes of the electric field, we can write

∂Pk (r)

∂El (r)
= εkl − δkl

4π
. (A6)

In this case, the tensors α̂ and μ̂ are constant inside the
medium and vanish in vacuum, as expected. From (A5) and
(A6), we find

αi jkl = − ∂εkl

∂σi j
, μi jkl = −∂εkl

∂si j
. (A7)

These relations are applicable to linear but arbitrarily
anisotropic media.

We now return to the model of this paper in which only
uniform uniaxial strain along the Z axis is present. The only
relevant elements of σ̂ and ŝ are in this case σzzzz and szzzz,
which we denote by σ and s for simplicity. For a uniform
strain along Z , σ and s are of the form σ = �/�0 − 1 and
s = −�ext = −(k/h)p, where �ext is the external pressure
(positive if it tries to compress the slab and negative other-
wise). We then find

α = ∂ε

∂σ
= −�0

∂ε

∂�
, μ = −∂ε

∂s
= h

k

∂ε

∂ p
. (A8)
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FIG. 13. Electrostrictive coefficient μ as a function of κ . N = 150.

In view of the constitutive relation s = ησ , only two of these
three parameters are independent and in principle it is suf-
ficient to compute numerically only two of them. Above,
we computed the parameters η and α as functions of the
model parameter κ (Figs. 8 and 11). For consistency, we
can also compute μ using the second equation in (A8). This
computation does not utilize the constitutive relation directly
and is therefore independent. We display the electrostrictive
coefficient μ as a function of κ computed using the second
equation in (A8) in Fig. 13. The derivative was computed
using two points p = 0 and p = δp = 0.001. Note that the
data of Figs. 8 (Young’s modulus η), Fig. 11 (electrostrictive
coefficient α) and Fig. 13 (electrostrictive coefficient μ) sat-
isfy the constitutive relation with the relative precision 10−6.
That is, the computed values satisfy |μη/α − 1| < 10−6 for
all κ’s used. This provides an additional consistency check
for the simulations.
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