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Applicability of effective medium description to photonic crystals in higher bands:
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We consider conditions under which photonic crystals (PCs) can be homogenized in the higher photonic bands
and, in particular, near the � point. By homogenization we mean introducing some effective local parameters
εeff and μeff that describe reflection, refraction, and propagation of electromagnetic waves in the PC adequately.
The parameters εeff and μeff can be associated with a hypothetical homogeneous effective medium. In particular,
if the PC is homogenizable, the dispersion relations and isofrequency lines in the effective medium and in the
PC should coincide to some level of approximation. We can view this requirement as a necessary condition
of homogenizability. In the vicinity of a � point, real isofrequency lines of two-dimensional PCs can be
close to mathematical circles, just like in the case of isotropic homogeneous materials. Thus, one may be
tempted to conclude that introduction of an effective medium is possible and, at least, the necessary condition
of homogenizability holds in this case. We, however, show that this conclusion is incorrect: complex dispersion
points must be included into consideration even in the case of strictly nonabsorbing materials. By analyzing the
complex dispersion relations and the corresponding isofrequency lines, we have found that two-dimensional PCs
with C4 and C6 symmetries are not homogenizable in the higher photonic bands. We also draw a distinction
between spurious �-point frequencies that are due to Brillouin-zone folding of Bloch bands and “true” �-point
frequencies that are due to multiple scattering. Understanding of the physically different phenomena that lead to
the appearance of spurious and “true” �-point frequencies is important for the theory of homogenization.
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I. INTRODUCTION

The theory of homogenization of periodic electromagnetic
media continues to attract significant attention [1–5] due to
the proposed important applications such as subwavelength
optical imaging [6]. However, some fundamental questions
remain open in this field of research. Perhaps the most impor-
tant of these questions is the following: to what extent can the
“exotic” effective parameters obtained via one of the several
recently proposed homogenization theories be used without
restriction, like the constitutive parameters of homogeneous
natural media are conventionally used? Indeed, while it is
generally understood that homogenization is an approximate
procedure, the accuracy and the applicability range of a given
theory is very difficult to ascertain quantitatively.

In this paper, we investigate whether a photonic crystal
(PC) can be homogenized at frequencies above the first
band gap and, particularly, near the � point. Answering this
question is important for the following reason. It is well
known that PCs can be characterized by negative dispersion in
the higher photonic bands even if the material from which
the PC is made has no absorption. On the other hand, in
purely dielectric homogeneous media, negative dispersion is
obtained only within the absorption bands. A homogeneous
material can be simultaneously transparent and characterized
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by negative dispersion only if it has a nontrivial magnetic
permeability [7,8]. Therefore, to obtain this result by homog-
enizing an intrinsically nonmagnetic PC, one has to consider
sufficiently large frequencies where the dispersion is negative
[9]. Typically, these frequencies are above the first band gap
of the crystal. We note that some intuitive arguments exist
suggesting that a PC can be homogenized sufficiently close
to the the �-point frequencies (that is, the frequencies for
which the Bloch wave number vanishes). However, a careful
consideration reveals that the first of these frequencies, ω1 = 0,
is fundamentally different from the higher ones ωn > 0 (n =
2,3, . . .). While homogenization can be arbitrarily accurate
near ω1, the same is not true near any ωn with n > 1.

The above conclusion is consistent with some of the previ-
ous numerical investigations of the homogenization problem
[10–12]. In fact, the work reported here is conceptually close
to Ref. [10], and one of the main ideas on which the present
paper is based has been stated in that reference. Namely, it was
noticed that the right-hand side of the dispersion equation ω =
f (q) can be expanded in powers of the Cartesian components
of q if ω is close to one of the �-point frequencies ωn. Here q is
the Bloch wave vector. Further, for s-polarized waves in two-
dimensional PCs with a center of symmetry, this expansion
is of the form f (q) = ωn + βxq

2
x + βyq

2
y . . ., or in the cases

of C4 and C6 symmetries that are considered in this paper,
f (q) = ωn + βq2 . . .. Here we have written explicitly the first
two nonvanishing terms of the expansion and ω is assumed
to be in the passband. By truncating the latter expansion at
the second order, we obtain the isotropic isofrequency line
q2 = (ω − ωn)/β so that the wave number q does not depend
on the direction of propagation. Another observation made
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in Ref. [10] was that, for incident waves with a sufficiently
large projection of the wave vector onto the interface (which
includes but is not limited to evanescent waves), higher-order
terms must be retained in the expansion of f (q) no matter
how close the frequency is to a �-point frequency, and that the
resultant law of dispersion is no longer isotropic.

Here we develop this basic idea of Ref. [10] theoretically
and illustrate it with numerical examples of a different kind.
While [10] is focused on the transmission and imaging
properties of a PC slab, here we consider in detail the
dispersion relations and isofrequency surfaces. We work
in a two-dimensional (2D) geometry and in s polarization
(one-component electric field) so that Maxwell’s equations
are reduced to a scalar wave equation. Additionally, the
medium will have either C4 or C6 symmetry. Under these
conditions, only scalar effective parameters can be introduced
[9]. The corresponding effective medium is isotropic and so
are its isofrequency surfaces. However, we will show that, in
the actual PC, the isotropy of isofrequency surfaces is lost
in the higher photonic bands once we include waves with
sufficiently large projections of the wave vector onto a given
axis. Therefore the PC cannot be described by local effective
parameters.

Thus, we will view two-dimensional PCs with C4 or C6

symmetry whose isofrequency surfaces are not isotropic as
not homogenizable [13]. We note that the lack of isotropy
can be confused with nonlocality (spatial dispersion). Indeed,
nonlocality of material parameters and anisotropy of local
parameters can result in somewhat similar phenomena. But
they are not the same effect and should be distinguished.
The distinction is especially evident when boundary value
problems are considered. For example, scattering from an
anisotropic sphere is an analytically solvable problem of
mathematical physics [14,15]. However, solving the same
problem for a nonlocal sphere is much more complicated and
will, generally, yield a different result.

To complicate things further, it is frequently stated that there
exists a complete physical equivalence between two alternative
descriptions of the electromagnetic properties of continuous
media [16–19]. In one description the medium is assigned a
nonlocal permittivity ε(ω,q) and a trivial permeability μ = 1.
This is the so-called Landau-Lifshitz approach [19]. In the
other description, the medium is assigned two local parameters
ε(ω) and μ(ω). We have previously argued that the two
descriptions are not physically equivalent in general [20], but it
is true that, in the so-called weak nonlocality regime [21], such
an equivalence exists for the refractive index of the medium
(but not for the impedance).

For the purpose of this paper, it is unimportant whether
the equivalence mentioned above exists or not. If it does
exist, then a homogenizable heterogeneous medium should
be characterized by some local parameters εeff(ω) and μeff(ω).
Whether these local parameters correspond to some effective
nonlocal parameter εeff(ω,q) and μeff = 1 in the alternative
description is irrelevant. On the other hand, if such local
parameters do not exist, then the medium cannot be reasonably
homogenized and the introduction of the nonlocal permittivity
does not solve the problem. Indeed, the knowledge of εeff(ω,q)
for all values of its arguments is not sufficient to solve any
boundary value problem in a finite sample [20], unlike the

knowledge of the local parameters εeff (ω) and μeff(ω). Besides,
the typical applications discussed in the literature such as
subwavelength imaging require local εeff(ω) and μeff(ω).
Therefore, we say that, in order for a PC to be homogenizable,
its dispersion relation must be (at least, approximately) the
same as in a hypothetical homogeneous effective medium with
some local parameters εeff(ω) and μeff(ω). We emphasize that
the above condition is necessary but, in general, not sufficient
because it does not include the impedance. But we will show
that even this necessary condition of homogenizability does
not hold in PCs above the first band gap.

We illustrate the theoretical arguments of this paper with
numerical examples using a rather simple but physically
relevant model. As was mentioned above, we consider two-
dimensional PCs (hollow inclusions in a high-index host) with
a one-component electric field polarized perpendicularly to the
plane of periodicity. Such PCs have been previously considered
in the literature as homogenizable in the higher photonic bands
[22–24]. Similarly to these works, we neglect in the majority of
cases frequency dispersion and absorption in the host material.
This is done not for computational convenience (our codes can
handle the more general case with equal efficiency) but rather
to analyze the exact cases that were previously considered in
the literature.

However, to illustrate the effects of absorption, we have
also performed simulations for a square-lattice PC with a
dispersive and absorptive host. In this case, the higher �-
point frequencies can be defined only approximately and the
case for homogenizability is even harder to make. Since no
qualitatively new phenomena emerge in an absorptive PC, at
least, as far as its homogenezability is concerned, we have
restricted simulations of triangular-lattice PCs to the case of
nonabsorbing host.

We finally note that our results can be understood in
a more general framework of the uncertainty principle of
homogenization [25]. According to this principle, the larger
the deviation of the effective magnetic permeability from unity
(according to a given theory), the less accurate this theory is in
predicting physical observables such as the transmission and
reflection coefficients of a composite slab.

The remainder of this paper is organized as follows. We
start with some general theoretical considerations relevant
to the problem at hand in Sec. II where we explain why the
circularity (or sphericity) of a real isofrequency line is not a
sufficient condition for homogenizability. Our computational
formulas are written down in Sec. III. Extensive numerical
examples for 2D square- and triangular-lattice PCs are
adduced in Sec. IV. Section V contains a discussion of the
results obtained. The two appendixes contain mathematical
details pertinent to the law of dispersion in 2D periodic
structures. These developments are important for clarification
of several subtle points such as classification of the �-point
frequencies. Appendix B also gives some rather involved
mathematical formulas that can be used in a numerical
implementation of the perturbation theory in which the Bloch
wave number is viewed as the expansion parameter.

II. GENERAL CONSIDERATIONS

For Bloch waves with a nonzero fundamental harmonic (as
defined in the appendixes) propagating in three-dimensional,
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intrinsically nonmagnetic PCs, the dispersion equation can be
written in the following general form [20,26]:

det[(q × q×) + k2�(ω,q)] = 0. (1)

Here k = ω/c is the free-space wave number and �(ω,q) is a
3D tensor, which is completely determined by the PC geometry
and composition and by the two arguments ω and q. The latter
can be considered as mathematically independent variables
and take arbitrary complex values. We will say that a complex
vector q is the Bloch wave vector of a PC at some frequency
ω if the pair (ω,q) satisfies (1).

Below, we work in the frequency domain and restrict the
frequency to be real and positive. The set of all q’s that satisfy
(1) for a given ω > 0 forms an isofrequency surface in 3D or
a line in 2D. However, the words “surface” and “line” should
not be understood literally because q is in general complex.
For example, in the 2D geometry that we consider below,
the set of complex q’s that satisfy (1) for some ω > 0 is a
four-dimensional manifold. The isofrequency lines that are
commonly displayed are the intersections of this manifold and
various two-dimensional subspaces.

The function �(ω,q) arises in various physical contexts
[27–29] and is sometimes interpreted as the nonlocal permit-
tivity tensor of the medium due to its explicit dependence on
q. We have shown [20] that the knowledge of �(ω,q) for all
values of its arguments is insufficient for solving boundary
value problems in finite samples. However, in this paper, we
restrict attention to dispersion relations, and to this end the
knowledge of �(ω,q) is sufficient.

In homogeneous nonlocal media, (1) is obtained in a
straightforward manner by the spatial Fourier transform of
the nonlocal susceptibility function. In heterogeneous periodic
media, the derivation is more involved. Sometimes (1) is
derived for such media by employing an external excitation
in the form of an “impressed” current that overlaps with
the medium and has the mathematical form of a plane
wave [27–29]. However, this approach is not necessary and
introduction of such currents into the model is not physically
justified [30]. Previously, we have derived (1) and defined
�(ω,q) for general three-dimensional PCs without appealing
to the concept of “impressed” currents [20,26]. Below, in
Appendix A, we present a basis-free derivation of (1) for a
two-dimensional PC. In Appendix B, we repeat the derivation
using the basis of plane waves, which yields expressions that
are directly amenable to numerical computation.

We can use (1) to formally define the �-point frequencies.
As one could expect, the definition is confounded by the
vector nature of electromagnetic fields. In particular, the
�-point frequencies can be polarization-dependent. However,
the simulations discussed below have been performed for
the special case of transverse Bloch waves, which satisfy
the condition q · E0 = 0, where E0 is the amplitude of the
fundamental harmonic of the Bloch wave for a given linear
polarization state [26]. In this case, (1) simplifies to

q2 = k2�(ω,q), (2)

where q is now a two-dimensional vector orthogonal to E0

and �(ω,q) is a scalar (a principal value of the tensor �

that corresponds to the direction of E0). Note that E0 can
be an eigenvector of �(ω,q) for all ω and q, typically, as

a consequence of the PC symmetry. Also, we use the same
notation � for the tensor and for its principal values, but this
should not cause confusion since only the latter interpretation
will be used below.

In what follows, we will consider only the scalar equation
(2) and assume that the two-dimensional Bloch vector q =
(qx,qy) lies in the XY plane of a rectangular frame while
E0 = E0ẑ is collinear with the Z axis [31]. By focusing on
the special case of transverse waves, we do not disregard any
important effects but rather focus on the essential features of
the theory.

We now proceed with the analysis of Eq. (2). We will say
that a frequency ωn is the nth �-point frequency of a PC if the
following conditions hold:

(i) ω2
n�(ωn,0) = 0; (3a)

(ii) �(ω,q) is an analytic function of

ω and q in the vicinity of ω = ωn,q = 0. (3b)

The first trivial solution to (3a) is ω1 = 0, unless �(ω,0)
diverges as 1/ω2 or faster at ω = 0. This possibility can be
safely ignored and the first (fundamental) �-point frequency
exists in all PCs, even if they are made of conducting
constituents. Also, �(0,q) is usually analytic near q = 0 so
the condition (3b) is also satisfied for ω1. We do not have a
proof of this statement but will see that all counterexamples to
(3b) occur at ωn > 0.

The higher �-point frequencies can be determined from the
equation

�(ωn,0) = 0, ωn > 0. (4)

The condition (3b) should also hold. It therefore can be seen
that the nature of the first and the higher �-point frequencies
is different. At the first frequency, �(ω1,0) = �(0,0) does not
turn to zero; in fact, it can be readily seen that �(0,0) = n2

eff ,
where neff is the effective refractive index of the medium in the
homogenization limit. But for the higher frequencies ωn �= 0,
we have �(ωn,0) = 0. This equality cannot hold in any truly
homogeneous medium (see Appendix A for more details).

At this point, a few remarks are in order. First, purely real
�-point frequencies of order higher than 1 do not generally
exist in PCs with non-negligible absorption. This is so because
(4) is in this case a complex equation: both real and imaginary
parts of (4) must be satisfied simultaneously. This is unlikely
to happen at a purely real ω. However, if, as is frequently done
in the PC literature, we assume that the dielectric permittivity
of the PC constituents is purely real, then (4) can be expected
to have real roots.

Second, derivation of Eqs. (1) or (2) does not require that
Re(q) be in the first Brillouin zone (FBZ) of the lattice.
However, if q is a solution to one of these equations, then
q + g is also a solution, where g is any reciprocal lattice vector.
Therefore, it is sufficient to consider only the solutions with
Re(q) ∈ FBZ.

Third, and related to the above, homogeneous media do
not possess higher-order �-point frequencies in the sense of
definition (3). It is true that the “artificially folded” dispersion
curve of a homogeneous medium, such as the one shown
in Figure 2 of Ref. [32], crosses the vertical axis at some
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(a) n = 1 (b) n = 2 (c) n = 5 (d) n = 10 (e) n = 50

FIG. 1. Isofrequency lines for a two-dimensional homogeneous medium artificially discretized on a square (top) and triangular (bottom)
lattice. The band index is labeled by n. The plots depict the isofrequency lines contained in the FBZ of the lattice and can be periodically
replicated in all directions. A mathematical definition of the folding operation is given in Eq. (22).

frequencies ωn, and one can conclude that at ω = ωn we also
have q = 0. However, condition (3b) is not satisfied at these
frequencies. This point is illustrated in Fig. 1 where we plot
the purely real isofrequency lines for a homogeneous medium
that is artificially discretized on two-dimensional square and
triangular lattices. It can be seen that the isofrequency lines are
very far from circular and become quasichaotic for large band
indexes n. This behavior distinguishes these pseudo-�-point
frequencies from the true ones, which can exist in PCs due to
strong multiple scattering. For a more detailed analysis, see
Appendix A.

Returning to the question of homogenizability, we can
now see why one might be tempted to think the medium is
homogenizable in the vicinity of a true �-point frequency.
Let ω be in the transmission band of a PC but close to a
�-point frequency ωn (n > 1), say, slightly below ωn. Let us
fix the frequency and expand �(ω,q) in powers of q. This is
possible because of (3b). If the PC has a center of symmetry,
the expansion to lowest order in q is of the form

�(ω,q) = α + βx

q2
x

k2
+ βy

q2
y

k2
+ . . . , α ≡ �(ω,0) � 1. (5)

In the above equation, ω is a fixed parameter and, therefore,
the explicit dependence of the expansion coefficients α, β

on ω is suppressed. Also, it is easy to see that, in the PCs
obeying C4 or C6 symmetry, βx = βy = β. If we now treat
the first two terms in the expansion (5) as an approximation,
write �(ω,q) ≈ α + βq2/k2, and substitute the result into the
dispersion equation (2), we will obtain an approximate solution

of the form

q2 = k2 α

1 − β
. (6)

We remark briefly that it is rather typical to interpret α as
the effective permittivity of the medium, εeff , and 1/(1 − β) as
the effective permeability, μeff . This approach is discussed
in detail in Ref. [20]. Since we consider only dispersion
relations in infinite media in this paper (a connection to the
problem of transmission and reflection of waves is made by
observing that the tangential component of the Bloch wave
vector is conserved at planar interfaces), the breakdown of
the squared refractive index n2

eff into the product of εeff and
μeff is irrelevant. What is important for our purposes is that
(6) describes a perfectly circular isofrequency line. Of course,
circular isofrequency lines are also characteristic of homoge-
neous materials. The conclusion is then drawn that sufficiently
close to a �-point frequency, a PC is indistinguishable from a
homogeneous medium.

However, the above line of argument has the following
deficiency. It is not really true that all Cartesian components
of q must be small near a higher-order �-point frequency. A
more precise statement is that the scalar q2 = q · q is small.
The Cartesian components of q can still be arbitrarily large
for complex q. An obvious example is the vector q = (p,ip)
where p is a real number.

In Appendix B, we develop a perturbation theory for
�(ω,q). The expansion is obtained for two-dimensional PCs
with either C4 or C6 symmetry in terms of the Cartesian
components of q for ω in the vicinity of one of the �-point
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frequencies ωn as defined in (3). The result is a special case of
the more general expansion (5) (which does not assume any
special symmetry) and is of the form

�(ω,q) = α + β2q
2 + β4q

4 + β6q
6 + β8q

8 + γ4q
2
xq

2
y

+ [
δ6xq

2
x

(
q4

x − 6q2
xq

2
y + 9q4

y

)
+ δ6yq

2
y

(
q4

y − 6q2
xq

2
y + 9q4

x

)] + · · · . (7)

Here q4 = (q2
x + q2

y )2, etc. It can be seen that the expansion
terms with the coefficients β2n are all circularly symmetric.
The first term that breaks the circular symmetry is

γ4q
2
xq

2
y . (8)

We can say that, starting from fourth order in q, the function
�(ω,q) starts to bear the traces of the underlying lattice, which
is not circularly symmetric.

However, the coefficient γ4 is zero in the case of C6

symmetry of the structure. This is so because expression (8)
is not invariant with respect to rotation by π/3. The simplest
anisotropic terms that are invariants of C6 arise to sixth order
in q and are of the form

δ6xq
2
x

(
q4

x − 6q2
xq

2
y + 9q4

y

)
, (9a)

δ6yq
2
y

(
q4

y − 6q2
xq

2
y + 9q4

x

)
. (9b)

The coefficients δ6x and δ6y in front of these terms in (7) are
rather complicated and we have not computed them explicitly
in Appendix B. We note, however, that the X and Y directions
are not equivalent in a triangular lattice. Therefore, δ6x �= δ6y .
If these two coefficients were equal, the term in the square
brackets in (7) would reduce to q6. This is exactly what
happens in the case of a square lattice where the X and Y

directions are equivalent and the corresponding coefficients
are absorbed in β6. The terms (8) and (9a) are graphically
illustrated in Fig. 2.

We thus see why the triangular lattice is more amenable to
homogenization: the anisotropic terms start to appear in this

FIG. 2. Graphical illustration of the terms (8) and (9a). The
parametric plots show the dependence of the magnitude of each term
on the direction of the (purely real) vector q. Note that the lines shown
in plots (a) and (b) are similar (but not completely identical) to the
isofrequency lines shown in Fig. 1 for n = 1. In the latter case, the
lines are reflected by the boundaries of the FBZ. However, in the
vicinity of the origin, the lines are identical [up to a π/6 rotation
for the term (9a)]. This is a general manifestation of the applicable
rotational symmetry group [C4 in (a) and C6 in (b)].

case only to sixth order in q. However, as soon as these terms
yield a noticeable contribution to �(ω,q), isotropy is lost very
fast. This observation was made in Ref. [10] and illustrated by
considering the transmission coefficient of a PC slab. Below
we will illustrate this observation by plotting the isofrequency
lines for an extended range of qx , which includes not only
propagating incident waves (in a vacuum or in a PC or in
both), but also evanescent incident waves.

In what follows, we will consider the following problem.
Fix the frequency and assume that the Bloch wave vector has
a known and purely real projection qx onto an axis that is
tangential to the PC/air interface (although the interface is not
considered explicitly). Then compute the corresponding values
of qy that satisfy the dispersion equation. Here qy can be real,
imaginary, or complex, even if the PC is made of lossless
components. In a lossless PC, the set of purely real solutions
(qx,qy) would form a traditional isofrequency line. However,
the dispersion equation has a solution (in fact, infinitely many
solutions) for any qx . Some of these solutions are complex.
When qy has a nonzero imaginary part, the corresponding
Bloch wave is evanescent. Evanescent Bloch waves can be
excited in the PC by an incident plane wave that is either
propagating or evanescent in a vacuum. It is important to note,
however, that the projection of the incident wave vector onto
any flat interface is equal to qx , Thus, to make sure that a
homogenization theory is applicable to a sufficiently large class
of incident waves (which must necessarily include evanescent
waves), we must consider qx in the interval of at least 0 <

qx � 2k, where k = ω/c is the free space wave number.

III. COMPUTATIONAL FORMULAS AND
NUMERICAL METHODS

In the numerical examples we consider a two-dimensional
PC whose exact permittivity ε̃(r) satisfies the periodicity
relation

ε̃(r + n1a1 + n2a2) = ε̃(r), (10)

where a1 and a2 are two primitive lattice vectors and n1, n2

are integers. Here and below the overhead tilde will be used
to denote functions obeying the lattice periodicity (10). We
will work in an orthogonal reference frame whose Z axis is
perpendicular to both a1 and a2. Then these two vectors lie
in the XY plane. We will further consider electromagnetic
waves with a one-component electric field Ê = (0,0,E) and a
two-component magnetic field H = (Hx,Hy,0). In this case,
Maxwell’s equations are reduced to the scalar wave equation
for the electric field,

[∇2 + k2ε̃(r)]E(r) = 0, (11)

where r = (x,y).
The formulas of this section are applicable to arbitrary

primitive vectors a1 and a2. However, the simulations will be
performed for the square lattice (a1 = a2 = a and a1 · a2 = 0)
and equilateral triangular lattice (a1 = a2 = a and a1 · a2 =
a2/2).

Let b1 and b2 be the primitive vectors of the reciprocal
lattice such that

aj · bk = 2πδjk. (12)

224202-5



VADIM A. MARKEL AND IGOR TSUKERMAN PHYSICAL REVIEW B 93, 224202 (2016)

A generic reciprocal lattice vector g can be written as

g = n1b1 + n2b2 (13)

where n1,n2 are integers. We can view g as a discrete composite
index, which maps one-to-one to the pair (n1,n2). In particular,
the exact permittivity of the medium is expandable as

ε̃(r) =
∑

g

εge
ig·r, εg = 1

S[C]

∫
C

ε̃(r)e−ig·rd2r, (14)

where C is an elementary cell of the medium and S[C] is its
area, i.e., a2 for a square lattice or |(a1 × a2) · ẑ| in the more
general case.

Our simulations were performed for a two-component PC
and we therefore adduce the computational formulas that are
specific to this case. However, we believe that the conclusions
of this paper are not limited to two-component media. For a
two-component medium we can write

ε̃(r) = εh + (εi − εh)�̃(r), (15)

where εh and εi are the permittivities of the host and the
inclusions and �̃(r) is the lattice-periodic shape function. Let
the region of the inclusion be � ∈ C. Then �̃(r) = 1 if r ∈ �

and �̃(r) = 0 otherwise. Upon Fourier transformation, we find
that

εg = εhδg0 + ρχM(g), (16)

where

M(g) = 1

S[�]

∫
�

e−ig·rd2r, (17a)

ρ = S[�]/S[C], χ = εi − εh. (17b)

In the above equations, ρ is the area fraction of the inclusions
and χ is the contrast. The function M(g) contains information
about the inclusion geometry but is independent of εh and εi .

Bloch-periodic functions such as the electric field E(r) and
displacement D(r) can be expanded as

E(r) =
∑

g

Ege
i(q+g)·r, D(r) =

∑
g

Dge
i(q+g)·r, (18)

where q is the Bloch wave vector, which must be determined
by substituting (18) into (11). The equation D(r) = ε̃(r)E(r)
takes the form Dg = ∑

p εg−pEp while (11) is reduced in this
case to

(g + q)2Eg = k2Dg. (19)

Combining the wave equation and constitutive relation to-
gether we obtain the eigenproblem

(g + q)2Eg = k2
∑

p

εg−pEp, (20)

which determines the allowable values of the vector q for each
frequency ω or for the corresponding wave number k = ω/c.
We now use the expression for εg (16), which is specific to
two-component PCs. Upon substitution of (16) into (20), we
obtain the infinite set of equations

[(g + q)2 − k2εh]Eg = ρχk2
∑

p

M(g − p)Ep. (21)

For each real value of qx (and k > 0), the above equation
defines an infinite set of qy .

In the simulations, we have solved (21) by linearization and
truncation of the grid of g′s. Linearization can be achieved
by the standard method of defining the new variable Hg =
(g + q)Eg. For any finite truncation of the grid of g’s, the
operation of linearization increases the number of equations
by the factor of 3. The resultant linear eigenproblem is neither
Hermitian nor symmetric and, therefore, its solutions are in
general complex.

We have solved the above eigenproblem by using Intel’s
MKL library of subroutines for Fortran. Convergence of the
results with the grid size was checked by (i) consecutively
doubling the size of the grid and (ii) by comparison with a
high-order finite-difference method (FLAME) [33]. We have
obtained both an excellent convergence with respect to the
grid size and an excellent agreement with the finite-difference
method, which allows us to conclude that the numerical results
shown below are accurate.

Below, we compare the solutions obtained numerically for
the actual PC to similar solutions in a homogeneous effective
medium, which is artificially discretized on the same lattice
as that of the PC. The refractive index neff of the medium
is determined from the approximate radius of the purely real
quasicircular lobe of the isofrequency line of the PC (or from
a more general fit in the case of losses). This way, the effective
medium mimics the dispersion law of the PC as accurately as
possible for the directions of propagation that correspond to the
points on the quasicircular lobe. To perform the comparison
for more general Bloch wave vectors q, we need to introduce
the operation of “folding” into the FBZ of the lattice. This
operation can be formally defined as

[q]FBZ = q − (n1b1 + n2b2), (22a)

ni = Nint

(
q · ai

2π

)
. (22b)

In the above equations, Nint(z) is the nearest integer to the
complex number z. The vector q in the right-hand side of
(22a) is not restricted to the FBZ and, in the effective medium,
it satisfies the dispersion equation q2

x + q2
y = n2

effk
2 where

neff is the effective index of refraction. We can view qx as
a mathematically independent real-valued variable, compute

qy as qy = ±
√

n2
effk

2 − q2
x , substitute the resultant pair (qx,qy)

in the right-hand side of (22a), and this will yield the dispersion
equation of the artificially discretized homogeneous effective
medium. Examples of such folding will be shown in the figures
below, and Fig. 2 was obtained by plotting all real-valued
points [q]FBZ in the plane (qx,qy) at the particular frequencies
for which these lines cross the origin.

IV. NUMERICAL EXAMPLES

A. Square lattice with nondispersive and nonabsorbing host

Consider a two-dimensional square lattice of infinite hollow
cylinders embedded in a high-index host. The primitive lattice
vectors are in this case a1 = a(1,0), a2 = a(0,1) and for the
reciprocal lattice, b1 = 2π

a
(0,1) and b2 = 2π

a
(1,0). The radius

of the cylinders is taken to be R = 0.33a. The host permittivity
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FIG. 3. Dispersion diagram for the square lattice of hollow
cylinders. Frequency is scanned from zero to slightly above the
second �-point frequency. The variable ka/π = ωa/πc = 2a/λ is
the dimensionless frequency. The line labeled LL is the light line and
the line labeled MG gives the Maxwell Garnett approximation to the
dispersion curve. Thin horizontal lines mark the frequencies at which
further simulations have been performed.

is εh = 9.61 and the inclusions (cylinders) are assumed to be a
vacuum with εi = 1. In this example, we disregard absorption
either in the host or in the inclusions. This is an “inversion”
of the model used in Ref. [34] where a 2D square lattice of
aluminum oxide rods in air was considered.

We start with the purely real dispersion diagram. The latter
is obtained by setting qx = 0, computing qy for a range of
electromagnetic frequencies, and by keeping only real-valued
solutions qy to the dispersion equation. That is, we will
disregard for the moment all complex and imaginary wave
numbers qy (these solutions will be considered later). This
approach is conventional for purely real permittivities of the
constituent material. Note that we compute the dispersion
diagram for a given propagation direction (along the Y axis).
Dispersion curves for different propagation directions are,
generally, different. However, if a higher �-point frequency ωn

exists according to the definition (4), then ωn is independent
of the propagation direction.

The dispersion diagram for the square lattice of hollow
cylinders is shown in Fig. 3. The horizontal lines in this
figure mark the dimensionless frequencies at which further
simulations have been performed.

The frequency ka/π = 0.200 [case (a)] is in the first
photonic band. The squared effective refractive index at this
frequency is n2

eff = 6.81. Note that the Maxwell Garnett
homogenization result for case (a) is slightly different: n2

eff =
6.66.

The frequency ka/π = 0.680 [case (b)] is in the second
transmission band, very close to and slightly below the second
�-point frequency. This is the main case we are interested in.

Finally, the frequency ka/π = 0.546 [case (c)] is at the
intersection of the second dispersion branch and the light
line. One can expect n2

eff ≈ 1 and neff ≈ −1 at this frequency,
since the dispersion in the second photonic band is negative.
However, we will see that the medium is very far from being

homogenizable in cases (b) and (c) and cannot be characterized
by local effective parameters.

The isofrequency lines for the three frequencies noted above
are shown in Figs. 4–6. As was explained in Sec. II, we fix the
frequency and view qx as a mathematically independent and
purely real variable, which is scanned in some interval. For
each qx considered, we find all values of qy whose imaginary
parts are restricted to some sufficiently large range.

In Fig. 4, we plot the real and imaginary parts of qy

as functions of qx . For each qx , there exist infinitely many
solutions to the dispersion equation with Re(qy) = 0 and
Im(qy) �= 0 and we cannot display all such points in the plots.
However, the number of solutions with Re(qy) �= 0 is finite,
and all such data points are shown in the figure.

Note that, for each solution (qx,qy) in which both qx

and qy are real, there is also a solution (qy,qx). However,
this symmetry is broken if qy has a nonzero imaginary
part. For this reason, the upper plots are not completely
symmetric with respect to the line qy = qx . However, the lobes
in the lower-left and upper-right corners consist of purely
real solutions and these lobes are symmetric. The line that
connects these two lobes consists of complex solutions qy with
both real and imaginary parts different from zero. Therefore,
these connecting lines are not symmetric. We note that these
complex solutions cannot be obtained in a homogeneous
medium and are therefore a manifestation of heterogeneity
of the PC.

Referring to the data of Fig. 4, we can conclude that, at
the frequency ka/π = 0.200, the dispersion relation in the
PC is almost indistinguishable from the dispersion relation
in a homogeneous effective medium with n2

eff = 6.81. The
correspondence holds well into the evanescent waves. The
range of qx shown in the figure for this frequency is 0 �
qx � 5k, and we can expect that the PC is homogenizable for
−5k � qx � 5k. In fact, the PC is homogenizable in an even
wider interval of qx . Indeed, the correspondence still holds
in the “reflected” segments of the lines in the bottom plot. In
the effective medium, these reflected segments correspond to
|qx | > 5k. The only slight discrepancy between the PC and
the homogeneous medium can be observed near the edge of
the FBZ (qx ≈ 5k). Overall, at this frequency, the dispersion
relations in the PC mimic those of a homogeneous medium
with a high precision and in a wide range of qx .

Now let us move to case (b), ka/π = 0.680. This frequency
is slightly below the second �-point frequency. As one could
expect from the theoretical arguments of Sec. II, the upper
plot has a nearly circular, purely real lobe in the lower-left
corner of the frame. If only this lobe is considered, one
might erroneously conclude that, at ka/π = 0.680, the law of
dispersion is almost the same as in an effective homogeneous
medium. But a quick purview of the scale of the upper
horizontal axis reveals that this isotropic behavior holds only
in a very narrow range −0.15 � qx/k � 0.15. In problems
of transmission through a flat interface, this corresponds to
incident angles of less than about 6◦ with respect to the normal.
Outside of the above range of qx , the isotropy is lost as can
be seen in the bottom plot. We emphasize that the isotropy is
lost in this case for |qx | < k. These values of qx correspond to
propagating waves in a vacuum. It is true that these waves are
evanescent in the PC but, upon transmission through a finite
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FIG. 4. Real (upper row of plots) and imaginary (bottom row) parts of qy as functions of qx (real by definition) for the square lattice of
hollow cylinders at various values of the dimensionless frequency ka/π . Dielectric permittivities of the host and inclusions are εh = 9.61,
εi = 1; the ratio of the cylinder radius to the lattice period is R/a = 0.33. Only one quadrant of the FBZ is shown in the upper row of plots;
this quadrant can be replicated to cover the whole FBZ. The scale of the lower horizontal axes is π/a and the scale of the upper horizontal axes
is 1/k, as labeled. All data points with Re(qy) = 0 (shown in the upper row) have nonzero imaginary parts except for the data point qy = 0 at
the intersection of the quasicircular lobe and the horizontal axis. The corresponding values of qy are purely imaginary. The imaginary parts
of some of these data points are outside of the plotting range in the lower row of plots. Data points are labeled “DISP” for the actual PC and
“HMG” for a homogeneous medium that is artificially discretized on the same lattice. The HMG isofrequency lines were computed according
to (22) with q2 = n2

effk
2 and n2

eff = 6.81 (a), n2
eff = 0.011 (b), and n2

eff = 0.91 (c). In the case (c), the choice of n2
eff guarantees the correct wave

number for propagation along X or Y axes but not for the intermediate directions.

slab, incoming propagating waves are always transformed
into outgoing propagating waves. Therefore, the transmission
properties of the PC at this frequency are very different from
those of any homogeneous medium.

Note that, at sufficiently large values of qx , the waves in PC
switch from being evanescent to being propagating again (the
upper-right corner lobe). This behavior is not characteristic
of any homogeneous medium. Moreover, it can be seen that
this PC is characterized by birefringence in some range of qx

even though no anisotropy is involved — again, an effect not
observed in homogeneous media. By birefringence we mean
the effect when, for a given value of qx , there exist Bloch waves
with two real but different values of qy , which corresponds
to two different directions of propagation. This phenomenon
cannot occur in any local homogeneous medium.

In case (c), ka/π = 0.546, there is obviously no hope to
approximate the law of dispersion of the PC by the law of
dispersion of any homogeneous effective medium. The real-
valued lobe of the isofrequency line is severely distorted and
birefringence is quite prominent and occurs in a wide range
of qx . As expected, the distortion of the real-valued lobe is
consistent with C4 symmetry of the problem. Note, however,

that this type of distortion is suppressed in the triangular lattice,
as will be shown below.

Next, we show the purely real quasicircular lobes of the
isofrequency lines in more detail in Fig. 5. It can be seen that
the lobe is almost indistinguishable from a mathematical circle
at the frequency ka/π = 0.200. A distortion consistent with
C4 symmetry is clearly visible at the frequency ka/π = 0.680.
At ka/π = 0.546 (far from the � point), this distortion is quite
severe.

Perhaps the most clear illustration of the departure from the
homogeneous behavior in cases (b) and (c) is shown in Fig. 6,
where we plot Re(q2

y ) as a function of q2
x . In a homogeneous

medium, this function is simply a straight line. This line is
folded into the FBZ of the lattice as is shown in Fig. 6(a)
if the medium is artificially discretized (we note that, for
the particular parameters and the lattice type considered at
the moment, the folding results only in linear segments; in a
more general case the isofrequency line can acquire curvature
due to the folding and an example will be shown below).
This behavior is reproduced with very good accuracy at the
frequency ka/π = 0.200 [case (a)]. However, in cases (b)
and (c) the departure from the linear behavior is obvious and
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FIG. 5. Purely real parts of the isofrequency lines shown in Fig. 4. The lines marked “HMG” are ideal circles.

dramatic. We will observe a similar behavior in the triangular
lattice as well.

We finally note that the complex branches of the isofre-
quency lines that connect the purely imaginary and purely
real segments of the data point sets is a peculiar feature of the
PC, which cannot be reproduced in any homogeneous medium
with a real refractive index. In the latter case, qy is either purely
real or purely imaginary and q2

y is always real.

B. Square lattice with dispersive and absorbing host material

To illustrate the effects of dispersion and absorption in the
host material, we now assume that εh is a function of the
frequency ω and is given by the following standard expression:

εh(ω) = 1 + [εh(0) − 1]
ω2

0

ω2
0 − ω2 − iγ ω

. (23)

Here ω0 is the resonance frequency and γ is the relaxation
constant. In the simulations, we have taken εh(0) = 9.3628,
ω0a/πc = k0h/π = 4, and γ /ω0 = 1/4π ≈ 0.079 58. Then,
at the frequency corresponding to ka/π = 0.680 (at which we
compute the isofrequency line), we have εh ≈ 9.61 + 0.12i.
The real part of this permittivity is the same as that of the
nonabsorbing host considered in the previous subsection.

The dispersion diagram of a PC with exactly the same
geometry as above but with the host permittivity described by
(23) is shown in Fig. 7. In this figure we compare the dispersion
diagrams for the absorbing and nonabsorbing hosts and it

can be seen that they are barely distinguishable. The working
frequency corresponding to ka/π = 0.680 is still just below
the �-point frequency in the second photonic band. However,
the �-point frequency is not precisely defined for the absorbing
medium because q is now complex at all frequencies. At the
apparent �-point frequency that is visible in the figure, only
Re(q) turns to zero while Im(q) does not. Correspondingly, the
condition (4) does not really hold at this frequency.

The isofrequency lines computed at ka/π = 0.680 for the
absorbing PC are shown in Fig. 8. The lines are compared
to those of a nonabsorbing PC (thin blue line) and of a
homogeneous effective medium whose refractive index neff

was obtained by fitting the dispersion points to the analytical
formula q2

y = n2
effk

2 − q2
x in the interval 0 � qxa/π � 0.075.

The effective refractive index obtained from the above proce-
dure is n2

eff = 0.0117–0.009 87i.
It can be seen from Fig. 8 that account of absorption does not

have a significant effect on the homogenizability of the PC.
The analysis, however, becomes more complicated because
all values of qy are now complex. An interesting result that
is not directly relevant to homogenization is the following. In
the case of nonabsorbing host, there exists a region of qx for
which qy has nonzero real and imaginary parts [see Fig. 4(b)].
The corresponding segment of the isofrequency line connects
the purely imaginary solutions to the purely real lobe in the
upper-right corner of the plot. In the case of an absorbing
host, these complex solutions split into two distinct branches
with slightly different imaginary and real parts; the upper-right

FIG. 6. Isofrequency lines for the squares of the Cartesian components of Bloch wave vector q. More precisely, Re(q2
y ) is plotted as a

function of q2
x for the same set of fixed frequencies that were considered in Figs. 4 and 5. In an effective homogeneous medium artificially

discretized on a square lattice, this dependence is piecewise linear as is shown in panel (a).
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FIG. 7. Comparison of dispersion diagrams for the host material
with a constant real permittivity εh = 9.61 (REAL) and with disper-
sive and complex permittivity given by (23) (CMPL). Geometrical
parameters are the same as in Fig. 3. The horizontal line marks the
frequency at which the isofrequency line has been computed for both
cases. In the case of dispersive media, qy is complex and the quantity
shown on the horizontal axis is Re(qy).

lobe is also deformed and split into two disjoint segments. As
a result, absorption in the host material enhances the effect of
birefringence. For almost all values of qx , the PC will transmit
two distinct Bloch waves whose rate of spatial decay is not
very different. Of course, there will also be an infinite number
of Bloch waves with very fast spatial decay.

The above observation that nonzero absorption results in
splitting of the isofrequency line into distinct and disconnected
branches may be interesting and deserving an additional
investigation, but it has no direct bearing on the main subject
of this paper. At least, the appearance of birefringence makes
homogenization only harder.

C. Triangular lattice with nondispersive and nonabsorbing host

We now turn to the case of a triangular lattice. The primitive
vectors for the real-space and reciprocal lattices are

a1 = a(1,0), a2 = a

(
1

2
,

√
3

2

)
,

b1 = 2π

a

(
1, − 1√

3

)
, b2 = 2π

a

(
0,

2√
3

)
.

At the center of each elementary cell, which is now rhombic,
we place a hollow cylinder of the radius R = 0.42a. These
inclusions do not cross the boundaries of the elementary cell.
Since the inclusion obeys the same symmetry as the lattice,
the whole structure is C6 symmetric. The permittivity of the
host matrix is taken to be εh = 12.25. This model was used in
Ref. [35].

The FBZ of the lattice described above is a rhombus and any
of the two triangles created by drawing a rhombus diagonal
are equivalent. One can construct a hexagon of two complete
rhombuses touching at one corner and two such triangles.
All six triangles forming this hexagon are equivalent and,
moreover, the dispersion points can be replicated periodically

FIG. 8. Isofrequency lines for the complex permittivity of the
host εh = 9.61 + 0.12i and ka/π = 0.680. Isofrequency lines of the
absorbing PC are compared to the respective results for a PC with
the purely real εh = 9.61 (thin blue line) and with the homogeneous
effective medium with the refractive index n2

eff = 0.0117–0.009 87i

(intermediate green line). The top two panels are analogous to the
column (b) in Fig. 4 (real and imaginary parts of qy as functions of
qx). The bottom panel is analogous to the column (b) in Fig. 6 (real
part of q2

y as a function of q2
x ).

on the hexagonal lattice. It is a common practice to plot the
isofrequency lines of such lattices inside a hexagonal region
of the reciprocal lattice. However, we do not use this approach
in the paper and limit attention to the actual FBZ of the lattice,
which is shown in all figures below.

The dispersion diagram for the direction of propagation
along the Y axis (qx = 0) is shown in Fig. 9. As previously,
three special frequencies are marked by the horizontal lines
in Fig. 9. These frequencies are ka/π = 0.200 [case (a)],
ka/π = 0.720 [case (b)], and ka/π = 0.650 [case (c)]. Just
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FIG. 9. Same as in Fig. 3 but for the triangular lattice of hollow
cylinders of the radius R = 0.42a in the host medium of the
permittivity ε = 12.25.

as was the case for the square lattice, frequency (a) is in the
first photonic band, frequency (b) is in the second band slightly
below the second �-point frequency, and frequency (c) is close
to the intersection of the light line and the second branch of
the dispersion curve.

The complex isofrequency lines for the three frequencies
mentioned above are shown in Fig. 10. This figure is analogous
to Fig. 4 and the same quantities are plotted using the same
scales of the axes. However, the FBZ of a triangular lattice is
more complex geometrically. Therefore, in the top row of plots

of Fig. 10, we have shown the complete FBZ of the lattice (the
black rhombus) while in Fig. 4, only one quarter of the FBZ
was shown.

We now analyze Fig. 10 in more detail. First, focus on
the real parts of qy (the upper row of plots). The central
quasicircular lobe and the horizontal line Re(qy) = 0 are
analogous to the similar features of the isofrequency lines
for a square lattice. The quasicircular lobes consist of purely
real solutions while the line qy = 0 corresponds to purely
imaginary solutions. The upper and lower horizontal lines
in the upper row of plots correspond to complex solutions
that are specific to the triangular lattice. Unlike in the case
of a square lattice, these complex solutions do not connect
purely imaginary and purely real segments of the isofrequency
line (within the FBZ). Another distinction is that the complex
solutions in a triangular lattice will appear due to folding of the
dispersion equation of an artificially discretized homogeneous
medium. For a square lattice, the appearance of complex
solutions is a result of interaction that cannot be obtained
by artificial folding.

We can understand the appearance of the complex solutions
shown in Fig. 10 by replicating the central rhombus of the top
row of plots in all directions and noting that the horizontal
line qy = 0 in the central rhombus will connect to the upper
or lower horizontal lines in the replicated rhombuses. We can
also understand these solutions qualitatively by considering a
homogeneous medium artificially discretized on a triangular
lattice. In the infinite (nondiscretized) medium, the law of
dispersion allows for purely imaginary solutions of the form
qy = ±i

√
q2

x − n2k2 for |qx | > nk, n > 0 being the index
of refraction. Now let us fold these solutions to the FBZ

FIG. 10. Same as in Fig. 4 but for the triangular lattice of hollow cylinders. The “HMG” isofrequency lines were computed according to
(22) with q2 = n2

effk
2 and n2

eff = 5.20 (a), n2
eff = 0.085 (b), and n2

eff = 0.82 (c). In the top row of plots, the FBZ of the lattice is shown by
the black rhombus. In the lower plot (b), FA and FB mark the first pair of hyperbolas defined by (27), and SA, SB mark the second pair of
hyperbolas.
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of a triangular lattice according to (22). We can ignore the
imaginary part of q for the purpose of computing the integers
n1, n2 that are used in this equation. The result of the folding
is

[qx]FBZ = qx − 2π

a
n1, (24a)

[qy]FBZ = ±i

√
q2

x − n2k2 − 2π

a
√

3
(2n2 − n1), (24b)

n1 = Nint

(
qxa

2π

)
, n2 = Nint

(
qxa

4π

)
. (24c)

These equations are valid for |qx | > nk. We note that the
integer index m = 2n2 − n1 can take only three values: 0, ± 1.
Correspondingly, for the real and imaginary parts of [qy]FBZ,
we have the following results:

[Re(qy)]FBZ = m
2π

a
√

3
, m = 0, ± 1, (25a)

[Im(qy)]FBZ = ±
√

q2
x − n2k2. (25b)

We will obtain a dispersion equation containing only the
quantities [qx]FBZ and [qy]FBZ if we substitute qx in (25b)
from (24a), i.e., use the relation

q2
x =

{
[qx]FBZ + 2π

a
n1

}2

(26)

to obtain the following closed-form equation:

[Im(qy)]FBZ = ±
√{

[qx]FBZ + 2π

a
n1

}2

− n2k2

for

∣∣∣∣[qx]FBZ + 2π

a
n1

∣∣∣∣ � nk. (27)

This equation describes a family of hyperbolas parametrized
by n1. The first pair of these hyperbolas (corresponding to
n1 = 0) are labeled as FA and FB in Fig. 10. The second
pair or hyperbolas (including two branches with n1 = ±1) are
labeled as SA and SB. Infinitely many similar curves can be
generated by translations along the qx axis, which correspond
to arbitrary values of n1. Note that the two integers n1 and
n2 that label different “reflected” branches of the solution to
the dispersion equation are subject to the selection rule m =
n1 − 2n2 = 0, ± 1. Therefore, for each n1, the set of allowable
values of n2 is restricted.

Thus, the FBZ folding in a triangular lattice transforms
purely imaginary solutions qy into complex solutions [qy]FBZ,
which explains the appearance of the upper and lower
horizontal lines in the top row of plots in Fig. 10.

Of course, the analytical folding described above is valid
only for a homogeneous medium. However, at the frequency
ka/π = 0.200, the actual dispersion relation in the PC mimics
the dispersion relation in a homogeneous effective medium
with n2

eff = 5.20 very closely. This conclusion can be drawn
from the data shown in the lower plot for case (a) in Fig. 10
and is further illustrated in Fig. 11. In the latter figure, we plot
[Im(qy)]FBZ as a function of [qx]FBZ (the symbol [. . .]FBZ that
signifies Bloch periodicity of all data points is omitted in this
and other figures for brevity). The comparison is made between

FIG. 11. An expanded view of Im(qy) as a function of qx for
ka/π = 0.200 [case (a)]. Here several “reflected” segments of the
isofrequency line are shown. These segments are obtained by folding
the corresponding isofrequency line for an infinite homogeneous
medium into the FBZ of the triangular lattice according to (27).
The analytical lines outside the FBZ (shown by the two vertical lines)
are not the actual solutions and are shown only to guide the eye.

the respective quantities obtained for the actual PC and a
homogeneous effective medium artificially discretized on the
same lattice. The individual hyperbolas described by (27) are
shown with green lines and the actual dispersion solutions
in the PC are shown by the red points. Both solutions are
only valid within the FBZ (between the two vertical lines) and
beyond these two lines they must be periodically replicated.
The green lines outside of the FBZ are shown in the figure
only to guide the eye (to help visually identify individual
hyperbolas).

It can be seen that, at the dimensionless frequency
ka/π = 0.200, the law of dispersion in the PC is almost
indistinguishable from the law of dispersion in a homogeneous
medium, at least up to |Im(qy)a/π | � 5, which corresponds,
approximately, to |qx | � 25k, that is, very far into the evanes-
cent spectrum. Therefore, we can claim that, at this particular
frequency, the PC can be homogenized for many practical
purposes.

The situation is quite different at the other frequencies
considered. In case (b) (ka/π = 0.720, just below the second
�-point frequency), the dependence of Re(qy) on qx still seem
to be very “homogeneous.” However, as soon as we look at
Im(qy), it becomes obvious that the law of dispersion departs
from that of a homogeneous medium quite dramatically as
soon as qx approaches the region of evanescent waves (|qx | �
k). Definitely, homogenization is not possible for incident
evanescent waves, and it is inaccurate for propagating waves
with large angles of incidence, e.g., for θinc � 70◦. For the
frequency (c) (ka/π = 0.650), the quasicircular lobe is much
larger and appears to not be distorted significantly. However,
the lower plot again clearly indicates a lack of correspondence
between the law of dispersion of a homogeneous medium and
the law of dispersion in the PC.

We therefore conclude that the PC is not homogenizable at
the frequencies (b) and (c). Assigning the PC some effective
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FIG. 12. Same as in Fig. 5 but for the triangular lattice. Distortions of the quasicircular lobes are consistent with C6 symmetry. The straight
line in panel (c) makes the π/3 angle with the horizontal axis.

parameters at these frequencies can potentially be a valid
approximation only for a limited range of incident angles that,
at the very least, do not include evanescent waves.

Next, as was done above for the square lattice, we show in
Fig. 12 the quasicircular lobes of the top row of Fig. 10 in more
detail. In order to make the small deviations from circularity
more visible, we plot in this figure only one quarter of each
quasicircular lobe. The lobes appear to be indistinguishable
from mathematical circles in cases (a) and (b) but some small
distortions consistent with the C6 symmetry are visible in case
(c). The high quality of the quasicircular lobes can be explained
by the fact that the terms of the form (8) do not enter the
expansion of �(ω,q) because they are not invariants of C6

symmetry. Therefore, the distortions first appear in six-order
terms (9). However, as soon as the terms (9) become non-
negligible, the isotropy of �(ω,q) is lost quickly. Therefore,
the high quality of the quasicircular lobes shown in Fig. 12 is
not a sufficient condition for homogenizability.

But the most convincing demonstration of nonhomog-
enizability of the PC at the frequencies (b) and (c) can
be obtained by considering the squares of the Cartesian
components of q. In Fig. 13, we plot Re(q2

y ) vs q2
x . In a

homogeneous effective medium artificially discretized on a
triangular lattice, this plot consists of one linear and several
curved segments. The linear segment corresponds to the
eigenvalues that are either purely real or purely imaginary.
The curved segments correspond to the peculiar complex
eigenvalues that are specific to the triangular lattice and

described mathematically by Eqs. (24)–(27). One such curved
segment is shown in every panel of Fig. 13; other curved
segments lie outside of the plot frames. We now observe
that at the frequency (a) there is a complete correspondence
between the artificially discretized homogeneous medium and
the PC. This, of course, could have been expected from the
data shown in Figs. 10–12. At the frequencies (b) and (c), the
correspondence is broken in the linear segment. In addition
the curved segments in the homogeneous medium and in the
PC are completely different. The last point is significant and
deserves an additional discussion.

Let us assume that a slab of a homogeneous material con-
tained between two planes y = 0 and y = L is illuminated by a
plane wave with the incidence angle such that qx < π/a, where
a is the period of artificial discretization in the x direction. We
can describe the medium as homogeneous (the traditional ap-
proach) or as a PC (by using artificial discretization). Both ap-
proaches are mathematically equivalent and will yield the same
results for all observables. Assume that we have decided to de-
scribe the medium as a PC. In this case, for a given purely real
qx , there will be infinitely many eigenvalues qy . However, the
incident radiation will excite only one mode, namely, the mode
with qy that corresponds to the dispersion relation of the homo-
geneous material. The modes with other values of qy can be ex-
cited if we take qx to be outside of the FBZ of the lattice. In any
case, for a given qx , only one mode is excited in the material.

In the case of an actual PC whose law of dispersion closely
mimics that of a homogeneous medium, as was the case at

FIG. 13. Same as in Fig. 6 but for the triangular lattice that is considered in this subsection. Linear and curved segments of the plot for an
artificially discretized homogeneous medium are shown by different colors in the online version of the figure (green and blue, respectively).
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the frequency (a), we can expect that the same selection rules
will work: at any given qx , only one mode will be excited in
the PC. Then the transmission and reflection coefficients can
be expected to be the same in the PC and the homogeneous
medium. This is indeed the case in the homogenization limit
[26,36] a → 0.

If we consider the PC with a constant nonzero a at suffi-
ciently high excitation frequencies [such as the frequencies (b)
and (c) in the above examples], there is no reason to believe that
the selection rules will work the same way as in a homogeneous
medium. In other words, at a given qx , modes with several
different values of qy can be excited in the PC. Granted, these
additional modes have qy with nonzero imaginary parts and are
therefore exponentially decaying inside the medium. However,
it is a mistake to neglect these modes completely. Indeed,
even the fields associated with these modes are exponentially
decaying with y, they are not negligibly small at the interface
y = 0. Moreover, these modes do not generally average to zero
over the surface of the elementary cell. In these respects, they
are different from the surface waves discussed by us previously
[26,37]. Therefore, excitation of these additional modes will
have an adverse effect on homogenizability.

In Fig. 13, two different effects are illustrated. The first
effect is the deviation of the law of dispersion in the PC from
that in a homogeneous effective medium for the “fundamental
mode” (for which q2

y is always purely real). This effect is
manifest at sufficiently large incident angles and, in particular,
for incident evanescent waves. The second, more subtle effect
is manifest even at small incident angles. Namely, it can be
seen that, at qx ∼ 0, the PC has additional modes (allowable
values of qy) that are dramatically different from the respective
values in the effective medium. Appearance of these additional
solutions can be expected to influence impedance of the
medium in an angle-dependent manner and have an additional
degrading effect on the PC homogenizability.

V. DISCUSSION

The main message of this paper is that, in many applications
of practical interest, it is insufficient to consider only the purely
real segments of the isofrequency lines to decide whether
a given photonic crystal (PC) is homogenizable — that is,
electromagnetically similar to a homogeneous medium. In the
case of two-dimensional PCs that we have considered, these
purely real segments can be circular with reasonable precision
in the higher photonic bands. In this case, all propagation
directions appear to be equivalent and the physical effects
of discreteness of the medium (the presence of the lattice)
appear to be minimized or absent. The medium can also
be characterized by negative dispersion, which means that
the real part of the Bloch wave number tends to decrease
with frequency while the imaginary part is negligibly small.
Nevertheless, the PC is not homogenizable in this case
and cannot be characterized by angle-independent, purely
local effective parameters εeff and μeff . This conclusion can
be drawn by considering the angular dependence of the
effective parameters and by including evanescent waves into
consideration.

A difficulty one faces when restricting consideration to the
dispersion relation is that infinite media have no interfaces

and therefore it is easy to overlook the important features
of the solutions. This is exactly what happens when one
restricts consideration to purely real isofrequency lines. In
this paper, we have generalized this approach by considering
two orthogonal directions in space, X and Y , and assuming
that the projection of the Bloch wave vector q on one of these
axes (X in our case) is a mathematically independent variable,
which is preserved by the process of reflection and refraction
at any planar interface y = const.

The results obtained above are consistent with an earlier
prediction made by one of the authors regarding the impos-
sibility of negative refraction [38]. The essential assumption
of the above reference was that the medium in question is
electromagnetically homogeneous. However, this requirement
was not clearly defined. On the other hand, it is common
knowledge that some discrete systems such as photonic
crystals or chains of interacting particles or resonators can be
characterized by negative dispersion. This is true, in particular,
for PCs in higher photonic bands. This may seem to contradict
the conclusions of Ref. [38]. In the present work, we show that
there is no contradiction since PCs are not homogenizable in
the higher bands. We also define more clearly what we mean
by the requirement that the medium is “electromagnetically
homogeneous.” Specifically, we have formulated a necessary
condition of homogenizability of a heterogeneous medium.
This condition is based on the correspondence of the dispersion
relations in a hypothetical homogeneous effective medium
and the actual PC. A sufficient condition must include the
impedance [36], which cannot be defined unambiguously
without explicit consideration of the boundary [20]. Thus, we
do not discuss a sufficient condition of homogenizability in
this paper. Instead, we show that even the necessary condition
is violated in the higher photonic bands.

Note that the lack of homogenizability at sufficiently high
frequencies was demonstrated earlier for the special case of 1D
periodic media [39]. The latter case is, however, complicated
by the fact that a 1D layered medium is always anisotropic.
Certain types of indefinite anisotropic media are capable
of refracting a narrow incident beam on the same side of
the normal. This phenomenon can easily be confused with
negative refraction. In this paper, we consider a system without
anisotropy (either magnetic or electric).

A more general result closely related to the main conclusion
of this paper can be stated in the form of an uncertainty
principle of homogenization [25], namely, the more an
effective magnetic permeability deviates from unity, the less
accurate the corresponding homogenization result is. In the
former reference as well as in this paper, we define the
effective-medium parameters εeff and μeff by requiring that
a heterogeneous and an “effective” homogeneous sample (of
the same overall shape) cannot be distinguished by performing
external measurements of reflected, transmitted, and scattered
waves in a sufficiently broad range of illumination conditions.
We have previously formulated this requirement quantitatively
for the case of a plane-parallel slab [36]. We believe, however,
that, if the medium is truly homogenizable, the effective
parameters can also be used to compute various physical
quantities that are internal to the medium such as dissipated
heat per unit volume per unit time. These quantities are
usually quadratic in the fields. In particular, we believe that the
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effective permittivity εeff , when it can be introduced, satisfies
the usual physical requirements of passivity and causality.
According to the homogenization uncertainty principle [25],
the effective permeability μeff cannot be much different from
unity, and the physical requirements applicable to this quantity
may be more nuanced [40]. We note that these questions
are of current interest in the theory of homogenization but,
unfortunately, outside of the scope of this paper wherein we
do not compute or consider spatial distribution and fluctuations
of the electromagnetic fields in a PC, or the boundaries of the
medium.

In Appendix A, we explain the mathematical distinc-
tion between spurious �-point frequencies that are due to
Brillouin-zone folding of Bloch bands and “genuine” �-point
frequencies that are due to multiple scattering. Understanding
this distinction is important for the theory of homogenization.

We finally note that this work is based upon some important
theoretical observations made by Li, Holt, and Efros [10]. We
have developed these observations further with a specific focus
on dispersion relations in 2D PCs with square and triangular
lattices.
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APPENDIX A: DISPERSION EQUATION IN A
BASIS-INDEPENDENT FORM

Let the lattice-periodic permittivity of the medium ε̃(r) be
a bounded, lattice periodic function, possibly a constant. A
Bloch mode solution to the scalar wave equation (11) can be
written in the form

E(r) = Ẽ(r) exp(iq · r),

where q is the Bloch wave vector and Ẽ(r) �= 0 is a nonzero,
twice-differentiable, lattice-periodic function, which satisfies
the equation

L(ω,q)Ẽ(r) = 0 (A1)

with the differential operator L(ω,q) given by

L(ω,q) = (∇ + iq)2 + k2ε̃(r).

Recall that k = ω/c; hence the dependence of L on ω. The
other reason for this dependence is frequency dispersion
(dependence of ε̃ on ω), which is not indicated here explicitly
but is taken into account. The requirement that (A1) has a
nontrivial solution Ẽ(r) �= 0 defines the dispersion equation
f (ω,q) = 0. We will assume without proof the following
statement: if for some pair (ω,q) (A1) has a nontrivial solution,
then this solution is unique up to multiplication by a constant.
This is not generally true in three dimensions where different
polarization states can correspond to the same pair (ω,q).

We will refer to the pairs (ω,q) for which (A1) has a non-
trivial solution as to the solutions to the dispersion equation.

Here the variables ω and q are not restricted and can take
general complex values. However, when studying stationary
processes, one is typically interested only in solutions with
ω > 0. We also note that, if (ω,q) is a solution, then (ω,q + g)
is also a solution, where g is any reciprocal lattice vector. This
mathematical property of Bloch waves gives rise to “folding”
of the solutions to the dispersion equation.

It is a nontrivial mathematical question how to distinguish
between the solutions that occur due to folding from those that
occur due to multiple scattering (interaction). In particular, it
is quite plausible that solutions (ω,q) and (ω,q′) of different
physical origin can coexist at the same frequency ω (or at
two very close frequencies). In this appendix, we present an
approach to mathematical classification of these two physically
different solutions.

As was done in Ref. [41], we decompose Ẽ(r) and ε̃(r) into
the constant and zero-mean components according to

Ẽ(r) = E0 + F (r), 〈F (r)〉C = 0,

ε̃(r) = ε0 + η(r), 〈η(r)〉C = 0,

where 〈. . .〉C indicates averaging over the elementary cell
C. We note that E0 is the amplitude of the fundamental
harmonic of the Bloch wave. Upon substitution of the above
decomposition into (A1), we obtain

{k2[ε0 + η(r)] − q2}E0 + L(ω,q)F (r) = 0. (A2)

We now introduce the averaging operator O and the operator
P = 1 − O as projections onto the complementary subspaces
of constant and zero-mean functions so that OẼ(r) = E0,
PẼ(r) = F (r), and Oε̃(r) = ε0, P ε̃(r) = η(r). By acting on
(A2) with O and P from the left, we obtain the following two
equations:

(k2ε0 − q2)E0 + k2〈η(r)F (r)〉C = 0, (A3a)

η(r)E0 + W(ω,q)F (r) = 0. (A3b)

In the first equation above, we have used the equal-
ity OLF (r) = k2Oη(r)F (r) = k2〈η(r)F (r)〉C, which can be
proved by using cell periodicity of F (r) and integral theorems.
In the second equation, we have used (PL)F (r) = (PLP)F (r)
and defined the operator

W(ω,q) = k−2PL(ω,q)P.

We can now consider the following two different kinds of
solutions to (A3):

(1) Solutions with E0 �= 0. Bloch waves E(r) with nonzero
fundamental harmonic E0 �= 0 can satisfy the wave equation
(11) for a given pair (ω,q) only if the equation W(ω,q)φ =
η has a nonzero solution. According to the assumption of
uniqueness of Ẽ stated above, this solution is unique if it
exists. We will say that φ is given in this case by the inverse
of W , viz., φ = W−1η. Then it follows from (A3b) that F =
−E0W−1η. Substituting this expression into (A3a), we arrive
at the dispersion relation (2) in which �(ω,q) is given by the
following basis-independent expression:

�(ω,q) = ε0 − 〈η(r)W−1(ω,q)η(r)〉C. (A4)

(2) Solutions with E0 = 0. There can exist another class
of solutions, that is, Bloch waves with a zero fundamental
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harmonic. For such solutions to exist, the equation
W(ω,q)φ = 0 must have a nontrivial solution such that
〈η(r)φ(r)〉C = 0. In this case, W(ω,q) is singular. Solutions
of this kind exist in the case of a homogeneous medium that
is artificially discretized on an arbitrary lattice (see below).
However, solutions with E0 = 0 (or, in practice, with E0 in
some sense very small) can also exist in heterogeneous periodic
media with η �= 0.

We will say that solutions to the dispersion equation of
the first kind generate “true” �-point frequencies that result
from multiple scattering in inhomogeneous photonic crystals.
Solutions of the second kind are due to purely geometrical
folding and generate spurious �-point frequencies that do not
satisfy the condition (3b).

This classification can be illustrated by considering the
special case of a homogeneous medium with ε(r) = ε0 that
is artificially discretized on an arbitrary lattice of a finite
pitch. In this case, it is easy to see that W(ω,q) is singular if
(q + g)2 = k2ε0 where g �= 0 is any nonzero reciprocal lattice
vector, and invertible otherwise. Therefore, the dispersion
equation for the solutions of the first kind is of the form

q2 = k2ε0, �(ω,q) = ε0 (first kind).

As could be expected, the corresponding lattice-periodic
function Ẽ(r) = E0 is just a constant. Thus, the fundamental
harmonic is dominating in this solution.

Solutions of the second kind are of the form

(q + g)2 = k2ε0 for g �= 0 (second kind). (A5)

For any pair (ω,q) satisfying the above condition, W(ω,q) is
singular and we have 〈Ẽ〉C = 0. This lattice-periodic function
is dominated by higher-order harmonics.

We can investigate the spurious �-point frequencies gen-
erated by the solution of the second kind as follows. If
Im(ε0) = 0, Eq. (A5) is satisfied by a pair (ωp,0) where
ω2

p = (cp)2/ε0 and p �= 0 is any nonzero reciprocal lattice
vector. The isofrequency line at ω = ωp is then obtained from
the equation

(q + g)2 = p2 > 0 for any g �= 0. (A6)

Consider for simplicity a square lattice and let ε0 > 0 and p =
(2π/a)(0,1). The corresponding quantity ωp = 2πc/a

√
ε0

is the first spurious �-point frequency out of the infinite
sequence. In principle, Eq. (A6) defines an infinite number
of curves but, at the first �-point frequency, most of these
curves coincide. To obtain the complete solution, we can start
by taking g = p. It can be seen that (A6) defines in this case
a circular arc in the (qx,qy) plane, and that this arc crosses the
origin. On a square lattice, there are four reciprocal vectors of
the same length 2π/a and pointing in the directions (0, ± 1)
and (±1,0). As a result, the isofrequency line contains four
circular arcs intersecting at the origin (six arcs in the case
of a triangular lattice) as is shown in Fig. 1(a). The arcs are
truncated and reflected at the edge of the FBZ. These additional
“reflected” segments of the isofrequency line can be obtained
by considering additional vectors p in (A6).

The above result is quite trivial and we could have obtained
it without using the mathematical formalism of this appendix.
However, the derivation is useful to show that the formalism

developed herein is consistent with the limit of zero contrast.
More importantly, it provides us with a clue for how to treat the
case when E0 is small but nonzero. Let γ = ‖F/E0‖2 where
‖·‖2 is the L2 norm. We believe that it is physically meaningful
to consider the phase and group velocities of a Bloch wave only
if γ is sufficiently small so that the fundamental harmonic of
the Bloch wave is in some sense dominant. This condition
holds if the smallest singular value ofW is sufficiently far from
zero. If this is not so, then γ can be very large or even diverge.
In this case, introducing the characteristics of a plane wave
such as the phase and group velocities is devoid of physical
meaning, even if this can be done formally by considering the
dependence q(ω).

We therefore conjecture that there are two fundamentally
different regimes of propagation, γ � 1 and γ � 1, and in
the second regime the group velocity computed as, say, ∇qω

does not correspond to any physically measurable quantity
and should not be invested with any particular interpretation.
It is not clear, though, how to treat the borderline case γ ∼ 1;
perhaps it can only be investigated numerically.

It should be noted that the above discussion is applicable
to the case of s polarization when the scalar electric field is
smooth. For the p polarization, the electric field can jump
at the discontinuities of ε̃(r), and a more careful analysis is
required. We also note that the condition on γ stated above is
closely related to the concept of the smooth field introduced
in Ref. [26].

APPENDIX B: DISPERSION EQUATION AND
PERTURBATION THEORY IN THE BASIS

OF PLANE WAVES

In this Appendix, we derive Eq. (2) from Eq. (21), define
the function �(ω,q) algebraically using the basis of plane
waves, and then obtain the expansion of �(ω,q) in powers of
the Cartesian components of q for ω in the vicinity of one of
the �-point frequencies ωn [as defined by (3)]. We note that a
basis-independent definition of �(ω,q) is given in Appendix A
by Eq. (A4). In order to derive (A4), we have assumed that
the fundamental Bloch harmonic E0 is nonzero. We will use
this assumption in this appendix as well. We are therefore
restricting ourselves to the solutions of the first kind according
to the terminology of Appendix A.

As was done by us previously [20,26], we consider Eq. (21)
for the cases g = 0 and g �= 0 separately. Since we assume
that E0 �= 0, we can scale all coefficients Eg by E0. Let eg =
Eg/E0, so that e0 = 1. First, we take g = 0 in (21). This results
in

q2 = k2

[
εh + ρχ

∑
p

M(−p)ep

]

= k2

⎡
⎣εh + ρχM(0)e0 + ρχ

∑
p �=0

M(−p)ep

⎤
⎦. (B1)

Since M(0)e0 = 1 and χ = εi − εh, we see that (B1) is
equivalent to (2) in which

�(ω,q) = ε0 + ρχ
∑
g�=0

M(−g)eg (B2)
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and ε0 = ρεi + (1 − ρ)εh is the cell-averaged permittivity of
the PC, the same quantity as the zeroth component in the
Fourier expansion (14).

We now must show that the expression in the right-hand
side of (B2) is a well-defined quantity and a function of
the two arguments ω and q. To this end we note that this
expression contains the relative amplitudes eg = Eg/E0 with
g �= 0. Therefore, to compute �(ω,q) algebraically, we must
consider (21) for g �= 0. This yields the following set of
equations:

[(q + g)2 − k2εh]eg = ρχk2

⎡
⎣M(g) +

∑
p �=0

M(g − p)ep

⎤
⎦,

g �= 0. (B3)

It is important to note that (B3) is a closed (albeit an
infinite) set of equations with a nonzero free term ρχk2M(g).
Consequently, (B3) is not an eigenproblem but rather a linear
set of equations that can be, in principle, solved by matrix
inversion. This proves that (B2) is a mathematically consistent
definition of the function �(ω,q).

To complete the algebraic definition of �(ω,q), we can
proceed as follows. Define the matrices and vectors

Dgp = (g2 − k2εh)δgp,

Qgp = (q2 + 2q · g)δgp,

Mgp = M(g − p),

bg = M(g).

Here all indexes are restricted to g �= 0 and p �= 0. Also, only
the matrix Q depends on q. We have separated the diagonal
term Q from the q-independent diagonal term D because we
are interested in building a perturbation theory in Cartesian
components of q. Also note the normalization rule 〈b|b〉 =
1/ρ − 1. We can now rewrite (B3) as follows:

(Q + D − ρχk2M)|e〉 = ρχk2|b〉. (B4)

From this we find that

�(ω,q) = ε0 + (ρχk)2〈b|(D + Q − ρχk2M)−1|b〉.
This expression gives a closed-form algebraic definition of
�(ω,q).

We now proceed with building the perturbation theory. We
assume that (i) a higher-order �-point frequency ωn exists
according to the definition (3) and (ii) ω is in the vicinity and
just below ωn (in the passband). Under this condition, �(ω,0)
is small but nonzero and positive. Otherwise, the frequency ω

would be is inside a band gap. We can define the T matrix of
the problem as follows:

T = (D − ρχk2M)−1. (B5)

Note that T is the matrix that we need in order to compute
�(ω,0). Indeed, for q = 0, we also have Q = 0 and

�(ω,0) = ε0 + (ρχk)2〈b|T |b〉
= ε0 + (ρχk)2

∑
g1,g2 �=0

M(−g1)Tg1g2M(g2).

Let us assume that T = T (ω) has been computed at the
working frequency ω by inverting the matrix in the right-hand
side of (B5). Computationally, this requires truncation of the
basis and one matrix inversion operation. Now, the equation
we intend to iterate is of the form

|e〉 = ρχk2T |b〉 − T Q|e〉,
which follows directly from (B4) and (B5). The formal power
series solution is of the form

|e〉 = ρχk2
∞∑

n=0

(−T Q)nT |b〉,

and for �, we have

� = ε0 + (ρχk)2
∞∑

n=0

〈b|(−T Q)nT |b〉

= ε0 + (ρχk)2
∞∑

n=0

σn,

where

σn = (−1)n〈b|(T Q)nT |b〉.
Note that the order in Q is not the same as the order in q. Also
note that terms of the form

(−1)j q2j 〈b|T j+1|b〉 (B6)

are generated in all orders of the expansion. These terms are,
of course, perfectly isotropic. However, starting from fourth
order, more complicated terms appear in the expansion.

In the formulas of this appendix, we will use the following
notations:

(i) The symbol ◦ denotes direct (Hadamard) product of two
matrices, e.g., (A ◦ B)ij = AijBij .

(ii) The matrices G, Gxx , etc., are defined in terms of the
reciprocal lattice vectors as follows:

(Gαβ)gp = gαpβ, α,β = x,y;

Ggp =
∑

α

Gαα = g · p.

(iii) In all expressions shown below we imply that, for
example, q6 = (q2

x + q2
y )3, etc.

a. Zeroth order. We start with zero order (n = 0), which is
rather trivial:

σ0 = 〈b|T |b〉 =
∑
g1,g2

M(−g1)Tg1g2M(g2).

Thus, σ0 is a q-independent constant. Obviously, �(ω,0) =
ε0 + (ρχk)2σ0(k), where we have indicated the dependence of
σ0 on k explicitly.

b. First order. Here we have

σ1 = −
∑

g1,g2,g

M(−g1)Tg1g(q2 + 2q · g)

× Tgg2M(g2).
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The contribution of the second term in the brackets is zero due
to the symmetry [σn(−q) = σn(q)]. Therefore,

σ1 = −q2
∑
g1,g2

M(−g1)T 2
g1g2

M(−g2)

= −q2〈b|T 2|b〉.

c. Second order. Here we have

σ2 =
∑
{g}

M(−g1)Tg1g2Tg2g3Tg3g4M(g4)

× [q2 + 2(q · g2)][q2 + 2(q · g3)],

where
∑

{g} denotes summation over all relevant indexes. We
now expand the product of the square brackets and notice that
the terms linear in q sum to zero for the reason of inversion
symmetry. The two terms that produce nonzero result upon
summation are

q4 and 4(q · g2)(q · g3).

The first of these generates the result of the form (B6) and the
second term requires some additional consideration. We can
write

(q · g2)(q · g3) = (qxg2x + qyg2y)(qxg3x + qyg3y)

= q2
xg2xg3x + q2

yg2yg3y + qxqy(g2xg3y + g2yg3x).

The term proportional to qxqy sums to zero due the inversion
symmetry. Moreover, from the symmetry properties of both
triangular and square lattices, we find that summation of the
coefficients in front of q2

x and q2
y must yield the same result.

Indeed, if this were not so, we would have obtained a term of
the form βxq

2
x + βyq

2
y with βx �= βy , describing an ellipse of

unequal semiaxes, which is inconsistent with both C4 and C6

symmetries. Therefore, we can replace the above expression
(inside the summation) by

1
2

(
q2

x + q2
y

)
(g2xg3x + g2yg3y) = 1

2q2(g2 · g3).

Collecting everything together, we find that

σ2 = q4〈b|T 3|b〉 + 2q2〈b|T (T ◦ G)T |b〉.
We thus see that all terms generated in the second order are
still circularly symmetric.

d. Third order. Here we have

σ3 = −
∑
{g}

M(−g1)Tg1g2Tg2g3Tg3g4Tg4g5M(g5)

× [q2 + 2(q · g2)][q2 + 2(q · g3)][q2 + 2(q · g4)].

After expanding the brackets and keeping only the terms that
do not sum to zero, we find that σ3 = σ

(a)
3 + σ

(b)
3 where

σ
(a)
3 = −q6〈b|T 4|b〉 (B7)

is of the form (B6) and

σ
(b)
3 = − 4q2

∑
{g}

M(−g1)Tg1g2Tg2g3Tg3g4Tg4g5M(g5)

× [(q · g2)(q · g3) + (q · g2)(q · g4) + (q · g3)(q · g4)].

We can use the same transformation as was used in the second
order to transform the terms of the form (q · g2)(q · g3) to the
form (1/2)q2(g2 · g3). We thus obtain

σ
(b)
3 = 2(qh)4[〈b|T 2(T ◦ G)T |b〉 + 〈b|T (T 2 ◦ G)T |b〉

+ 〈b|T (T ◦ G)T 2|b〉]. (B8)

The first and last terms in this expression are in fact equal
but are written separately for symmetry of expression. Still,
all expressions arising to third order in Q are circularly
symmetric.

e. Fourth order. In the fourth order, we can write

σ4 = σ
(a)
4 + σ

(b)
4 + σ

(c)
4 ,

where the expressions for σ
(a)
4 and σ

(b)
4 are obtained in the

manner very similar to what was done above. Omitting the
intermediate steps, we write the final result for these two terms,
viz,

σ
(a)
4 = q8〈b|T 5|b〉, (B9)

σ
(b)
4 = 2q6[〈b |T (T ◦ G)T 3|b〉 + 〈b|T 3(T ◦ G)T |b〉

+ 〈b|T (T 2 ◦ G)T 2|b〉 + 〈b|T 2(T 2 ◦ G)T |b〉
+ 〈b|T 3(T ◦ G)T |b〉 + 〈b|T 2(T ◦ G)T 2|b〉]. (B10)

Note that the terms appearing on each line of the above
expression are pairwise equal. Expressions (B9) and (B10)
could, in fact, be anticipated and are directly analogous to
expressions (B7) and (B8). A simple diagrammatic technique
can be devised to generate similar expressions that appear in
the higher orders of the perturbation theory.

However, σ
(c)
4 is a term of a different kind and it is the first

term we encounter that does not obey the circular symmetry
and is consistent with C4 (but not C6) symmetry. The term is

σ
(c)
4 = 16

∑
{g}

M(−g1)Tg1g2 . . . Tg5g6M(g6)

× (q · g2)(q · g3)(q · g4)(q · g5). (B11)

We cannot use the same trick as was used above to transform
the factor

P = (q · g2)(q · g3)(q · g4)(q · g5)

to the form βq4 where β is a scalar expressible in terms of the
dot products gi · gj . Indeed, let us write the factor P in terms
of Cartesian components of all vectors involved:

P = (qxg2x + qyg2y)(qxg3x + qyg3y)

× (qxg4x + qyg4y)(qxg5x + qyg5y)

= P ′ + q4
xg2xg3xg4xg5x + q4

yg2yg3yg4yg5y

+ q2
xq

2
y [g2xg3xg4yg5y + g2yg3yg4xg5x

+ g2xg3yg4xg5y + g2yg3xg4yg5x

+ g2xg3yg4yg5x + g2yg3xg4xg5y].

Here P ′ is the term that sums to zero by symmetry. We
can introduce the notations � = P − P ′ and �x , �y , �xy
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(definition of the last three quantities will be clear from the
next equation) and write

� = �xq
4
x + �yq

4
y + �xyq

2
xq

2
y .

Now, if it happens that

∑
{g}

F [{g}]�x =
∑
{g}

F [{g}]�y = 1

2

∑
{g}

F [{g}]�xy,

where F [{g}] is the coefficient appearing on the first line of
(B11), then we would obtain the result σ

(c)
4 = βq4. This is

what we can expect to happen in triangular lattices with C6

symmetry. However, there is no general or obvious reason
why the second equality in the above expression should hold
in the case of C4 symmetry, and there are sufficient grounds
to believe that it does not. As a result, the function �(q)

and the summation result
∑

{g} F [{g}]�(q) are not circularly
symmetric.

We can write the result for σ
(c)
4 in a form similar to that

used in lower orders if we account for the identity q4
x + q4

y =
q4 − 2q2

xq
2
y . Then

σ
(c)
4 = 8

[
q4 − 2

(
q2

xq
2
y

)]
[〈b|T (T ◦ Gx)T

× (T ◦ Gx)T |b〉 + (Gx → Gy)] + q2
xq

2
y

× [〈b|T (T ◦ Gx)T (T ◦ Gy)T |b〉 + (Gx ↔ Gy)

+ 〈b|T (T ◦ Gxy)T (T ◦ Gxy)T |b〉 + (Gxy → Gyx)

+ 〈b|T (T ◦ Gxy)T (T ◦ Gyx)T |b〉 + (Gxy ↔ Gyx)].

The terms of the form (9) appear only in the sixth order
of the perturbation theory. The corresponding coefficients are
very complicated and we do not compute them here.
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