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Nonasymptotic homogenization of periodic electromagnetic structures:
Uncertainty principles

Igor Tsukerman*

Department of Electrical and Computer Engineering, The University of Akron, Ohio 44325-3904, USA

Vadim A. Markel†
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We show that artificial magnetism of periodic dielectric or metal/dielectric structures has limitations and is
subject to at least two “uncertainty principles.” First, the stronger the magnetic response (the deviation of the effec-
tive permeability tensor from identity), the less accurate (“certain”) the predictions of any homogeneous model.
Second, if the magnetic response is strong, then homogenization cannot accurately reproduce the transmission
and reflection parameters and, simultaneously, power dissipation in the material. These principles are general
and not confined to any particular method of homogenization. Our theoretical analysis is supplemented with a
numerical example: a hexahedral lattice of cylindrical air holes in a dielectric host. Even though this case is highly
isotropic, which might be thought of as conducive to homogenization, the uncertainty principles remain valid.
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I. INTRODUCTION

A. Overview

Over the last 15–20 years, artificial magnetism of periodic
dielectric structures or composite metal-dielectric structures
(“metamaterials” and photonic crystals) has attracted much
attention and is often tacitly assumed to have no principal
limitations, especially in the ideal case of negligible losses.
In this paper, however, we argue that such limitations do
exist. Namely, the stronger the magnetic response (as measured
by the deviation of the optimal effective permeability tensor
from identity), the less accurate (“certain”) are predictions
of any homogeneous model of the material. We call this an
uncertainty principle (UP) for the effective parameters of
metamaterials. It should be emphasized that this principle
constitutes a general limitation and is not confined to any
particular method of homogenization.

We also introduce another uncertainty principle: if the
magnetic response of a periodic structure is strong, then
homogenization cannot accurately reproduce the transmission
and reflection (TR) parameters and, simultaneously, power
dissipation (the heating rate) in the material. This ultimately
follows from the fact that the TR coefficients are governed
by the boundary values of Bloch waves in the material, while
power is related to the volume average of a quadratic function
of that wave.

The premise of our analysis is that the objective of
homogenization is to predict, as accurately as possible, trans-
mission and reflection of waves by a periodic electromagnetic
structure—for simplicity, a slab (this eliminates complications
due to edges and corners). We also consider a homogeneous
slab of the same thickness and with a material tensor M such
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that the TR coefficients for the original and homogeneous
slabs agree to a given level of tolerance over a sufficiently
broad range of illumination conditions.

Our analysis is general and does not depend on a particular
homogenization theory and on the way the effective tensor
M is determined. We consider periodic electromagnetic
structures in the framework of classical electrodynamics.
This does include plasmonic metamaterials with feature sizes
above ∼10–20 nm, when classical (frequency-dependent)
permittivity ε(ω) is still applicable. However, the field of
metamaterials is currently so broad [1] that our theory may
not be directly applicable to some types (superconducting
materials, magnonic materials [2,3], etc.).

We argue that, for TR to be accurately rendered, not only the
dispersion relation in the bulk but also the boundary conditions
on the surface of the slab must be approximated well. It then
follows that the amplitudes of the Bloch waves within the
material are dictated by an accurate boundary match with the
incident and reflected waves. Loosely speaking, this boundary
match fixes the wave impedance, while the Bloch wave number
fixes the dispersion relation. Both pieces of information are
necessary to unambiguously define the effective material
tensor.

A critical question then is whether the resulting tensor
is (or could be) independent of the angle of incidence [4].
Clearly, angular-dependent material parameters do not have
their traditional meaning, and their practical utility is limited.

An illumination-independent tensor certainly exists in the
classical homogenization limit, when the ratio of the lattice
cell size a to the vacuum wavelength λ approaches zero
[5–7]. However, magnetic effects vanish in that limit [8,9]
and, therefore, this case is not of primary interest to us here.
In the remainder, we assume a nonasymptotic regime, where a

and λ are of the same order of magnitude (0.1 � a/λ � 0.5).
Then, in general, there is an appreciable surface wave whose
behavior is quite involved. In previous work [10], one of the
co-authors showed that surface waves have zero averages of
the tangential field components on the interface boundary.
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Therefore, they do not affect coarse-scale boundary conditions
and homogenization, although they of course do contribute to
the near-field behavior.

Remark 1. If lattice periods along the interface are greater
than the vacuum wavelength, then surface waves are prop-
agating rather than evanescent. We exclude this case from
consideration.

Surface waves propagating along interfaces can carry
energy and, for a sample finite in all directions, can be reflected
off its edges and scattered off its corners. This cannot be
addressed in the simplified setup adopted in this paper: a
slab with a finite thickness but infinite in the remaining two
directions. However, since surface waves do not generally exist
in homogeneous media [expect for special circumstances such
as total internal reflection or surface plasmons at interfaces
where Re(ε) changes sign], it is clear that the presence of
such waves in periodic structures and reflection of these waves
from the edges can only be detrimental to homogenization and
cannot weaken the uncertainty principles presented here. Thus,
to fix key ideas, we disregard surface waves. The interested
reader may find further information in Refs. [10–12], although
research on this subject is still far from complete.

There is ample evidence in the existing literature that effec-
tive parameters of metamaterials may have limited accuracy
and validity. As an instructive example [13], the celebrated
negative-index metamaterial due to Smith et al. [14] cannot be
homogenized for a range of wavelengths in the vicinity of the
second � point, even though these wavelengths are relatively
long (a/λ ∼ 0.1). Another notable example is the work of the
Jena and Lyngby groups [15], who show that high symmetry of
a metamaterial cell does not imply optical isotropy, especially
in frequency ranges where the effective index is negative.

In our previous publications [16,17], we brought to the
fore an interplay between magnetic response, the accuracy
of homogenization, and the range of illumination conditions.
Here we extend this line of reasoning and show that not
only negative index but also a strong magnetic response must
unfortunately be accompanied by lower accuracy of effective
parameters, unless illumination conditions are restricted to a
narrow range.

B. Local vs nonlocal parameters

This paper deals exclusively with local effective material
parameters. Because of extensive discussions of nonlocality
(or “spatial dispersion”) in the literature on metamaterials,
it might be tempting to draw a connection between the
uncertainty principles of this paper and nonlocality; hence
brief comments on the latter are called for.

In classical electromagnetism, a local linear material
relationship (say, between the D and E fields and with
magnetoelectric coupling ignored for the sake of brevity) has
the form D(r) = ε(r)E(r) – that is, one field at any given point
is related to another field at that same point. In contrast, a
classical nonlocal relationship is usually written as

D(r) =
∫

�

E(r,r′)E(r′)dr′, (1)

where E is a convolution kernel and � is the region occupied
by the material in question.

However, even if the nonlocal relation (1) could be rigor-
ously established in the bulk, it would require special treatment
at interfaces due to the lack of translational invariance. We
are not aware of any theory that would rigorously define the
kernel E(r,r′) as a function of two position vectors near the
metamaterial-air interface. Moreover, it is not clear how such
a kernel could be put to practical use, because all metamaterial
devices proposed so far depend critically on a local description
of the effective medium.

If, for argument’s sake, one were to accept the view that
weak spatial dispersion is equivalent to local parameters (ε,μ)
(even though we have argued against this view [16]), then our
requirement that parameters be local would still be justified.

In the remainder of the paper, we lay out theoretical argu-
ments supporting the two uncertainty principles summarized
above and present an instructive example: a triangular lattice
of cylindrical air holes in a dielectric host, as investigated
previously by Pei and Huang [18]. This example is interesting
because, despite a high level of isotropy around the � point
in the second photonic band, which may be thought of
as conducive to homogenization, the uncertainty principles
remain valid.

II. FORMULATION OF THE PROBLEM

The formulation of the homogenization problem was given
in Ref. [17]. For completeness, we include it here in a shortened
form, omitting some technical details not critical for the
analysis in this paper.

We consider homogenization of periodic composites char-
acterized by the intrinsic permittivity and permeability ε̃(r)
and μ̃(r) = 1. The effective parameters are denoted with ε

and μ (without the tilde). The individual constituents of the
composite are assumed to be linear, local, and intrinsically
nonmagnetic, so that μ̃(r) = 1 everywhere in space. Also, we
assume that ε̃(r) is a scalar (a multiple of the identity tensor).
In contrast, the effective parameters ε and μ can differ from
unity and are, generally, second-rank tensors.

The tilde sign is used for all lattice-periodic quantities. For
example, Bloch-periodic functions (Bloch waves) are written
in the form

f (r) = f̃ (r) exp (iq · r),

where q is the Bloch wave vector. Here, symbol q is used to
distinguish the Bloch wave vector of a given medium from a
generic wave vector k. In the case of orthorhombic lattices,
periodicity is expressed as

f̃ (x + nxax,y + nyay,z + nzaz) = f̃ (x,y,z), (2)

where ax , ay , and az are the lattice periods and nx , ny , and nz are
arbitrary integers. Of course, Eq. (2) is assumed to hold only
if both points r = (x,y,z) and r′ = (x + nxax,y + nyay,z +
nzaz) are simultaneously located either inside the composite
or in a vacuum.

Fine-level fields—that is, the exact solutions to the macro-
scopic Maxwell’s equations—are denoted with small letters
e, d, h, and b. Capital letters E, D, H, and B are used for
coarse-level fields that would exist in an equivalent effective
medium, still to be defined. The constitutive relations for the
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fine-level fields are

d(r) = ε̃(r)e(r), b(r) = h(r).

Note that h(r) = b(r) because the medium is assumed to be
intrinsically nonmagnetic.

Our analysis is in the frequency domain with the exp(−iωt)
phasor convention. At a working frequency ω, the free-space
wave number k and wavelength λ are

k = ω

c
= 2π

λ
.

We compare transmission and reflection of electromagnetic
waves for two separate cases of slabs of a thickness d each.
The slabs are, for simplicity, infinite in the longitudinal
direction (the half-space can be viewed as a valid particular
case d → ∞). In the first case, the slab is composed of a
given metamaterial (i.e., has a periodic structure), while in the
second case the slab contains a homogeneous medium with
a yet unknown material tensor M. To any (monochromatic)
plane wave incident on the surface of either slab at an angle
θinc, there correspond transmission (T) and reflection (R)
coefficients RMM, Rhmg; TMM, Thmg, where subscripts “MM”
and “hmg” indicate the metamaterial and homogeneous cases,
respectively. Under the condition of Remark 1, reflection and
transmission coefficients for the metamaterial slab are well
defined.

The difference between the reflection and transmission
coefficients produced by the two slabs will be referred to as
the TR discrepancy δT R:

δT R ≡ ‖Rhmg(θinc) − RMM(θinc)‖
+‖Thmg(θinc) − TMM(θinc)‖, (3)

where ‖ · ‖ is a desired norm—say, the L2 norm over a given
range of illumination conditions, e.g., θinc ∈ [−π/2,π/2] if all
propagating waves but no evanescent waves are considered.
Our analysis below applies to any homogenization theory
that produces a tensor M approximately minimizing the TR
discrepancy δT R .

III. FIRST UNCERTAINTY PRINCIPLE: MAGNETIC
RESPONSE VS ACCURACY OF HOMOGENIZATION

As noted in the introduction, magnetic characteristics
of metamaterials become trivial in the zero-cell-size limit
[8,9,19] (assuming that the intrinsic material parameters
remain bounded). Thus a strong magnetic response can only
be achieved if the cell size forms an appreciable fraction
of the vacuum wavelength. The objective of this section
is to show that stronger effective magnetic properties are
unavoidably accompanied by lower approximation accuracy
of the metamaterial by a homogeneous medium with local
parameters. We call this an “uncertainty principle” (UP) of
local homogenization.

Although parts of our analysis are similar to those of
Ref. [17], we do not assume that the M tensor has necessarily
been determined by using the procedure of Ref. [17]. Rather,
let M be found by using any method (say, parameter retrieval
as the most common example).

To avoid unnecessary mathematical complications and to
keep our focus on the physical essence of the problem, we

present our analysis of the UP for the s mode (the E field
in the z direction, the H field in the xy plane), with a plane
wave impinging in the xy plane on a half space filled with
a metamaterial, i.e., a dielectric structure characterized by a
permittivity ε(r) periodic in the x and y directions with the
same (for simplicity) lattice constant a.

We introduce normal n and tangential τ coordinates relative
to the material-air interface S; n points from the air (on the
side of the incident wave) into the metamaterial.

A Bloch wave with a wave vector q is

eB(r,q) = ẽB(r) exp (iq · r), (4)

where subscript “B” indicates a Bloch-wave-related quantity.
The tangential component of the respective h field is

h(r) = 1

ik

∂e

∂n
= h̃B(r) exp (iq · r) (5)

(only the tangential component is used in the analysis, and
therefore subscript “τ” is dropped for brevity of notation).
The periodic factor for the magnetic field is

h̃B(r) = qn

k
ẽB(r) + 1

ik

∂ẽB(r)

∂n
. (6)

We now compare wave propagation from the air into a half
space filled with

(i) a metamaterial, and
(ii) a homogeneous medium, with its material tensor yet to

be determined to minimize the TR discrepancy [20].
In both cases (i) and (ii), the field in the air is given by

eair(r) = Einc[exp(ikinc · r) + R exp(ikr · r)], (7)

hair(r) = Einc cos θinc[exp(ikinc · r) − R exp(ikr · r)], (8)

where the tangential component is again implied for h.
It will be convenient to assume that the reflection coefficient

R is exactly the same in cases (i) and (ii). Strictly speaking,
there can be (and in practice will be) some approximation
tolerance; however, introducing this tolerance explicitly would
obscure the analysis while adding little to its physical sub-
stance.

With the surface wave ignored, the field in the metamaterial
is just the Bloch wave (4) and (5), and the boundary conditions
are

〈ẽB〉S = (1 + R)Einc, (9)

〈h̃B〉S = (1 − R)Einc cos θinc, (10)

where 〈, · ,〉S denotes the average over the air-cell boundary.
Remark 2. We require that boundary conditions hold in the

sense of averages (9) and (10) rather than pointwise because
zero-mean discrepancies between a Bloch wave and a plane
wave at the boundary are unavoidable. Indeed, the Bloch
wave in an inhomogeneous medium has higher-order spatial
harmonics that cannot be matched by a plane wave. Conditions
(9) and (10) ensure that the discrepancy between the Bloch
field on the material side and plane waves on the air side affect
only the near field, as long as a < λ. If the surface wave on
both sides of the interface were included in Eqs. (9) and (10),

024418-3



IGOR TSUKERMAN AND VADIM A. MARKEL PHYSICAL REVIEW B 93, 024418 (2016)

then these conditions would of course hold pointwise, without
the averages.

In case (ii)—a wave transmitted into the homogeneous half
space,

ET (r) = ET 0 exp(ikT · r), (11)

HT (r) = HT 0 exp(ikT · r). (12)

Phase matching between Eqs. (11) and (4) implies that, for
best approximation, one must have

kT = q. (13)

Furthermore, due to the boundary conditions at the material-
air interface, the amplitudes of the transmitted wave in the
equivalent homogenized medium must be

ET 0 = (1 + R)Einc = 〈ẽB〉S, (14)

HT 0 = (1 − R)Einc cos θinc = 〈h̃B〉S. (15)

The first equality in Eq. (14) is just the classical Maxwell
condition, while the second one follows from Eq. (9); similarly
for Eq. (15).

Now that the field amplitudes in the homogenized material
have been determined, we can find the material tensor for
which the dispersion relation (in essence, Maxwell’s equa-
tions) will be satisfied. We are primarily interested in the
case of fourfold (C4 group) symmetry, which is particularly
instructive. (In a more general situation, the effective tensor
needs to be defined via ensemble averages, as was done in
our previous paper [17].) For C4 cells, the material tensor is
diagonal (in particular, there is no magnetoelectric coupling)
and, moreover, μττ = μnn. Hereinafter, we focus on the μττ

entry of the tensor.
Maxwell’s ∇ × E equation for the generalized plane wave

[Eqs. (11) and (12)] gives the amplitude of the tangential
component of the B field in this wave:

BT 0 = 1

ik
kT nET 0, (16)

or, substituting kT = q from Eq. (13) and ET 0 from Eq. (14),

BT 0 = qn

k
〈ẽB〉S. (17)

This, along with Eq. (15) for the amplitude of HT , leads to the
following expression for the effective magnetic permeability:

μττ = BT 0

HT 0
= qn〈ẽB〉S

k〈h̃B〉S
= qn〈ẽB〉S

qn〈ẽB〉S − i〈∂nẽB〉S , (18)

where we inserted expression (6) for h̃B. Switching for
algebraic convenience from permeability to reluctivity, we
arrive at the following surprisingly simple expression:

ζττ ≡ 1 − μ−1
ττ = i〈∂nẽB〉S

qn〈ẽB〉S = i〈∂nẽB〉S
q cos θB〈ẽB〉S , (19)

where θB is the propagation angle for the Bloch wave. It is
instructive to split ẽB in Eq. (19) into its mean value e0 and its
zero mean eZM:

ẽB ≡ e0 + eZM, e0 = const,
∫

C

eZMdC = 0.

Then Eq. (19) becomes

ζττ = i〈∂neZM〉S
q cos θB(e0 + 〈eZM〉S)

. (20)

It is then immediately clear that magnetic effects in meta-
materials are due entirely to higher-order spatial harmonics
of the Bloch wave, manifested in eZM. (If eZM = 0, the
Bloch wave is just a plane wave, and ζττ = 0.) To avoid
any misunderstanding, note that eZM by definition has a zero
average in the volume of the cell but in general not on its
surface, which makes all the difference in Eq. (20).

The behavior of Bloch waves in inhomogeneous lattice
cells is complicated, and there are no simple closed-form
expressions for these waves. (Approximations are well known
but exist only as formal solutions of large linear systems
developed in a finite basis, e.g., in a plane-wave basis.)
From the qualitative physical perspective, however, one may
conclude that, due to the complex dependence of eZM on
θB (i.e., on the illumination conditions), ζττ is in general
angle dependent. Moreover, this angular dependence will tend
to be stronger when the magnetic effects (nonzero ζττ ) are
themselves stronger, because both are controlled by eZM.
This conclusion can also be supported quantitatively (see
Appendix A) but does not have the status of a mathematical
theorem; the door is therefore still open for engineering design
and optimization, with a compromise between the strength of
magnetic response and homogenization accuracy.

IV. SECOND UNCERTAINTY PRINCIPLE:
TR-DISCREPANCY VS. POWER DISCREPANCY

In this section, we put forward a second uncertainty
principle: if magnetic response is appreciable, homogenization
cannot accurately reproduce both TR and power dissipation
(the heating rate). The root cause of this can be easily grasped
from the simplified one-dimensional (1D) sketch in Fig. 1. Let
the periodic factor ẽ(x) of a Bloch wave in a given lattice cell be
approximated, in a homogenized medium, by a plane wave of
amplitude E0. If it is the power dissipation in the homogenized
medium that is matched to the actual power, then E0 should
be at the root-mean-square (rms) level indicated by the dashed
line [21]. On the other hand, if it is the boundary conditions
that are matched (which is necessary for rendering the TR
correctly), then E0 must have a different value, indicated by
the solid line in the figure.

FIG. 1. Coarse-level amplitudes derived from power dissipation
and from boundary conditions are in general different.
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Let us proceed to a more formal analysis. In the homoge-
nized case, the general expression for the total current density
within the medium is, in the frequency domain,

J = −iωP + c∇ × M, (21)

where

P = 1

4π
(D − E) = 1

4π

(
− 1

ik
∇ × H − E

)

= − 1

4πk

(
q × H + kE

)
, (22)

M = 1

4π
(B − H) = 1

4π

(
1

ik
∇ × E − H

)

= 1

4πk
(q × E − kH). (23)

Substituting expressions for P and M [Eqs. (22) and (23),
respectively] into expression (21) for J, one obtains

J = ic

4π
(q × H + kE) + c

4π
∇ ×

(
1

k
q × E − H

)

= iω

4π
E + ic

4πk
q × (q × E)

= iω

4π
E + ic

4πk
[q(q · E) − (q · q)E].

Expressing the heating rate as 1
2 Re(J · E∗) [22], one obtains

per-cell power dissipation in the homogenized medium [23]:

WC = − c

8πk
Im

∫
C

{(q · E)(q · E∗) − (q · q)(E · E∗)}dC.

(24)

The power calculation for the actual fine-scale fields
is similar but simpler, since for intrinsically nonmagnetic
components, magnetization m is zero by definition. Hence
we have

j = iω

4π

(
1

ik
∇ × h + e

)
= iω

4π

(
1

k2
q × (q × e) + e

)

= iω

4πk2
{q(q · e) + [k2 − (q · q)]e}.

Thus the actual power dissipation per lattice cell is

wC = − c

8πk
Im

{ ∫
C

[(q · e)(q · e∗) − (q · q)(e · e∗)]

}
dC.

(25)

Let us consider an s wave as a simple but representative model;
the conclusion generalizes to arbitrary waves in two- or three-
dimensional (2D or 3D) periodic structures. For an s wave,
the “longitudinal” q· terms vanish, because the electric field
is, by definition, orthogonal to q. Then, for power dissipation
WC on the coarse level to be equal to the actual power wC , the
amplitude E0 on the coarse level has to satisfy

|E0|2VC =
∫

C

|ẽ|2dC. (26)

This follows from the direct comparison of expressions (24)
and (25) and from the fact that E and e contain the same Bloch
exponential: E(r) = E0 exp(iq · r), e(r) = ẽ(r) exp(iq · r).

On the other hand, to represent TR accurately, one needs to
honor the boundary conditions (see Sec. III). Thus, according
to Eq. (14),

E0 = 〈ẽB〉S = e0 + 〈eZM〉S. (27)

If Eq. (26) were to hold with E0 satisfying Eq. (27), one would
have

|e0 + 〈eZM〉S |2VC =
∫

C

|e0 + eZM|2dC,

and the right-hand side simplifies because the zero-mean
function eZM is orthogonal to the constant e0:

|〈eZM〉S |2 + 2Re{〈eZM〉Se∗
0} = 〈|eZM|2〉C. (28)

Since the volume distribution of a Bloch mode and the
respective value of e0 are only loosely related to its boundary
values, the above condition is quite restrictive and cannot be
expected to hold for any given wave, let alone for all Bloch
waves, traveling in different directions or evanescent. A trivial
exception is eZM ≡ 0, in which case the Bloch wave turns into
a plane wave and there are no magnetic effects. The stronger
these effects, the more strongly Eq. (28) will in general be
violated.

V. NUMERICAL EXAMPLE: THE UNCERTAINTY
PRINCIPLE FOR A PROBLEM WITH HIGH ISOTROPY

A. Setup

As an instructive example, we consider the hexahedral
lattice of cylindrical air holes in a dielectric host investigated
previously by Pei and Huang [18]. The radius of each air
hole is rcyl = 0.42a, the dielectric permittivity of the host
is εhost = 12.25; s-polarization (TM-mode, one-component E

field perpendicular to the plane of the figure). This example
is interesting because, in the second photonic band, it exhibits
a high level of isotropy around the � point and a negative
effective index.

The elementary cell of this lattice can also be viewed as a
rhombus, with the corresponding real-space lattice vectors

a1 = ax̂, a2 = a

2
(x̂ +

√
3ŷ),

and reciprocal vectors

b1 = κ

(
1,− 1√

3

)
, b2 = κ

(
0,

2√
3

)
, κ ≡ 2π

a
.

The real and reciprocal vectors satisfy the standard Kronecker-
δ relation

aα · bβ = 2πδαβ, α,β = 1,2. (29)

For this structure, we have calculated the Bloch bands and
modes, as well as wave transmission and reflection. All of these
simulations employed high-order flexible local approximation
method (FLAME) difference schemes [24–27]. These schemes
do not necessarily operate on Cartesian grids and, in particular,
have been adapted to rhombic ones for the calculation of Bloch
modes. Selected results follow.
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FIG. 2. An almost circular first-Brillouin-zone isofrequency con-
tour for the Pei–Huang [18] triangular lattice of air holes rcyl =
0.42a, εhost = 12.25, with a = 0.365λ near the � point a/λ ≈ 0.368.
Markers are numerical data points, solid line is a circular fit. The
isotropy of the dispersion relation is evident and has been noted by
Pei and Huang.

The first-Brillouin-zone equal-frequency contour for a =
0.365λ (λ being the vacuum wavelength), close to the � point
a ≈ 0.368λ, is shown in Fig. 2. The contour is indeed seen to
be almost circular.

Two modes with qx = 0 and qy = 0 are plotted in Fig. 3. In-
cidentally, in contrast with rectangular lattices, for hexahedral
lattices the Bloch mode with qy = 0 is not generally lattice
periodic in the y direction. Indeed, consider a point r on the
lower side of the rhombic cell and the corresponding point
r − 1

2 a1 + a2 on the upper side. For a plane-wave component
(m1,m2) of a Bloch wave, the respective phase factor between

FIG. 3. The absolute value of the electric field for the s mode with
qx = 0 (top) and qy = 0 (bottom). The Pei–Huang [18] triangular
lattice of air holes rcyl = 0.42a, εhost = 12.25, a = 0.365λ. The
circular line indicates the boundary of the hole.

the two points is equal to unity only for even values of m1:

exp

(
− i

m1

2
b1 · a1

)
exp(im2b2 · a2)

= exp (−πim1) exp (2πim2)

= (−1)m1 ,

where the Kronecker-δ property of the lattice vectors was taken
into account.

However, a similar calculation shows that for qx = 0 lattice
periodicity in the x direction does hold. Indeed, in that case
the phase factor is

exp(im1b1 · a1) exp(im2b2 · a1)

= exp(i2πm1) exp(i2πm2)

= 1.

Numerical results in the following section illustrate that
the uncertainty principle is valid even for this highly isotropic
case.

B. An optimized tensor

To verify the uncertainty principle numerically, we per-
formed “brute-force” minimization of the TR discrepancy
with respect to a varying effective-material tensor. The TR
data from accurate finite-difference (FD) simulations of wave
propagation through a hexahedral-lattice slab were taken as
a basis. Parameters of the lattice are given in the previous
section; the angle of incidence varied from zero to an adjustable
value θmax. The number of layers in the slab was fixed at eight,
which, according to extensive published evidence, should yield
a reasonable representation of bulk behavior. The MATLAB�

optimization function fminsearch was run repeatedly from
different initial guesses for the tensor. (fminsearch employs
the Nelder–Mead simplex search method that does not use
numerical or analytic derivatives.) Included in our optimization
routine was a simulated annealing procedure [28,29] which
allows the numerical solution to escape from a local minimum
in the search for a global minimum. Admittedly, in complex
nonlinear optimization it can almost never be claimed (with the
notable exception of convex problems) that a global minimum
has been found. Still, in our case minimization was surprisingly
robust and converged to the same final result regardless of the
initial guess.

This tensor optimization can be viewed as a generalization
of the traditional S-parameter retrieval, except that illumina-
tion is not limited to normal incidence and the material tensor
is not limited to a diagonal tensor. Optimization was performed
under the constraints proved formally in Appendix B; namely,
the magnetoelectric coupling entries of the tensor are purely
imaginary, while all remaining entries are real.

For reference, we also consider the static tensor correspond-
ing to the a/λ → 0 limit. This tensor is diagonal, its magnetic
part being the identity tensor. For s polarization, the effective
static-limit permittivity is just the volume average of those of
the host and inclusion.

Figures 4 and 5 contrast the accuracy of homogenization
for the cases of a long wavelength (a/λ = 0.1) and a short one
(a/λ = 0.365), in correlation with the corresponding magnetic
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FIG. 4. Absolute errors in R (top) and T (bottom) as a function
of the sine of the angle of incidence. The errors are defined as
δR(θinc) = |Ropt(θinc) − RFD(θinc)|, δT (θinc) = |Topt(θinc) − TFD(θinc)|,
where “opt” refers to the optimized effective tensor and “FD” refers to
accurate finite-difference (FLAME) simulations. Tensor optimization
was performed within the range [0,π/4] for the angle of incidence.
a/λ = 0.1.

FIG. 5. Same as Fig. 4 but for a/λ = 0.365. Note the logarithmic
scale on the vertical axis.

effects. As already noted, a/λ = 0.365 is close to the second
� point.

For the long wavelength (Fig. 4), one observes that
the optimized tensor yields a good “engineering level” of
accuracy: the TR errors are below 0.01 in a broad range of
(albeit not all) angles of illumination. Even the static tensor
in that case is borderline acceptable. This does not violate the
uncertainty principle for TR, because magnetic effects in the
long-wavelength case are weak: μ ≈ 1.04 for the optimized
tensor and μ = 1 for the static one.

The situation is completely different for the short wave-
length near the second � point (Fig. 5). Not surprisingly, the
static tensor in this regime is not applicable at all. But even the
optimized tensor does not work: the errors are too large, except
for an accidental narrow range of the angles of incidence.
(Clearly, for any given specific angle, TR can be represented
perfectly just by parameter fitting.)

A detailed analysis of dispersion relations and homoge-
nization in the vicinity of � points in higher bands is given in
Ref. [30].

VI. CONCLUSION

This paper demonstrates that a nontrivial effective perme-
ability tensor of periodic structures composed of intrinsically
nonmagnetic constituents has limitations and is subject to
(at least) two “uncertainty principles.” First, the stronger
the magnetic response (as measured by the deviation of the
optimal effective permeability tensor from identity), the less
accurate (“certain”) are predictions of the effective-medium
theory. Second, also in the case of a strong magnetic response,
homogenization cannot simultaneously and accurately repro-
duce both TR and power relations in the periodic structure.
In practice, there is still room for engineering design, but
the tradeoffs between magnetic response and the accuracy of
homogenization must be noted.

These conclusions follow from the analysis of coarse-level
fields that must satisfy the dispersion relation and boundary
conditions accurately, while simultaneously approximating the
far field reflected and transmitted by a metamaterial sample.
All of this implies that not only the dispersion relation but also
surface impedance have to be illumination independent. These
prerequisites cannot unfortunately be simultaneously satisfied
if the desired magnetic response is strong. As a supporting
example, we considered a hexahedral lattice of cylindrical
air holes in a dielectric host, as investigated previously in
Ref. [18]. Even in this highly isotropic case, seemingly con-
ducive to homogenization, the uncertainty principles remain
valid.
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APPENDIX A: DEPENDENCE OF BLOCH WAVES
ON DIRECTION OF PROPAGATION

Because no analytical expressions are available for Bloch
waves, let us consider an approximation and examine its
implications for the magnetic parameter ζ in Eq. (20). Since
Eq. (20) is valid for the case of a fourfold symmetry, we con-
tinue to operate under that assumption. To simplify analytical
manipulations, we assume, in addition, that the metamaterial
consists of C4-symmetric but otherwise arbitrarily shaped
particles embedded in a homogeneous host; then the medium
next to the lattice cell boundary is homogeneous, which is
quite typical. Finally, we continue to concentrate on the 2D
case, s mode; it will be clear from the analysis below that this
assumption is not critical, but it does simplify the mathematics
greatly.

Under the above assumptions, the e field at the cell
boundary can be expanded into cylindrical harmonics:

e(r) =
∞∑

m=−∞
[cmJm(kr) + smhm(kr)] exp (imφ), (A1)

where Jm and hm are the Bessel function and the Hankel
function of the first kind, respectively; cm and sm are
(yet undetermined) coefficients, and k is the wave number
corresponding to the host material around the cell boundary.
The (infinite) coefficient vectors c = (. . . ,c−1,c0,c1, . . .) and
s = (. . . ,s−1,s0,s1, . . .) are linearly related:

s = T c. (A2)

Equation (A2) may serve as a definition of the scattering
matrix T which depends on the particle in the cell and fully
characterizes its electromagnetic response.

As an approximation, let us retain the terms in Eq. (A1) up
to quadrupole (|m| � 2); the coefficient vectors then reduce to
length five, and T is 5 × 5.

Since the Bloch wave is defined up to an arbitrary scaling
factor, we need four conditions to fix the coefficient vectors
c and s. The simplest way to impose such conditions is by
collocation at the four edge midpoints of the boundary.

More precisely, let the square lattice cell a × a be centered
at the origin; let midpoints 1 and 2 correspond to the bottom
and top edges, respectively: r1 = (0,−a/2), r2 = (0,a/2). We
require that the fields at these midpoints be related by the Bloch
condition

e(r2) − λne(r1) = 0, ∂ne(r2) − λn∂ne(r1) = 0, (A3)

where λn ≡ exp(iaq cos θB). In a completely similar manner,
for the midpoints on the “left” and “right” edges, r3 =
(−a/2,0), r4 = (a/2,0), the Bloch condition is

e(r4) − λτ e(r3) = 0, ∂τ e(r4) − λτ ∂τ e(r3) = 0, (A4)

where λτ ≡ exp(iaq sin θB). It is straightforward to write the
midpoint collocation condition in matrix-vector form:

(Jα+1 − λnJα)c + (Iα+1 − λnIα)s = 0, (A5)

(
J ∂

α+1 − λnJ ∂
α

)
c + (

I∂
α+1 − λnI∂

α

)
s = 0, (A6)

α = 1,3.

All J s and Is above are row vectors of length five. Vector
Jl contains the values of the Bessel functions at the collocation
point l—that is, the values Jm(rl), m = 0,±1,±2. Likewise,
vector Il contains the values of the respective Hankel functions
hm(rl). Vectors labeled with superscript ∂ are analogous but
contain the respective partial derivatives of the Bessel or
Hankel functions: ∂n for collocation points 1 and 2, and ∂τ

for points 3 and 4.
Recalling now that s = T c (A2) and merging the four

conditions above into a single matrix, we have

c = NullA, (A7)

where

A =

⎛
⎜⎜⎜⎝

J2 + T I2 − λn(J1 + T I1)

J ∂
2 + T I∂

2 − λn

(
J ∂

1 + T I∂
1

)
J4 + T I4 − λτ (J3 + T I3)

J ∂
4 + T I∂

4 − λτ

(
J ∂

3 + T I∂
3

)

⎞
⎟⎟⎟⎠. (A8)

Now that the Bloch wave expansion into cylindrical harmonics
has been evaluated, we can substitute it into expression (19)
for ζττ :

ζττ ≈ i

q cos θB

(
J ∂

1 + T I∂
1

)
c

(J1 + T I1)c
. (A9)

The key point here is that coefficients c depend in quite a
convoluted way on the angle. Indeed, vector c is the null space
of matrix A which contains λτ and λτ , which in turn are
complex exponentials of cos θB and sin θB. This convoluted
angular dependence of c translates, via Eq. (A9), into an even
more complex angular dependence of ζττ .

APPENDIX B: PROPERTIES OF THE TENSOR, s MODE

This section includes a formal proof of some properties of
the optimized material tensor under natural assumptions about
this optimization. The general plan of analysis is as follows:

(1) Assume some valid fields e,h,d,b in and around a
metamaterial slab.

(2) Apply a transformation (“symmetry”) S with regard to
which Maxwell’s equations are invariant: e′ = Se, etc.

(3) Find coarse-level E,H,D,B: E = f1(e), H = f2(h),
D = g1(H), B = g2(E); E′ = f1(e′), etc., where functions f1

and f2 are boundary averages [17] and functions g1 and g2

come from Maxwell’s equations.
(4) Given {D,B} = M{E,H}, {D′,B′} = M{E′,H′} deter-

mine the implications for M.
Let us implement this plan if S is complex conjugation.

The governing equation for the s mode is

∇2e(r) + k2ε(r)e(r) = 0. (B1)

This equation is indeed invariant with respect to complex
conjugation S if ε is real. The original and transformed Bloch
waves are, for a given q,

eB(r) = ẽB(r) exp (iq · r), (B2)

hB(r) = 1

ik

∂eB

∂n
= h̃B(r) exp (iq · r) (B3)
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(tangential component). Here,

h̃B(r) = qn

k
ẽB(r) + 1

ik

∂ẽB(r)

∂n
. (B4)

For a real q,

e′
B(r) = ẽ∗

B(r) exp (−iq · r), (B5)

with

h′
B(r) = 1

ik

∂e′
B

∂n
= h̃′

B(r) exp (−iq · r), (B6)

h̃′
B(r) = −qn

k
ẽ∗

B(r) + 1

ik

∂ẽ∗
B(r)

∂n
= −h̃∗

B(r). (B7)

The above derivation formally shows that, as could be
expected, if {e(r,q),h(r,q)} is a valid Bloch wave in a lossless
structure, then {e∗(r,−q),−h∗(r,−q)} is also a valid Bloch
wave. (Notably, the sign of the magnetic field is reversed
because the direction of the wave is reversed.)

The amplitudes of the two respective plane waves in the
homogenized medium are therefore related as

E′
0 = 〈ẽ∗

B〉S = E∗
0 , (B8)

H ′
0 = 〈h̃′

B〉S = −〈h̃∗
B〉S = −H ∗

0 , (B9)

B ′
0 = −qn

k
〈ẽ′

B〉S = −qn

k
E∗

0 = −B∗
0 . (B10)

Let there be a material tensor M such that⎛
⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠

⎛
⎝ E0

H0x

H0y

⎞
⎠ =

⎛
⎝D0

B0x

B0y

⎞
⎠. (B11)

Then, from Eqs. (B8)–(B10) it follows that entries M12,
M13, M21, M31 are purely imaginary, while all others are
real. Indeed, substituting into Eq. (B11) a valid wave with
amplitudes (E0,H0x,H0y), we have, say, for the first equation
in the system,

M11E0 + M12H0x + M13H0y = D0,

and for the corresponding conjugate wave with
(E∗

0 ,−H ∗
0x,−H ∗

0y),

M11E
∗
0 − M12H

∗
0x − M13H

∗
0y = D∗

0 .

From the above equations for the two waves, it can immedi-
ately be seen that

[(M11 − M∗
11) + (M12 + M∗

12)ηx(θB)

+ (M13 + M∗
13)ηy(θB)] = 0, (B12)

where we introduced the notation ηx,y ≡ E0/H0x,0y and noted
that the η depend on the direction of propagation of the Bloch
wave. Equation (B12) can hold for all directions of propagation
only if

M11 = M∗
11, M12 = −M∗

12, M13 = −M∗
13,

i.e., if M11 is real and M12, M13 are purely imaginary.
Similarly, M21, M31 must also be purely imaginary, while
M22, M23, M32, and M33 must be real.
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