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Current-driven homogenization and effective medium parameters for finite samples
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Reflection and refraction of electromagnetic waves by artificial periodic composites (metamaterials) can be
accurately modeled by an effective medium theory only if the boundary of the medium is explicitly taken
into account and the two effective parameters of the medium (the index of refraction and the impedance) are
correctly determined. Theories that consider infinite periodic composites do not satisfy the above condition. As
a result, they can not model reflection and transmission by finite samples with the desired accuracy and are not
useful for design of metamaterial-based devices. As an instructive case in point, we consider the “current-driven”
homogenization theory, which has recently gained popularity. We apply this theory to the case of one-dimensional
periodic medium wherein both exact and homogenization results can be obtained analytically in closed form. We
show that, beyond the well-understood zero-cell limit, the current-driven homogenization result is inconsistent
with the exact reflection and transmission characteristics of the slab.
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I. INTRODUCTION

In the past decade, interest in electromagnetic homog-
enization theories has experienced a remarkable revival,
especially when applied to artificial periodic composites
(metamaterials).1,2 The ultimate goal of any homogenization
or effective medium theory (EMT) is to describe reflection
and refraction of waves by finite samples. In the case of
homogeneous natural materials, an accurate description of
this kind is possible only if both the index of refraction
and the impedance of the material are known with sufficient
precision. Correspondingly, the majority of EMTs attempt to
replace a periodic composite sample with a sample of the
same overall shape but spatially-uniform effective refractive
index and impedance and sharp boundaries, although in some
cases Drude transition layers are introduced or considered.1

However, when the EMTs are tested or evaluated, the attention
is frequently paid only to the physical quantities that depend
on the index of refraction alone but not on the impedance. In
particular, this is the case for all EMTs that consider infinite
composites and do not account for the boundary of the medium.
Still, these theories always predict some impedance, and the
question remains as to whether this prediction is applicable to
finite samples.

The analysis is relatively simple in the classical homoge-
nization limit h → 0, where h is the heterogeneity scale such
as the lattice period of a composite. Here we assume that all
physical characteristics of the constituents of the composite
are independent of h. We will refer to this kind of EMT
as “standard.” Note that an alternative approach has been
proposed3,4 in which the limit h → 0 is also taken, but the
permittivity of one of the composite constituents is assumed
to depend on h. This theory is of a more general or, as we
shall say, of the “extended” type. The fundamental differences
between standard and extended theories have been discussed
by Bohren.5,6 What is important here is that standard EMTs do
not mix the electric and magnetic properties of the composite

constituents.7 This means, in particular, that the effective
permeability obtained in a standard EMT is identically equal
to unity if the constituents of the composite are intrinsically
nonmagnetic. A closely related point is that, in standard
theories, the impedance of the medium can be inferred from the
bulk behavior of waves as long as we accept that the effective
permeability is trivial. It can be proved independently that, in
the h → 0 limit, this choice of impedance is consistent with the
exact Fresnel reflection and refraction coefficients at a planar
boundary.8 Thus, in a standard theory, both the impedance and
the refractive index are consistent with reflection and refraction
properties of a finite sample.

However, standard EMTs are typically viewed as inade-
quate in the modern research of electromagnetic metamate-
rials because these theories do not predict or describe the
phenomenon of “artificial magnetism,” which has a number
of potentially ground-breaking applications.9 This difficulty
is not characteristic of the extended theories. An extended
EMT either does not employ the limit h → 0 or, otherwise,
assumes mathematical dependence between h and other
physical parameters of the composite. The main question
we consider in this paper is whether an extended EMT can
predict the refractive index and impedance simultaneously
and in a reasonable way. Of course, a refractive index per
se (generally, tensorial and dependent on the direction of the
Bloch wave vector) can always be formally introduced for
a Bloch wave. This can be done even in the case when the
composite is obviously not electromagnetically homogeneous.
But, all extended EMTs yield both a refractive index and
an impedance, and in the case of infinite unbounded media
there is no way to tell whether this homogenization result is
reasonable. In this paper, we present a case study by comparing
the so-called current-driven homogenization theory (which is
of extended type and is formulated for an infinite medium) to
exact results in a layered finite slab. Note that, although we
analyze a particular EMT, the central theme of this paper is
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related to the fundamental difference between standard and
extended EMTs.

There are, of course, many extended EMTs currently in
circulation. Theories of this kind have been first proposed
by Lewin10 and Khizhnyak11–13 but they came to the fore
more recently in the work of Niklasson et al.,14 Doyle,15

and Waterman and Pedersen,16 who have generalized the
classical Maxwell-Garnett approximation to account for the
magnetic dipole moments of spherical particles (e.g., com-
puted using Mie theory). Although the extended Maxwell-
Garnett approximation of Refs. 14–16 applies only to the
dilute case, it has served as an important precursor of several
more generally applicable extended EMTs. Among these
we can mention the modified multiscale approach,3,4 Bloch
analysis of electromagnetic lattices,17–20 coarse graining (av-
eraging) of the electromagnetic fields using curl-conforming
and div-conforming interpolants,21–23 and the current-driven
homogenization theory.24,25 The latter approach has gained
considerable traction lately.26–36 In this paper, we analyze this
theory as an instructive case in point.

One of the co-authors has already published37 a theoretical
analysis of the current-driven excitation model (not related
to the theory of homogenization). However, since multiple
claims have been made that the current-driven homogenization
approach is rigorous, completely general and derived from
first principles,24–26 it deserves additional scrutiny. Also, our
previous analysis was mainly theoretical and no numerical
examples were given. But, the best test of any EMT is the
test of its predictive power. It appears, therefore, useful to
investigate the predictions of current-driven homogenization
by using a simple exactly solvable case of one-dimensional
periodic medium.

In fact, current-driven homogenization has been already
applied to such media.35,36 However, the transmission and
reflection coefficients T and R of a layered slab have not been
studied in these references. Instead, the nonlocal permittivity
tensor �(ω,k) (defined below) was computed numerically.
Current-driven homogenization of Refs. 24 and 25 entails an
additional step in which �(ω,k) is used to compute purely
local effective tensors ε and μ (in noncentrosymmetric media,
magnetoelectric coupling parameters must also be introduced)
and then T and R according to the standard formulas [e.g., see
Eq. (31) below]. The nonlocal tensor �(ω,k) can be used
for this purpose only when complemented with additional
boundary conditions (ABCs), and this computation has not
been done. In addition, Refs. 35 and 36 do not provide a
closed-form expression for �(ω,k).

In what follows, we derive a closed-form expression for
�(ω,k) in the case of s polarization. Consideration of p

polarization is not mathematically difficult but is not needed
for our purposes. We follow the current-driven homogenization
methodology to derive closed-form expressions for the local
tensors ε and μ. Then, we use this result to compute T and
R of layered slabs. In Sec. II, we summarize and discuss
the prescription of current-driven homogenization of Refs. 24
and 25. In Sec. III, we use this prescription to obtain closed-
form expressions for the case of a one-dimensional layered
medium. In Sec. IV, we list for reference the relevant formulas
for the transmission and reflection coefficients of layered and
homogeneous slabs. Numerical examples are given in Sec. V.

Here, we compute local effective medium parameters obtained
by current-driven homogenization, by the S-parameter re-
trieval method, and by the classical (standard) homogenization
approach. We then use these results to compute T and R and to
compare the latter to the exact values for finite layered slabs.
In Sec. VI, we present a Bloch-wave analysis of current-driven
homogenization. Sections VII and VIII contain a discussion
and a summary of the results obtained. Some technical details
of the derivations and method used in this paper are given in
the Appendixes.

II. CURRENT-DRIVEN HOMOGENIZATION

The current-driven homogenization theory is formulated
for an infinite periodic medium and consists, essentially, of
two steps.

In the first step, one derives or computes numerically the
nonlocal permittivity tensor �(ω,k), which is defined as a
coefficient between the appropriately averaged fields D(r) and
E(r). The exact prescription for this computation is given
below. One could, potentially, stop at this point and attempt
to use �(ω,k) directly to compute the physical quantities of
interest. However, this computation is difficult to perform due
to the explicit dependence of � on k. At the very least, it entails
the use of ABCs. Since current-driven homogenization does
not consider the physical boundary of a sample, derivation of
the ABCs is outside of its theoretical framework. Besides,
the use of the ABCs would defeat the very purpose of
homogenization because all the applications of metamaterials
discussed so far in the literature rely heavily on the existence
of local constitutive parameters.

Hence, there exists a second step in which the nonlocal
tensor �(ω,k) is used to derive purely local tensors ε and μ

(here we restrict attention to media with a center-symmetric
lattice cell and do not introduce or discuss magnetoelectric
coupling parameters). This second step is based on the
proposition that, at high frequencies, magnetization of matter
is physically and mathematically indistinguishable from weak
nonlocality of the dielectric response.38–43 We will give an
exact prescription for completing this step, too.

We now turn to the mathematical details needed to
complete the two steps mentioned above. We work in the
frequency domain and the time-dependence factor exp(−iωt)
is suppressed. The dependence of various physical quantities
on ω is assumed but not indicated explicitly except in a few
cases, such as in the notation �(ω,k), where both arguments ω

and k are customarily included. The free-space wave number
k0 and wavelength λ0 are defined by

k0 = ω/c, λ0 = 2π/k0.

Finally, the Gaussian system of units is used throughout.

A. Step one: Calculation of the nonlocal permittivity
tensor �(ω,k)

Consider an infinite, periodic, intrinsically nonmagnetic
composite characterized by the permittivity function ε̃(r).
Here, the tilde symbol has been used to indicate that ε̃(r)
is the true parameter of the composite varying on a fine
spatial scale, as opposed to the spatially uniform effective
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medium parameters ε and μ. We assume for simplicity that
the composite is orthorhombic so that

ε̃(x + hx,y + hy,z + hz) = ε̃(x,y,z), (1)

where hx, hy , and hz are the lattice periods. Note that
ε̃(r) is a macroscopic quantity and that we consider the
composite exclusively within the framework of macroscopic
electrodynamics.

In the current-driven homogenization theory, it is assumed
that the system is excited by an “impressed” or external electric
current Jext(r) in the form of an infinite plane wave, viz.,

Jext(r) = ω

4πi
Jeik·r . (2)

Here, J is the amplitude, k is an arbitrary wave vector which
defines the “forced” Bloch periodicity, and the ω/4πi factor
has been introduced for convenience. Note that Jext(r) is not
subject to constitutive relations and is not equivalent to the
current induced in the medium by the electric and magnetic
fields. Maxwell’s equations for the system just described have
the following form:

∇ × H(r) = −ik0[ε̃(r)E(r) + Jeik·r], (3a)

∇ × E(r) = ik0H(r). (3b)

In some generalizations,28 a similar wave of magnetic
current is included in Eq. (3b). However, inclusion of electric
current only will prove sufficient for our purposes.

Obviously, the solution to (3) has the property of “forced”
Bloch periodicity.44 This can be expressed mathematically as

E(r) = eik·rF(r), (4)

where F(r) satisfies the periodicity condition (1), and similarly
for all other fields. The averaging procedure is then defined as
“low-pass filtering” of the fields (e.g., Ref. 26). The averaged
quantities are defined according to

Eav = 1

V

∫
C

e−ik·rE(r)d3r = 1

V

∫
C

F(r)d3r. (5)

Here, V = hxhyhz = ∫
C d3r and C denotes the unit cell.

Similar definitions can be given for averages of all other fields,
including the field of displacement D(r) = ε̃(r)E(r).

The nonlocal permittivity tensor is then defined as the linear
coefficient between Dav and Eav, viz.,

Dav = �(ω,k)Eav. (6)

If all Cartesian components of Eav and Dav are known, (6)
contains three linear equations for the tensor elements of
�(ω,k). By considering three different polarizations of J,
we can construct a set of nine linear equations. However, in
nongyrotropic media, the tensor �(ω,k) is symmetric38 and
has, therefore, only six independent elements. We can force the
set to be formally well determined by requiring that k · J = 0.

In this regard, it is useful to note that the averaged fields
satisfy k-space Maxwell’s equations with a spatially uniform
source45:

k × Hav = −k0(Dav + J), k × Eav = k0Hav. (7)

Consequently, k · (Dav + J) = 0. If k · J �= 0 [the current
wave in (2) is not transverse], we also have k · Dav �= 0. This
means, of course, that, in addition to the external current

(2), we have included into consideration an external wave
of charge density ρext(r) = (k · J/ω) exp(ik · r). However, in
the homogenized sample, we expect ∇ · D = 0 to hold. In this
paper, we use only a transverse external current wave, but note
that more general excitation schemes have been considered.28

Let us further specialize to the case of a two-component
composite in which the function ε̃(r) can take two discrete
values εa and εb. We will write C = Ca ∪ Cb and ε̃(r) = εa

if r ∈ Ca , ε̃(r) = εb if r ∈ Cb. In this case, Eav = Qa + Qb,
Dav = εaQa + εbQb, where

Qa =
∫
Ca

F(r)d3r, Qb =
∫
Cb

F(r)d3r.

Therefore, Eq. (6) takes the form

(Qaεa + Qbεb) = �(ω,k)(Qa + Qb). (8)

From the linearity of (3), we have Qa = τaJ, Qb = τbJ,
where τa and τb are two tensors. If τa + τb is invertible, we
can solve (8) to obtain

�(ω,k) = (τaεa + τbεb)(τa + τb)−1. (9)

The above equation implies that introduction of the external
current (2) is not required to define the function �(ω,k)
mathematically. In fact, this statement is general and applies
to any periodic structure in any number of dimensions, as long
as the intrinsic constitutive laws are linear. In Sec. VI, we
will demonstrate the same point from Bloch-wave analysis. In
Sec. VII A, we will show that �(ω,k) does not characterize
the medium completely but can only be used to find the law of
dispersion.

B. Step two: Calculation of local parameters

The proposition that magnetization (nontrivial magnetic
permeability) of matter is indistinguishable from nonlocality
of the dielectric response is based on the equivalence of
expressions for the induced current that are obtained in both
models for infinite plane waves. Here, we recount these
arguments insomuch as they are needed for deriving the main
results of this paper.

Consider two electromagnetically homogeneous media.
The first medium is characterized by a nonlocal permittivity
tensor �(ω,k) and μ = 1. In fact, the auxiliary field H is not
introduced for this medium, so that μ is, strictly speaking, not
defined. The macroscopic electrodynamics is then built using
the fields E, B, and D with the account of spatially nonlocal
relationship between D and E. The induced current in such a
medium is given by

J(1)
ind = − iω

4π
[�(ω,k) − 1]E. (10)

Here we assume, as is done in all relevant references,38–43 that
E is an infinite plane wave with the wave vector k.

The second medium is characterized by purely local tensors
ε and μ and the induced current in this medium is given by

J(2)
ind = − iω

4π
(ε − 1)E + c∇ × M, (11)
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where M is the vector of magnetization. Using the definition
of M and macroscopic Maxwell’s equations, we can also write

J(2)
ind = − iω

4π

[
(ε − 1) − 1

k2
0

k × (1 − μ−1)k ×
]

E. (12)

This expression can be compared to (10). In general, of course,
there is no equivalence between (10) and (12). But, in the so-
called weak nonlocality regime [defined more precisely after
Eq. (14)], �(ω,k) is well approximated by its second-order
expansion in powers of k. In this case, one can look for the
condition under which (10) and (12) agree to second order in
k. In nongyrotropic media, the expansion of �(ω,k) has the
form

�(ω,k) = �(ω,0) − 1

k2
0

k × βk × + . . . , (13)

where β is a tensor.
We are interested in the condition under which the expres-

sion in the square brackets in (12) is equivalent to [�(ω,k) − 1]
computed to second order in k. It is easy to see that this
condition is ε = �(ω,0) and μ = (1 − β)−1 where the last
equation implies tensor inverse. In isotropic media, μ and β

are reduced to scalars. In the case of cubic symmetry, when
the tensors β and μ are diagonal in the rectangular reference
frame XYZ, we have μαα = (1 − βαα)−1, where α = x,y,z.
Note that all three principal values of β can now be different.
The conclusion that is typically drawn from this analysis43

is that the introduction of local parameter μ is physically
indistinguishable from the account of the second-order term
in expansion (13).

If the function �(ω,k) is known (it is computed directly in
step one of the current-driven homogenization prescription),
the tensor β can be easily computed from (13). In the case of
cubic symmetry, the relevant formulas are

βxx = k2
0

2

∂2�yy

∂k2
z

= k2
0

2

∂2�zz

∂k2
y

= −k2
0

∂2�yz

∂ky∂kz

, (14a)

βyy = k2
0

2

∂2�xx

∂k2
z

= k2
0

2

∂2�zz

∂k2
x

= −k2
0

∂2�xz

∂kx∂kz

, (14b)

βzz = k2
0

2

∂2�xx

∂k2
y

= k2
0

2

∂2�yy

∂k2
z

= −k2
0

∂2�xy

∂kx∂ky

. (14c)

All derivatives in the above equations must be evaluated at
k = 0.

We can now formulate the condition of weak nonlocality
more precisely. Let us assume that we have applied the
prescription and computed the local parameters ε and μ at
a given frequency. These parameters can now be used to
compute the natural wave vector of the medium q using the
dispersion relation [e.g., for a uniaxial crystal, see Eq. (33)].
We then evaluate the nonlocal permittivity �(ω,k) at k = q.
The nonlocality is weak if the expansion (13) computed to
second order accurately approximates �(ω,q). Thus, in the
weak nonlocality regime, higher-order terms in the expansion
(13) can be neglected.

At this point, we can make two important observations.
First, the above discussion applies only to infinite media. In
any finite magnetic medium, additional surface currents exist.
These currents are not included in (11). Consequently, the

equivalence of currents is, in principle, not complete: it does
not apply to the surface currents. As a result, introduction of a
nontrivial magnetic permeability and a dynamic correction
to the permittivity,46 as described above, can yield a first
nonvanishing correction to the dispersion relation but not to
the impedance of the medium. A related point is that, in finite
samples, J(2)

ind is not reduced to a quadratic form (in Cartesian
components of k) even in the case of natural magnetics.

The second observation is more subtle. The local param-
eters that satisfy the requirement of current equivalence are
not unique when the current is evaluated on-shell, that is,
for k = q. There exists an infinite set of such parameters,
related to each other by the transformation (37) (stated below),
all of which yield exactly the same law of dispersion and
the same induced current (12). However, in current-driven
homogenization, the variable k in (12) is viewed as a free
parameter. If we use this approach and require the current
equivalence to hold for all values of k, we would obtain an
unambiguous “prescription” for computing the local effective
parameters. But, the only physically realizable case is k = q.
Therefore, it is not clear why the pair of effective parameters
predicted by current-driven homogenization is “better” than
any other pair obtained by the transformation (37). This point
will be illustrated numerically in Sec. V A.

III. EXACT SOLUTION IN ONE-DIMENSIONAL
LAYERED MEDIUM

The geometry considered is illustrated in Fig. 1. A one-
dimensional periodic medium consists of alternating intrin-
sically nonmagnetic layers of widths a and b and scalar
permittivities εa and εb, respectively. The period of the system
is given by h = a + b. The layered medium described here
can be considered as a special case of the three-dimensional
orthorhombic lattice obtained in the limit hx = hy = 0,

FIG. 1. (Color online) Geometry of wave propagation in the case
of s polarization. Here, k = (kx,0,kz) is the wave vector of the external
current wave [Eq. (2)]. A finite-symmetric slab containing N = 6
unit cells is shown. Each cell consists of three layers of the widths
(a/2,b,a/2). Equivalently, we can view the unit cells as consisting
of two layers of the widths (a,b), provided that one half of the first
a-type layer has been cut off and moved from the left face of the slab
to its right face. Note that the sample shown in the figure has a center
of symmetry.
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hz = h > 0. Note that the medium shown in Fig. 1 is finite
and terminated by half-width a-type layers. However, in the
current-driven homogenization theory, the medium is assumed
to be infinite.

We will consider only the special case of s polarization,
when the wave vector k lies in the plane XZ of the rectangular
frame shown in Fig. 1 and the amplitude J of the external cur-
rent (2) is collinear with the Y axis, so that k = (kx,0,kz) and
J = (0,Jy,0). According to (14), this is sufficient to uniquely
define the following elements of the effective permittivity and
permeability tensors: εxx = εyy , μxx = μyy and μzz.

We will need to introduce the following notations:

k2
a = k2

0εa, k2
b = k2

0εb, (15a)

κa =
√

k2
a − k2

x, κb =
√

k2
b − k2

x, (15b)

φa = κaa, φb = κbb, (15c)

θa = kza, θb = kzb, (15d)

pa = a/h, pb = b/h, (15e)

and also the standard homogenization result for a periodic
layered medium:

ε‖ = paεa + pbεb, ε⊥ = 1

pa/εa + pb/εb

, (16a)

μ‖ = μ⊥ = 1. (16b)

Here, the quantities indexed by “‖” and “⊥” give the
standard homogenization results for the elements of the permit-
tivity and permeability tensors that correspond to the direction
of the electric field parallel and perpendicular to the layers,
respectively. Throughout the paper, the branches of all square
roots are defined by the condition 0 � arg(

√
z) < π .

We wish to solve Eq. (3) in which ε̃(r) is equal to εa in the
a-type layers and to εb in the b-type layers. Without loss of
generality, we can consider the unit cell 0 < z � h = a + b,
which contains two layers: the first layer (a-type) is contained
between the planes z = 0 and a and the second (b-type) layer
is contained between the planes z = a and h. We can seek the
solution in each homogeneous region excluding its boundaries
as a particular solution to the inhomogeneous equation plus
the general solution to the homogeneous equation, viz.,

Ey(x,z) = eik·r[Ep(z) + Eg(z)], (17a)

Hx(x,z) = eik·r[Hp(z) + Hg(z)]. (17b)

Here, the subscripts “p” and “g” denote the particular and
the general solutions, respectively, and the overall exponential
factor exp(ik · r) is written out explicitly.

The particular solution is given by

Ep(z) = Jyf (z), Hp(z) = −kz

k0
Jyf (z), (18)

where

f (z) =
⎧⎨
⎩

k2
0

k2−k2
a

≡ fa, 0 < z < a

k2
0

k2−k2
b

≡ fb, a < z < h.

We emphasize that (18) is a particular solution in the open
intervals 0 < z < a and a < z < h. To satisfy boundary
conditions at the interfaces, we must add to (18) the general

solution to the corresponding homogeneous problem. The
latter can be easily stated:

Eg(z) = Jy�e−ikzzFE(z), (19a)

Hg(z) = −kz

k0
Jy�e−ikzzFH(z), (19b)

where

� = fb − fa = k2
0

k2 − k2
b

− k2
0

k2 − k2
a

and

FE(z) =
{

Aae
iκaz + Bae

−iκaz, 0 < z < a

eiθa [−Abe
iκb(z−a) − Bbe

−iκb(z−a)], a < z < h

(20a)

FH(z) =
{

κa

kz
[Aae

iκaz − Bae
−iκaz], 0 < z < a

κb

kz
eiθa [−Abe

iκb(z−a) + Bbe
−iκb(z−a)], a < z < h.

(20b)

In these expressions, various z-independent factors have
been introduced for convenience and Aa,Ba,Ab,Bb is a set of
coefficients to be determined from the boundary conditions.
The latter require continuity of all tangential field components
at the interfaces z = 0,a,h and can be stated as follows:

FE(a − 0) − FE(a + 0) = eiθa , (21a)

FH(a − 0) − FH(a + 0) = eiθa , (21b)

eiθaFE(0) − e−iθbFE(h) = eiθa , (21c)

eiθaFH(0) − e−iθbFH(h) = eiθa . (21d)

This results in a set of four equations for the unknown
coefficients Aa,Ba,Ab,Bb, which are stated in Appendix A.

It may seem confusing that the right-hand side in (21) does
not go to zero when Jy → 0; in fact, (21) does not contain Jy at
all. However, the electromagnetic fields Ex(x,z) and Hy(x,z)
computed according to (17)–(19) are proportional to Jy . Note
that the most general solution to (3) is a superposition of the
solution derived here (whose amplitude is proportional to Jy)
and the natural Bloch mode of the medium with an arbitrary
amplitude. To remove the nonuniqueness, one can either
consider the boundary of the medium and thus abandon the
infinite medium model or, alternatively, apply the additional
boundary condition requiring “forced” Bloch periodicity (4).
The latter approach is used in current-driven homogenization
and in the derivations of this section.

The solution to (21) is given by

Aa = Aa

2D
, Ba = Ba

2D
, Ab = Ab

2D
, Bb = Bb

2D
, (22)

where

D = cos(kzh) − cos(qzh) (23)

and the closed-form expressions for Aa , Ba , Ab, and Bb are
given in Appendix A. In (23), qz is the z projection of the
natural Bloch wave vector q computed under the assumption
that its X projection is equal to kx (that is, qx = kx). The factor
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cos(qzh) is defined by the equation

cos(qzh) = cos(φa) cos(φb) − 1

2

(
κa

κb

+ κb

κa

)
sin(φa) sin(φb).

(24)

Evidently, if kz = ±qz + 2πn/h, where n is an arbitrary
integer, the matrix in (21) is singular.

We now simplify the expression for the electric field
Ey(x,z). After some rearrangement, we can write

Ey(x,z) = Jyk
4
0e

ik·r(
k2 − k2

a

)(
k2 − k2

b

) 1

D

{
Fa(z), 0 < z < a

Fb(z), a < z < h

where

Fa(z) = D
k2 − k2

b

k2
0

+ 1

2
e−ikzz(εb − εa)

× [
Aae

iκaz + Bae
−iκaz

]
, (25a)

Fb(z) = D
k2 − k2

a

k2
0

− 1

2
eikz(a−z)(εb − εa)

× [
Abe

iκb(z−a) + Bbe
−iκb(z−a)] . (25b)

The yy component of the nonlocal permittivity tensor
�(ω,k) is computed by using (8) or (9), which results in

�yy(ω,k) = Qaεa + Qbεb

Qa + Qb

, (26)

where

Qa =
∫ a

0
Fa(z)dz, Qb =

∫ h

a

Fb(z)dz. (27)

The integrals in (27) are easily computed analytically; these
intermediate results are omitted. Note that Qa and Qb

depend implicitly on both ω and k, which are considered
as mathematically independent variables in the current-driven
homogenization theory; this dependence is indicated explicitly
in the notation �(ω,k).

Equations (25)–(27) together with the expressions for the
expansion coefficients given in Appendix A constitute a
closed-form solution for �yy(ω,k). This solution contains only
elementary functions, has no branch ambiguities [see the note
after Eq. (15)], and can be easily programmed. Note that the
quantities Qa and Qb defined in (27) have no singularities
when viewed as functions of k. However, �yy(ω,k) has
singularities at the roots of the equation Qa + Qb = 0. This
completes step one of the current-driven homogenization
prescription, at least for the case of s polarization.

We now proceed with step two. For the local effective
permittivity, we have

εyy = �yy(ω,0) = Qaεa + Qbεb

Qa + Qb

∣∣∣∣
k=0

.

We note that this expression contains the dynamic correction
to the permittivity.46 From symmetry, we also have εxx = εyy .
The remaining nontrivial component of the permittivity tensor
is εzz; this element can not be computed by considering only
s polarization of the external current.

To compute the elements of the permeability tensor, we use
the first equality in (14a) and the second equality in (14c).

More specifically, we have

βxx = k2
0

2

∂2�yy

∂k2
z

∣∣∣∣
k=0

, βzz = k2
0

2

∂2�yy

∂k2
x

∣∣∣∣
k=0

.

Using (26), we can obtain the following formulas for βxx and
βzz in terms of Qa and Qb:

βxx = k2
0(εb − εa)

QaQ
(zz)
b − QbQ

(zz)
a

(Qa + Qb)2

∣∣∣∣∣
k=0

, (28a)

βzz = k2
0(εb − εa)

QaQ
(xx)
b − QbQ

(xx)
a

(Qa + Qb)2

∣∣∣∣∣
k=0

. (28b)

In these expressions, Q(xx)
a denotes the second derivative of

Qa with respect to kx evaluated at k = 0, etc. In deriving (28),
we have used the fact that Q(x)

a = Q(z)
a = Q

(x)
b = Q

(z)
b = 0.

Note that Eq. (28) is invariant under the permutation of indexes
a ↔ b.

The elements of the effective permeability tensor are
expressed in terms of βxx , βzz as

μxx = 1

1 − βxx

, μzz = 1

1 − βzz

. (29)

From symmetry, we also have μyy = μxx . Closed-form ex-
pressions for εxx = εyy , μxx = μyy and μzz are given in
Appendix B. These expressions contain only elementary
trigonometric functions but are fairly cumbersome. However,
the small-h asymptotic approximations of these expressions
have the following simple form:

εxx = εyy = ε‖ + (εa − εb)2

12
(papb)2(k0h)2 + O(h4), (30a)

μxx = μyy = 1 + (εa − εb)2

240
× (papb)2 (1 + 2papb)(k0h)4 + O(h6), (30b)

μzz = 1 − (εa − εb)2

720
(papb)2(1 + 2papb)(k0h)4 + O(h6).

(30c)

Thus, the first nonvanishing corrections to the effective
permeability tensor are obtained to fourth order in h. Moreover,
the corrections to μxx and μzz differ by the constant factor −3.
Consequently, current-driven homogenization, when applied
to the one-dimensional (1D) periodic structure considered in
this section, guarantees that at least one of the principal values
of the permeability tensor has a negative imaginary part for
sufficiently small values of h, provided that Im(εa − εb)2 �= 0.

IV. TRANSMISSION AND REFLECTION BY
HOMOGENEOUS AND LAYERED SLABS

In what follows, we will need to refer to the formulas
for the transmission (T ) and reflection (R) coefficients of
homogeneous and layered slabs. These formulas are well
known and are adduced here mainly for reference. However,
they also reveal some important features that will help us
analyze the numerical results of the next section. We still work
in the geometry of Fig. 1 and, in analogy to (15b), denote the
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z projection of the incident wave vector by κ0, so that

κ0 =
√

k2
0 − k2

x.

Note that, for kx > k0, the incident wave is evanescent. All
formulas given below are parametrized by kx .

Any slab with a one-dimensional distribution of elec-
tromagnetic parameters is completely characterized by its
characteristic matrix M . Suppose the slab occupies the region
0 < z < L. Then, the tangential components of the electric
and magnetic fields at the left and right faces of the slab are
related by [

EL

HL

]
=

[
M11 M12

M21 M22

] [
E0

H0

]
.

The general property of all characteristic matrices is det(M) =
1. If the slab has a center of symmetry (as is the case in this
paper), the left and right incidence directions are equivalent,
which can be mathematically stated as M11 = M22. Under
these conditions, the transfer matrix can be written as47

M =
[

cos θ (−i/Z) sin θ

−iZ sin θ cos θ

]
,

where θ and Z are the optical depth and the generalized
impedance of the slab.48

The transmission and reflection coefficients can be ex-
pressed in terms of θ and Z as

T = 1

cos θ − iX+ (Z0,Z) sin θ
, (31a)

R = −iX− (Z0,Z) sin θ

cos θ − iX+ (Z0,Z) sin θ
, (31b)

where

X±(Z1,Z2) = 1

2

(
Z1

Z2
± Z2

Z1

)

and Z0 = κ0/k0 is the generalized impedance of free space
(we assume that the slab is embedded in a vacuum or air).
The quantities T and R defined in (31) relate the amplitudes
of the transmitted and reflected tangential field (electric in
the case of s polarization or magnetic field in the case of p

polarization) measured at the planes z = L (for T ) or z = 0
(for R) to the amplitude of the incident wave at z = 0. The
specific expressions for θ and Z depend on polarization, and
it should be kept in mind that, at normal incidence, Ts = Tp

but Rs = −Rp, where the subscripts indicate the particular
mathematical expression applicable to a given polarization
state.

Specific expressions for θ and Z for homogeneous and
layered slabs are given in what follows.

(a) Homogeneous anisotropic slab. Consider a slab char-
acterized by purely local diagonal tensors ε = diag(ε⊥,ε⊥,ε‖)
and μ = diag(μ⊥,μ⊥,μ‖). Then,

θ = qzL, Z = qz/(k0η‖), (32)

where

qz =
√

k2
0ε‖μ‖ − k2

x(η‖/η⊥) (33)

and η refers to μ for s polarization and to ε for p polarization.

(b) Layered slab. Consider a layered slab of total width
L = Nh containing N unit cells arranged as shown in Fig. 1.
Each cell consists of three consecutive layers of the widths
(a/2,b,a/2), where a + b = h, and the permittivities εa and
εb, respectively. Then,

θ = qzL = Nqzh, (34a)

Z 2 = Za
2 sin φa cos φb − X− sin φb + X+ cos φa cos φb

sin φa cos φb + X− sin φb + X+ cos φa cos φb

.

(34b)

Here, φa,φb are defined in (15c), X± = X±(Za,Zb), Za

and Zb are the generalized impedances of each layer, and qz

is the natural Bloch wave number of the medium defined by
the following equation:

cos(qzh) = cos(φa) cos(φb) − X+ sin(φa) sin(φb). (35)

Note that (24) is a special case of (35) (for s polarization
and nonmagnetic layers). Also, Eq. (35) defines cos(qzh) but
not sin(qzh). The latter quantity can be computed by using one
of the formulas

sin(qzh) = Z

Za

(sin φa cos φb + X− sin φb + X+ cos φa sin φb)

= Za

Z
(sin φa cos φb − X− sin φb + X+ cos φa sin φb),

where Z is determined by taking an arbitrary branch of the
square root of (34b); the resultant transfer matrix is invariant
with respect to this choice.

The formulas given above illustrate several important
points. First, the transmission of a thick, highly transparent
slab is very sensitive to small errors in qz. This is because
the trigonometric functions such as cos θ = cos(qzL) incur
a substantial phase shift when qz is changed by ∼π/L. If
L → ∞ (and losses can still be ignored), any homogenization
theory is expected to be unstable numerically because a
small error in medium parameters can propagate to become
a significant error in T . This instability, however, is of
little practical importance because, in most cases, the il-
lumination is not monochromatic. What we are discussing
here are, essentially, the resonances of a Fabry-Perot etalon.
In most applications to optical imaging and microscopy,
illumination is more broadband than a line of a single-mode
laser and the interference effects are unobservable. Under
these conditions, the expressions (31) can be regularized
by Gaussian integration with respect to k0 or L. However,
in this paper, we only consider strictly monochromatic
light.

Second, an error in the generalized impedance will also
result in an error in both T and R and, in some cases, this
error can also be dramatic. An illustrative example is the case
X+ → −1, which is the operation regime of the so-called
perfect lens.49 Indeed, we can rewrite (31a) as

T = 2

(1 − X+) exp(iθ ) + (1 + X+) exp(−iθ )
. (36)

If X+ is exactly equal to −1, (36) predicts T = exp(−iθ ).
For evanescent waves and a macroscopically thick slab, the
factor exp(iθ ) is exponentially small. Therefore, if we make
a small error50 in X+, say, X+ = −1 + δ, such that |exp(iθ )|
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 |δ|  1, Eq. (36) would predict T = (2/δ) exp(iθ ), which
is dramatically different from the former result. We note
that there are other similar situations, and that the condition
X+ ≈ −1 is not special in this respect.

Therefore, a homogenization theory must predict correctly
both the optical depth and the impedance of a medium. But,
can local effective medium parameters be found in such a way
as to predict θ and Z correctly and simultaneously? Standard
EMTs do allow this asymptotically in the limit h → 0. In
contrast, extended EMTs that consider an infinite medium
can not predict correctly the impedance of the medium.
The current-driven homogenization theory is of this variety:
it predicts correctly the first nonvanishing correction to θ

(compared to the standard homogenization result) but does
not provide any meaningful corrections or approximations to
Z. Moreover, this correction to θ yields a valid approximation
only in a limited range of h, as will be shown in the following.
In a more general case, it is not possible to find local parameters
that predict correctly (for all angles of incidence) even θ

alone. Therefore, the claims that the current-driven homog-
enization theory is rigorous and completely general24–26 are
exaggerated.

We finally note that the above analysis could be extended
to three-dimensional orthorhombic lattices by integrating out
higher-order harmonics in the xy plane, i.e., by low-pass
filtering.

V. NUMERICAL EXAMPLES

In this section, we consider several examples of com-
puting the local effective parameters of one-dimensional
layered media according to the current-driven homogenization
methodology. We note that the maximum possible value of
the numerical factor (papb)2 (1 + 2papb) in (30) is 3

32 and it
is achieved when pa = pb = 1

2 . These volume fractions are
used in all the numerical examples shown below. The b-type
medium is assumed to be air or vacuum with εb = 1. For the
a-type medium, three different examples will be considered. In
example A, the a-type medium is a lossy dielectric considered
at a fixed frequency and varying values of h and kx . Example B
is similar to example A, but the a-type medium is a conductor.
In example C, the a-type medium is an idealized Drudean
metal considered at a fixed value of h, kx = 0, and varying λ0.
Thus, in example C we account for the frequency dispersion
in metal.

The results of current-driven homogenization will be
compared to the standard homogenization result (16) and to
the results of S-parameter retrieval.47,51–53 As is well known,
retrieving effective parameters of a slab from the transmission
and reflection coefficients at normal or near-normal incidence
is an ill-posed inverse problem. We have used several different
methods of regularizing the inverse solution, some of which
have been proposed in the literature52 and others have been
devised by us; see Appendix C for full details. All these various
modalities of the retrieval technique yield approximately the
same result when h/λ0  1 but deviate strongly for larger
values of this ratio. In the figures below, the retrieval results are
shown only for the range of h/λ0 within which the technique
is numerically stable.

A. Example A

We start with the case where the a-type medium is a
lossy dielectric characterized by εa = 4.0 + 0.1i at a given
wavelength λ0. In example A, we assume that h and kx can vary
while λ0 is fixed. Then, the physically measurable quantities
of interest are functions of the dimensionless variables h/λ0

and kx/k0, and the actual value of λ0 is unimportant. The
sample consists of N = 50 symmetric unit cells of the type
(a/2,b,a/2) arranged as shown in Fig. 1. As noted above, we
take a = b = h/2 in all numerical experiments.

In Figs. 2–4, we illustrate the predictions of current-driven
homogenization for all the components of the permittivity
and permeability tensors that can be obtained in s polar-
ization. The results are compared to the predictions of the
S-parameter retrieval method. It can be seen that current-driven
homogenization produces the standard homogenization result
when h → 0. This much could be inferred from considering
the asymptotic expansions (30). In fact, for h/λ0 � 0.2, all
curves displayed in the figures are close to the standard
homogenization result. We note that this is, approximately,
the same range of h in which S-parameter retrieval is
numerically stable. The interpretation of this fact is obvious:
for sufficiently small ratios of h/λ0, the transmission and

0.20.10

2.7

2.5

2.3

ST
RET

AS
CDRe yy

20

10

0

-10

0.20.10

0.1

0

Im yy

h/λ0

10.80.60.40.20

30

20

10

0

FIG. 2. (Color online) Example A: Real (top) and imaginary
(bottom) parts of εyy as functions of h/λ0. The various curves
shown are obtained as follows: CD, by current-driven homogenization
(formulas given in Appendix B); AS, the small-h asymptotic
approximations of the former [Eq. (30)]; RET, by S-parameter
retrieval (see Appendix C); and ST, the standard homogenization
result ε‖ [defined in Eq. (16a)]. Insets show the details of all curves
for small h.
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0.20.10

1.1

1

0.9

RET
AS
CD

Reμxx

6

3

0

-3

0.20.10
−0.001

0

0.001

0.002

Imμxx

h/λ0

10.80.60.40.20

9

6

3

0

FIG. 3. (Color online) Example A: Same as in Fig. 2 but for μxx .
The standard homogenization result μxx = 1 is not shown.

0.20.10
0.995

1

1.005

1.010

RET
AS
CD

Reμzz

1

0.5

0

0.20.10
−0.001

0

0.001
Imμzz

h/λ0

10.80.60.40.20

0.1

0.05

0

-0.05

FIG. 4. (Color online) Example A: Same as in Fig. 2 but for μzz.
The standard homogenization result μzz = 1 is not shown.

ST
CD
EX

|T |2
1

0.75

0.5

0.25

0

|R|2

h/λ0

10.80.60.40.20

1

0.75

0.5

0.25

0

FIG. 5. (Color online) Example A: Absolute values squared of
the transmission (top) and reflection (bottom) coefficients at normal
incidence as functions of h/λ0. The various curves shown are
obtained as follows: EX, the exact result [Eqs. (31)]; CD, equivalent
homogeneous slab with current-driven effective parameters; and ST,
same as above but for effective parameters obtained by standard
homogenization.

reflection properties of the sample are well fitted by purely
local effective permittivity ε and μ = 1.

Both current-driven homogenization and S-parameter re-
trieval provide corrections to the standard homogenization
result. As long as these corrections are small, they can yield a
homogenization result that appears to be “reasonable.” Yet, all
the dramatic features of current-driven homogenization occur
for h/λ0 > 0.2, where the S-parameter retrieval is unstable
(that is, the retrieved result strongly depends on the particular
implementation of the retrieval technique). In particular, the
resonance in μxx occurs at h/λ0 ≈ 0.4. Is this result physically
reasonable? We will address this question now by considering
the transmission and reflection coefficients of a finite slab.

In Fig. 5, we plot |T |2 and |R|2 at normal incidence as
functions of h/λ0. It can be seen that the different methods
used to compute the transmittance and reflectance yield very
similar results for h/λ0 � 0.2 but very different results for
h/λ0 > 0.2. Overall, when both T and R are considered,
current-driven homogenization does not provide a meaningful
correction to the standard homogenization result (16). In other
words, at small h/λ0, both methods predict approximately
the same result, while at larger values of h/λ0 both methods
simultaneously fail. This is clearly visible in the case of R but
is also true for T , which is very small when h/λ0 > 0.4. In the
latter case, both current-driven and standard homogenization
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TABLE I. Effective parameters for example A obtained by
various methods at h/λ0 = 0.2 and h/λ0 = 0.3. ST, the standard
homogenization result; CD, current-driven homogenization; CD-
REN, current-driven homogenization with renormalization (37);
RET, retrieved parameters. The numbers have been rounded off to
three significant figures. However, all plots shown in this paper utilize
either double- or quadruple-precision computations.

Effective
parameters h/λ0 = 0.2 h/λ0 = 0.3

ST
ε‖ 2.50 + i0.05
μ‖ 1 + i0
μ⊥ 1 + i0

CD
εyy − ε‖ (820.0 + i56.6)10−4 (21.4 + i6.05)10−2

μxx − 1 (126.0 + i9.45)10−4 (11.5 + i1.11)10−2

μzz − 1 −(35.9 + i2.55)10−4 −(24.0 + i1.84)10−3

n = εyyμxx (261.0 + i5.88)10−2 (30.3 + i1.03)10−1

CD-REN
εyy − ε‖ (114.0 + i8.80)10−3 (52.5 + i5.32)10−2

μxx − 1 0 0
μzz − 1 −(16.0 + i1.17)10−3 −(12.5 + i1.04)10−2

n = εyyμxx (261.0 + i5.88)10−2 (30.3 + i1.03)10−1

RET
εyy − ε‖ −(48.4 + i3.07)10−2

μxx − 1 (30.3 + i1.74)10−2

μzz − 1 (25.9 + i1.27)10−2

n = εyyμxx (263.0 + i6.03)10−2

generate relative errors in |T |2 of many orders of magnitude, as
could be verified by utilizing logarithmic vertical scale (data
not shown). Of course, this result is expected for standard
homogenization, which is an asymptotic theory. However, the
current-driven homogenization theory was claimed to have
predictive power beyond the limit of small h and, in particular,
in the region of the parameter space where it predicts nontrivial
magnetic effects. This claim appears not to be supported by
the data of Fig. 5.

Nevertheless, if we focus on T alone, current-driven
homogenization provides a slightly more accurate result
compared to standard homogenization when h/λ0 is in a small
vicinity of 0.2. Let us, therefore, consider in more detail
transmission and reflection by the slab at h/λ0 = 0.2. The
effective parameters obtained at this value of h/λ0 by current-
driven homogenization are listed in Table I and the dependence
of |T |2 and |R|2 on the angle of incidence is illustrated in Fig. 6.
In the case of T , current-driven homogenization provides a
noticeable improvement over the standard homogenization
result when kx < k0 (in fact, the standard formula predicts
the phase of T incorrectly in this range of kx) but not when
kx > k0, i.e., not when the incident wave is evanescent. In the
case of |R|2, no improvement is observed. We note that the
values of |R|2 in Fig. 6 can exceed unity for kx > k0, when
both the incident and the reflected waves are evanescent.

We will discuss in the remainder of this section the
reason why current-driven homogenization predicts |T |2 more
accurately than the standard homogenization result at h/λ0 =
0.2, but it is useful to note right away that this has nothing to
do with an accurate prediction of μ. In fact, the values of μ

ST
CD
EX

h

λ0
= 0.2

|T |2

0.15

0.1

0.05

0

|R|2

kx/k0

21.510.50

1

0.75

0.5

0.25

0

FIG. 6. (Color online) Example A: Absolute values squared of
the transmission (top) and reflection (bottom) coefficients computed
as functions of kx/k0 for h/λ0 = 0.2. Same curve labels as in Fig. 5
have been used.

computed by current-driven homogenization are not optimal.
To illustrate this point, consider the data of Fig. 7. Here, we plot
the real parts of T and R and introduce two additional curves.
The first of these curves (labeled CD-REN) was obtained by
taking the current-driven effective parameters listed in Table I
and renormalizing them according to the formula

ε → ξε, μ → μ/ξ (37)

with the renormalization factor ξ = μxx . In (37), ε nd μ are
tensors while ξ is a scalar. Renormalization (37) does not
affect the equivalence of the induced currents (10) and (12)
when each formula is evaluated on-shell, that is, for k = q.
The renormalized parameters are also given in Table I. It
can be seen that the renormalized effective parameters have
dramatically different values of μ − 1. Yet, T and R computed
by using both sets of parameters are virtually indistinguishable.

Moreover, the effective parameters obtained by current-
driven homogenization are in no way optimal if the goal of
homogenization is to fit the transmission and reflection data
as closely as possible. The latter aim is, in fact, achieved by
the S-parameter retrieval procedure. In Fig. 7, we show an
additional curve (labeled RET), which was computed using the
effective parameters obtained by S-parameter retrieval. More
specifically, εyy and μxx have been computed by method 2 and
μzz was computed by method 3, where the various methods
of S-parameter retrieval are described in Appendix C. The
particular choice of methods is explained as follows: method
2 is more stable numerically but, unlike method 3, it does not
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h

λ0
= 0.2

Re(T )

0.2

0

-0.2

RET
CD-REN

CD
EX

Re(R)

kx/k0

10.750.50.250

0

-0.25

-0.5

-0.75

-1

FIG. 7. (Color online) Example A: Same as in Fig. 6 but for
the real parts of T and R. Additional curve labels: CD-REN,
current-driven homogenization with renormalization (37); and RET,
S-parameter retrieval. See Table I for numerical values of the effective
parameters used for each curve. Note that CD and CD-REN curves are
visually indistinguishable; EX and RET curves are indistinguishable
in the upper plot but slightly different in the bottom plot.

allow one to compute μzz. Returning to Fig. 7, we observe that
the curve labeled RET provides a much better fit to both T and
R in a wide range of incidence angles. This is in spite of the
fact that the effective parameters labeled as RET in Table I are
very different from those labeled as either CD or CD-REN.

At this point, we note that the magnetic effects predicted by
current-driven homogenization at h/λ0 = 0.2 are tiny; |μ − 1|
does not exceed ∼0.01 and the condition of weak nonlocality
is very well satisfied. Yet, the relative errors in T and R

produced by current-driven homogenization are significant;
they are at least of the same order of magnitude as |μ − 1|
or greater. In particular, the relative errors in Re(R) or |R|2 at
normal incidence exceed 100%. To distinguish the two effects,
it would suffice to measure the reflection coefficient at normal
incidence.

Now, let us turn to the case h/λ0 = 0.3, which is illustrated
in Figs. 8 and 9. S-parameter retrieval is unstable at this point
and standard homogenization is inapplicable (the correspond-
ing curves are not shown). Therefore, if current-driven homog-
enization could produce reasonable predictions at h/λ0 = 0.3,
it would constitute a valid and useful approximation. However,
the data of Figs. 8 and 9 do not support this hypothesis. The
relative errors in R and T for current-driven homogenization
are at this point dramatic and can be many orders of magnitude.
For kx < k0, the relative errors are many orders of magnitude

CD-REN
CD
EX

h

λ0
= 0.3

|T |2
0.005

0.004

0.003
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0

|R|2

kx/k0
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0.75

0.5

0.25

0

FIG. 8. (Color online) Example A: Same as in Fig. 6 but for
h/λ0 = 0.3.
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FIG. 9. (Color online) Example A: Same as in Fig. 7 but for
h/λ0 = 0.3.
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in T and at least an order of magnitude in R. Both the phase and
the amplitude of T and R are predicted with significant errors
in the whole range of kx considered. We note that, in the bottom
plot of Fig. 9, the real part of R is reproduced correctly at
normal incidence by current-driven homogenization. However,
as can be seen from the data of Fig. 8, |R|2 at normal incidence
is predicted with a large error. Consequently, ImR is also
predicted with a large error (data not shown).

All this is in spite of the fact that current-driven homog-
enization does not yet predict any dramatic magnetic effects
at h/λ0 = 0.3. Indeed, for this value of h/λ0, current-driven
homogenization predicts that |μ − 1| does not exceed ≈0.1.
Moreover, it can be seen from the data of Figs. 8 and 9 that
renormalization of effective parameters according to (37) does
not worsen or, indeed, noticeably modify the predictions of
current-driven homogenization.

At even larger values of h/λ0, predictions of current-driven
homogenization are widely inaccurate. In particular, current-
driven homogenization can not be relied upon at h/λ0 = 0.4,
when μxx experiences a dramatic resonance. This is evident
from the data of Fig. 5, and there is no need to support this
conclusion with additional graphics. A question, however,
remains: Why did we observe a moderate improvement in T at
h/λ0 = 0.2? The reason is that current-driven homogenization
provides a first nonvanishing correction to the Bloch wave
number qz but not to the impedance Z. Both quantities enter
the formulas for T and R [Eq. (31)]. As was discussed in
Sec. IV, under some circumstances, T can be more sensitive
to errors in qz than to errors in Z. This does not mean that
errors in Z are insignificant. As could be seen in Figs. 7,
an error in the impedance that current-driven homogenization
entails translates into an error in T and R, which is at least of
the same order of magnitude or greater than |μ − 1|.

The above point is illustrated in Figs. 10 and 11. Here,
we plot qzh and Z at normal incidence as functions of h/λ0;
predictions of current-driven and standard homogenization are
compared to the exact result given in Eqs. (33) and (35). It can
be seen that, at h/λ0 ≈ 0.2, current-driven homogenization
provides a slightly more accurate result for qz. In the case of
Z, current-driven homogenization does not provide a better
approximation at any value of h/λ0.

B. Example B

We now turn to the case when the a-type medium is a
high-conductivity metal with εa = −3 + 0.01i at a given fixed
wavelength λ0. The sample consists of five symmetric unit
cells of the type (a/2,b,a/2), where a = b as before. Effective
parameters for example B are plotted as functions of h/λ0 in
Figs. 12–14. Current-driven homogenization predicts that μxx

experiences a resonance near the point h/λ0 = 0.75, while μzz

exhibits no dramatic effects.
In Fig. 15, we display the predictions of various theories

for |T |2 and |R|2. The conclusion that can be made is that
current-driven homogenization does not provide a meaningful
correction or a noticeable improvement of precision compared
to standard homogenization in the whole range of h/λ0

considered. In fact, there are fairly significant intervals of h/λ0

(clearly visible in the insets) in which standard homogenization
predicts correctly |T |2 ≈ 0 and |R|2 ≈ 1, while current driven
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FIG. 10. (Color online) Example A: Real (top) and imaginary
(bottom) parts of the unit-cell optical depth parameter qzh at normal
incidence as a function of h/λ0.

homogenization is widely off the mark. Perhaps, current-
driven homogenization can be credited with predicting a
transparency window which exists in reality for relatively
large values of h/λ0 and which is not predicted for obvious
reasons by standard homogenization formulas. Unfortunately,
the transparency window is predicted for wrong values of
h/λ0 and, in the true transparency window, both T and R

are predicted with the wrong phase and amplitude. This is
illustrated in Figs. 16 and 17 where we plot real and imaginary
parts of both T and R as functions of kx/k0. It can be
seen that there is no correspondence between current-driven
homogenization and exact result.

The discrepancy is even more pronounced for the values
of h/λ0 such that the exact transmission coefficient is close
to zero but current-driven homogenization predicts significant
transmission.

C. Example C

In this example, we consider spectral dependencies of |R|2
and |T |2 at normal incidence with the account of frequency
dispersion in the constituents of the composite. The a-type
medium is an idealized Drudean metal described by the
permittivity function

εa = ε0 − ω2
p

ω(ω + iγ )
(38)

and the b-type medium is vacuum or air. The sample consists
of N = 10 symmetric unit cells of the type (a/2,b,a/2),
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FIG. 11. (Color online) Example A: Real (top) and imaginary
(bottom) parts of the generalized impedance Z, at normal incidence
as a function of h/λ0.

where, again, a = b. We have chosen the parameters in (38)
to represent the experimental values for silver: ε0 = 5 and
ωp/γ = 500. The lattice period h is fixed so that h/λp = 0.2,
where λp = 2πc/ωp is the wavelength at the plasma frequency
ωp. In the case of silver, λp = 136 nm so that h ≈ 27 nm. The
free-space wavelength λ0 is varied. In this case, all physical
quantities of interest can be expressed as functions of the
dimensionless variables h/λ0, λ0/λp, and kx/k0 (we will take
kx = 0 in this example).

We do not display the effective parameters obtained by
different methods as nothing qualitatively new compared to the
previously considered examples emerges in example C. Note
that the current-driven permeability μxx experiences a sharp
resonance at h/λ0 ≈ 0.38 while εyy and μzz do not exhibit any
dramatic features. In Fig. 18, we plot |T |2 and |R|2 for λp/λ0

varying from 0 to 2.5. The corresponding parameter h/λ0

varies from 0 to 0.5. Again, the data clearly demonstrate that
current-driven homogenization does not provide a meaningful
correction to the standard result.

VI. BLOCH-WAVE ANALYSIS OF THE CURRENT-DRIVEN
HOMOGENIZATION THEORY

In this section, we consider the current-driven homogeniza-
tion theory from a more general point of view. We assume that
the medium is intrinsically nonmagnetic, three-dimensional,
and periodic, and that its true permittivity function ε̃(r)
satisfies the periodicity condition (1). Any such function can
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Im xx
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10.80.60.40.20

0.006

0.004

0.002

0

FIG. 12. (Color online) Example B: Real (top) and imaginary
(bottom) parts of εyy as functions of h/λ0. Same curve labels as in
Fig. 2 have been used.

be expanded into a Fourier series

ε̃(r) =
∑

g

εge
ig·r, (39)

where

g = 2π

(
x̂nx

hx

+ ŷny

hy

+ ẑnz

hz

)

are the reciprocal lattice vectors, which can be viewed as
three-dimensional summation indices, and nx , ny , and nz are
arbitrary integers. We can seek the solution to (3) in the form
of a Bloch wave

E(r) =
∑

g

Ege
i(k+g)·r.

The displacement D(r) = ε̃(r)E(r) can be similarly ex-
panded. Given the periodicity of ε̃(r) expressed in (39), we
can find the relation between the expansion coefficients Dg
and Eg:

Dg =
∑

p

εpEg−p. (40)

Upon substitution of the expansions into (3), we find the
following system of equations for Eg:

(k + g) × (k + g) × Eg + k2
0

[∑
p

εpEg−p + Jδg0

]
= 0.

(41)
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FIG. 13. (Color online) Example B: Same as in Fig. 12 but for
μxx . The standard homogenization result μxx = 1 is not shown.

Equations of this kind are well known in the theory of
photonic crystals54,55 except that here we have included the
free term Jδg0. However, the following analysis (proposed by
us earlier8) is rarely used.

Let us write (41) for the special cases g = 0 and g �= 0
separately. We note that E0 = Eav, where the low-pass filtered
averages are defined in (5), and ε0 is the usual arithmetic
average of ε̃(r) (without low-pass filtering). We thus obtain

g = 0 : k × k × Eav + k2
0

⎡
⎣ε0Eav +

∑
p �=0

εpE−p + J

⎤
⎦

= 0, (42a)

g �= 0 : (k + g) × (k + g) × Eg + k2
0

⎡
⎣∑

p �=g

εpEg−p + εgEav

⎤
⎦

= 0. (42b)

Note that only the first of these two equations is affected by our
choice to include the external current in (3). We now utilize
the linearity of Eq. (42b), from which we can write∑

p �=0

εpE−p = [�(ω,k) − ε0] Eav, (43)

where �(ω,k) is a tensor to be determined by solving (42b).
Here, the factor ε0 (the average permittivity of the composite)
has been introduced for convenience and does not result in any
loss of generality. Then, the g = 0 equation (42a) takes the
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FIG. 14. (Color online) Example B: Same as in Fig. 12 but for
μzz. The standard homogenization result μzz = 1 is not shown.

following form:

k × k × Eav + k2
0 [�(ω,k)Eav + J] = 0. (44)

This is, essentially, the same equation as (7). Consequently,
�(ω,k) is the same tensor as the one appearing in the current-
driven homogenization theory.

We note that inclusion into Maxwell’s equations of the
external current (2) is not needed to compute �(ω,k), which
is completely defined by the infinite set of equations (42b). We
can refer to this set as to the cell problem. In what follows, we
assume that the cell problem can be solved by means of linear
algebra and that the tensor �(ω,k) can be computed.

Since �(ω,k) is defined completely by solving the cell
problem, it is useful to consider what would happen if we set
J = 0 in (44). Obviously, this would result in an eigenproblem[

(k × k×) + k2
0�(ω,k)

]
Eav = 0. (45)

The above equation has nontrivial solutions only when k = q,
where the Bloch wave vector q is determined from the equation

det
[
(k × k×) + k2

0�(ω,k)
] = 0. (46)

The solution to this equation, viewed as a function of
frequency, yields the dispersion equation of the medium
q = q(ω). The dispersion relation is physically measurable and
the same is true for the on-shell tensor �(ω,q). For example, in
the simplest case of transverse waves, the dispersion equation
takes the form q2 = k2

0�(ω,q) and the quantity �(ω,q) can
be referred to as the propagation constant (index of refraction
squared) of the Bloch mode.56,57
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FIG. 15. (Color online) Same as in Fig. 5 but for example B.
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FIG. 16. (Color online) Example B: Real (top) and imaginary
(bottom) parts of T as functions of kx/k0 for h/λ0 = 0.66. EX, exact
result; CD, current-driven homogenization. Only the range of kx/k0 is
shown for which T computed by either method is not negligibly small.
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FIG. 17. (Color online) Example B: Same as in Fig. 16 but for R.

We can seek approximate solutions to (47) by using the limit
k → 0. As was discussed in Sec. II B, the tensor �(ω,k) can
be formally expanded in a nongyrotropic medium according
to (13). We substitute this expansion into (47) and obtain

det
{
[k × (1 − β)k×] + k2

0�(ω,0)
} = 0. (47)

Equation (47) is a valid approximation to the dispersion
equation in the weak nonlocality regime and its solution yields
the first nonvanishing solution to q (compared to the limit
h → 0). Also, (47) coincides with the dispersion equation in
a homogeneous medium with local parameters ε = �(ω,0)
and μ = (1 − β)−1. If we make this identification, we would
arrive at the same homogenization result as in the current-
driven homogenization theory, except that we did not need
to introduce the external current. However, this identification
is not mathematically justified due to the reasons already
discussed by us in Sec. II B. Here, we reiterate these arguments
in the somewhat new light of the Bloch-wave analysis.

First and most importantly, it can be easily seen that
multiplication of (47) by a scalar ξ does not alter the dispersion
equation or the value of q but doing so does alter the impedance
Z. Therefore, the above procedure is not expected to yield
a meaningful correction to Z. This was illustrated above in
Fig. 11. In fact, S-parameter retrieval predicts a much more
accurate Z while keeping approximately the same dispersion
relation. This was illustrated in Fig. 7. And in general, it could
not be reasonably expected that a theory that considers infinite
media and disregards the physical boundary would predict the
impedance correctly.

Second, the procedure described above is clearly inapplica-
ble outside of the weak nonlocality regime and, in particular,
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FIG. 18. (Color online) Example C: Same as in Fig. 5 but for
example C. Note that, in example C, h is fixed while λ0 varies.

when ‖β‖ ∼ 1. In this region of parameters, introduction
of the local permittivity and permeability tensors does not
result in a correct dispersion relation, even approximately. But,
this is exactly the region of parameters where current-driven
homogenization predicts magnetic resonances. Consequently,
this prediction is mathematically unjustified.

VII. DISCUSSION

A. Current-driven excitation model
and the theory of nonlocality

The current-driven homogenization theory is deeply rooted
in the theory of natural electromagnetic nonlocality (spatial
dispersion).38,39 The latter is, of course, a very successful
theory, which has predicted and described theoretically such
diverse phenomena as optical activity, additional waves,
and anisotropy of crystals with cubic symmetry, etc. How-
ever, current-driven homogenization and, more generally, the
current-driven excitation model take certain analogies too far
or apply them unscrupulously.

The basic idea behind the current-driven excitation model
can be traced to Ref. 38. We translate the relevant text from the
Russian edition of this book (Nauka, Moscow, p. 34), using
only a slight change of notations:

“Generally, the arguments of the tensor �(ω,k) are
mathematically independent. This fact follows already from
the definition (1.6) [equivalent to Eqs. (48) and (49) below
(authors’ comment)] but can be at times not entirely obvious.
This is so because, in optics, one encounters very frequently

wave propagation in the absence of sources in the medium
itself, in which case k is a function of ω; for example,
for normal homogeneous plane waves, k = (ω/c)ñ(ω,ŝ)ŝ.
But, if k = k(ω), then the spatial dispersion appears to
be indistinguishable from the frequency dispersion. This
observation raises a question [about the physical nature of
spatial nonlocality (authors’ comment)] and the answer to this
question is the following. The tensor �(ω,k) is introduced
for fields of the most general form, obtained when the
sources Jext(r) and ρext(r) spatially overlap with the medium.
Under these conditions, it is possible to create a field E
with arbitrary and mathematically independent ω and k [the
Fourier components Ẽ(ω,k) are ultimately expressed in terms
of Jext(ω,k) and ρext(ω,k); see Sec. 2.1). From this, it follows
immediately that all problems involving wave propagation can
be solved if �(ω,k) is known.”

The last sentence in the above is only partially correct. In
the case of natural nonlocality, �(ω,k) is the spatial Fourier
transform of the influence function σ (ω; r,r′), which appears
in the nonlocal relation between D(ω,r) and E(ω,r), viz.,

D(ω,r) =
∫

V

σ (ω; r,r′)E(ω,r′)d3r ′. (48)

If both points r and r′ are sufficiently far from the boundary
of the medium, we can write σ (ω; r,r′) = f (ω,r − r′). Then,
�(ω,k) is defined as the spatial Fourier transform of f (ω,r):

�(ω,k) =
∫

f (ω,r)eik·rd3r. (49)

But, this is insufficient to solve the boundary-value problem
for any finite shape. To that end, we would need to know how
σ (ω; r,r′) behaves when at least one of the points r and r′ is
close to the boundary. One can consider an approximation of
the type

σ (ω; r,r′) = S(r)f (ω,r − r′)S(r′)
+ [1 − S(r)]δ(r − r′)[1 − S(r′)], (50)

where S(r) is the shape function: it is equal to unity inside
the medium and to zero outside (in vacuum). If (50) holds,
then the statement under consideration is correct: Maxwell’s
equations can be written in a closed form using only the
Fourier transform of f (ω,r) and the Fourier transform of the
shape function. Therefore, if �(ω,k) is known, then Maxwell’s
equations can be solved in a finite sample, at least in principle.
We note that the familiar relation D(ω,k) = �(ω,k)E(ω,k)
does not hold in this case and Maxwell’s equations, written
in the k domain, contain an integral transform and can not
be solved by algebraic manipulation. This difficulty is known
and explained in Sec. 10 of Ref. 38 but appears to be scarcely
appreciated in the modern literature. But, regardless of this
difficulty, there is no reason to believe that (50) is generally
true. This approximation can be applicable, perhaps, if the
nonlocal interaction between two points is transmitted only
along the line of sight and if the body is convex. However, the
first of these assumptions is difficult to justify.

The same analysis applies to current-driven homogeniza-
tion of periodic composites. The knowledge of the function
�(ω,k), as defined by (5) or by (43), allows one to find the
law of dispersion but is insufficient to solve any boundary
value problem. Therefore, this function is not an intrinsic
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physical characteristic of a composite. It is, rather, an auxiliary
mathematical function, which appears when a certain ansatz
is substituted into Maxwell’s equations written for an infinite
periodic medium.

Now the difference between the classical theory of
nonlocality and the current-driven homogenization theory
becomes apparent. In the former case, the real-space influence
function σ (ω; r,r′) is derived from first principles (e.g., from
a microscopic theory) or introduced phenomenologically, and
then it completely characterizes the electromagnetic properties
of a macroscopic object of any shape in the sense that it
renders Maxwell’s equations closed. As discussed above,
under some limited conditions, the dependence of σ (ω; r,r′)
on the two variables r and r′ can be simplified, e.g., as in (50),
and then there exists a one-to-one correspondence between
σ (ω; r,r′) and �(ω,k). But, in the case of current-driven
homogenization theory, the low-pass filtering (5) does not
follow from any first principle. Moreover, if (5) is accepted
as the fundamental definition of �(ω,k), there is no way
to establish a one-to-one correspondence between the latter
and the real-space function σ (ω; r,r′). As a result, the
knowledge of �(ω,k), thus defined, is insufficient to solve a
boundary-value problem in any finite sample.

Another obvious distinction between the two theories
is that, for natural nonlocality, the influence range [the
characteristic value of |r − r′| for which σ (ω; r,r′) is not
negligibly small] is of the order of the atomic scale. Therefore,
in the optical range, the condition of weak nonlocality is
satisfied with extremely good precision and all the effects of
nonlocality are, essentially, small perturbations. In the case of
current-driven homogenization, the influence range is h and the
effects claimed as a result of current-driven homogenization
(e.g., μ ≈ −1) are dramatic and nonperturbative.

So far, we have discussed the physical and mathematical
meaning of the function �(ω,k) as it is used both in the theory
of natural nonlocality and in current-driven homogenization.
The next important point to consider is the unjustified
assumption of the current-driven homogenization theory (and,
more generally, of the current-driven excitation model) that the
external current of the form (2) can, under some unspecified
conditions, be created in the medium. This assumption also
grows conceptually from the above quote. In reality, “wave
propagation in the absence of sources in the medium itself” is
encountered in optics (and, more generally, in macroscopic
electrodynamics) not just “very frequently,” but always,
without any known exceptions. Of course, a medium can be
optically active and emit some kind of radiation from its vol-
ume. However, in all such cases, the current inside the medium
is subject to (linear or nonlinear) constitutive relations and can
not be created or controlled by an experimentalist at will.

Finally, another relevant misconception, which has been
widely popularized in recent years,40–43 is the proposition of
equivalence of weak nonlocality of the dielectric response and
nontrivial magnetic permeability. We have discussed this point
in this paper in much detail and have demonstrated that the
equivalence exists only for the dispersion relation but not for
the impedance of the medium. It can be argued that this is
exactly what was meant by Landau and Lifshitz39 since none
of the relevant chapters consider boundary conditions in any
form. The current-driven homogenization theory has taken this

statement of equivalence out of its proper context and applied
it to the problem of homogenization wherein the boundary
conditions play the central role.

It can be concluded that the classical theory of spatial
dispersion is concerned primarily with certain physical effects
such as rotation of the plane of polarization or appearance of
additional waves, which are not present in the purely local
regime but can be described as perturbations if small nonlocal
corrections to the permittivity tensor are taken into account.
The corrections are either introduced phenomenologically or
computed using a microscopic theory. The theory of spatial
dispersion was never meant to be used for rigorous solution of
boundary-value problems and, therefore, the discussion of the
dispersion equation sufficed in the vast majority of cases. For
this reason, certain remarks appearing in the classical texts
on the subject, such as the now famous remark of Landau
and Lifshitz regarding the equivalence of nonlocality and
magnetism, apply only to the dispersion relation. In the case of
the current-driven homogenization theory, all these limitations
have been disregarded.

B. Homogenization by spatial Fourier transform

Throughout the paper, we have emphasized the critical
importance of taking the boundary effects into account in
electromagnetic homogenization, particularly in the case of
metamaterials whose lattice-cell size typically constitutes an
appreciable fraction of the vacuum wavelength. Consequently,
theories relying entirely on the bulk behavior of waves can
not be accurate; they may be capable of finding the effective
index but not the impedance. We note that the role of boundary
conditions has been elucidated and emphasized in the literature
previously;1,58 however, in this work, we have presented a
detailed case study using an exactly solvable model.

Generally speaking, Fourier-based homogenization theo-
ries should be applied with extreme care because Fourier
analysis makes it difficult to account for material interfaces,
which break the discrete translational invariance of a periodic
composite. It is feasible to devise a theory in which Fourier
analysis is applied in the medium and in the empty space
separately. In this case, however, only natural Bloch modes
will exist in the material, and no other values of k will appear.
The intuitive perception that a small localized source (e.g., a
nanoantenna) embedded in a composite (e.g., in one of the
empty voids) would generate within the material the whole
spectrum of waves with all possible real-valued k’s is correct
only in a very narrow technical sense. In fact, within any area
away from the small source, the waves with various k will
interfere to produce the natural Bloch modes of the periodic
structure. Only the latter are physically measurable.

C. Current-driven homogenization

As an illustration of the general principles stated above,
we have critically analyzed the current-driven homogenization
theory of Refs. 24 and 25, which does not account for the
boundaries of the medium but derives the effective parameters
from the behavior of waves in the bulk. In addition, this model
relies on the use of physically unrealizable sources inside
the medium, with no justification as to why the results thus
obtained should be experimentally relevant.
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The numerical results of Sec. V are therefore not surprising.
They demonstrate that current-driven homogenization does
not yield accurate results in the range of parameters where it
predicts nontrivial magnetic effects. In particular, the errors
of the transmission and reflection coefficients T and R are of
the same order of magnitude or, in some cases, much larger
than the deviation of the magnetic permeability from unity,
‖μ − 1‖, where μ is the local permeability tensor predicted
by current-driven homogenization.

In most cases considered, current-driven homogenization
does not provide a noticeable improvement in accuracy
compared to the standard homogenization result (16). In the
cases when such improvement can be observed, e.g., in Fig. 5,
this is due to a correction in the effective permittivity ε

rather than to an accurate prediction of μ. We note in passing
that the correction to the magnetic permeability produced by
the current-driven model is asymptotically O(kh)4, which is
different from the O(kh)2 asymptotic dependence that follows
from S-parameter retrieval.

VIII. SUMMARY

This paper has three main conclusions. First, careful
consideration of boundary conditions is required in all effective
medium theories (EMTs). Second, all EMTs have an applica-
bility range, and wherever a homogenization result is obtained,
it is important to verify that the parameters of the composite
are within this range or, otherwise, validate the result with
direct simulation. Third, there are many EMTs that yield the
standard homogenization result in the limit h → 0 but different
h-dependent corrections to the former. Validating that these
corrections are physically meaningful requires consideration
of finite samples and can not be done by investigating an
infinite periodic composite (this conclusion is closely related
to the first one).
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APPENDIX A: DETERMINATION OF THE COEFFICIENTS
Aa, Ba, Ab, AND Bb FROM THE BOUNDARY

CONDITIONS

Upon substitution of the expressions (20) into (21), we
obtain the following set of linear equations:

e−iθa (eiφaAa + e−iφaBa) + (Ab + Bb) = 1,
κa

qz

e−iθa (eiφaAa − e−iφaBa) + κb

qz

(Ab − Bb) = 1,

(Aa + Ba) + e−iθb (eiφbAb + e−iφbBb) = 1,
κa

qz

(Aa − Ba) + κb

qz

e−iθb (eiφbAb − e−iφbBb) = 1.

This set is somewhat more complicated than what is en-
countered in the ordinary theory of one-dimensional photonic
crystals. In the latter case, the matrix is the same but the
right-hand side is zero. Correspondingly, the task is to find
the value of kz (for a given kx) such that the equations have
a nontrivial solution. This occurs when kz = qz, where qz

is defined in Eq. (24). In this manner, the natural Bloch
wave vector q of the medium is determined. For the case
at hand, both kx and kz are free parameters but the right-hand
side is nonzero. Therefore, the current-driven homogenization
theory, essentially, replaces the problem of funding the
natural Bloch mode of the medium by a mathematically
unrelated problem of inverting the matrix in the above set of
equations.

The solution to the set stated above is given by (22) where
D is defined in (23) and

Aa = e
i
2 (θa−φa )

{(
1 + qz

κa

)[
cos

(
θb + θa + φa

2

)
− cos φb cos

θa + φa

2

]
+

(
κb

κa

+ qz

κb

)
sin φb sin

θa + φa

2

}
,

Ba = e
i
2 (θa+φa )

{(
1 − qz

κa

)[
cos

(
θb + θa − φa

2

)
− cos φb cos

θa − φa

2

]
−

(
κb

κa

− qz

κb

)
sin φb sin

θa − φa

2

}
,

Ab = e
i
2 (θb−φb)

{(
1 + qz

κb

)[
cos

(
θa + θb + φb

2

)
− cos φa cos

θb + φb

2

]
+

(
κa

κb

+ qz

κa

)
sin φa sin

θb + φb

2

}
,

Bb = e
i
2 (θb+φb)

{(
1 − qz

κb

)[
cos

(
θa + θb − φb

2

)
− cos φa cos

θb − φb

2

]
−

(
κa

κb

− qz

κa

)
sin φa sin

θb − φb

2

}
.

It can be seen that Ba is obtained from Aa (or vice versa)
by changing the signs of the propagation constants κa and κb

and of the related phases φa and φb (but not of θa and θb),
and similarly for the pair of coefficients Ab, Bb. Also, the
coefficients are invariant under the the permutation of indices
a ↔ b.

APPENDIX B: CLOSED-FORM EXPRESSIONS FOR
EFFECTIVE MEDIUM PARAMETERS OBTAINED

BY CURRENT-DRIVEN HOMOGENIZATION

In this Appendix, we give the closed-form solution for
the general case a �= b. If a = b, these expressions are
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significantly simplified. However, in the numerical codes used
to produce the figures for this paper, we have used the general
expressions given below.

In addition to (15) and (16), we need to introduce the
following notations:

(i) The phase shifts φa and φb computed at kx = 0 are
denoted by ψa and ψb:

ψa = φa|kx=0 = kaa, ψb = φb|kx=0 = kbb.

(ii) The refractive indices of each layer are denoted by
na = √

εa and nb = √
εb. The branches of all square roots

are defined by the condition 0 � arg(
√

z) < π .
(iii) The dimensional size parameters for the lattice are

xa = k0a, xb = k0b, x = xa + xb = k0h.

Note that ψa = naxa , ψb = nbxb.
(iv) Following are symmetric combinations of the trigono-

metric functions:

α1 = 2(na sin ψa + nb sin ψb),

α2 = 2(naεb sin ψa + nbεa sin ψb),

α3 = xa cos ψa + xb cos ψb,

α4 = x2
bna sin ψa + x2

anb sin ψb,

and

ξ1 = na cos
ψa

2
sin

ψb

2
+ nb cos

ψb

2
sin

ψa

2
,

ξ2 = na cos
ψb

2
sin

ψa

2
+ nb cos

ψa

2
sin

ψb

2
,

ξ3 = na sin ψa cos ψb + nb sin ψb cos ψa,

ξ4 = nanb

εa + εb

2
(ψa sin ψa cos ψb + ψb sin ψb cos ψa)

+ εaεb (ψb sin ψa cos ψb + ψa sin ψb cos ψa) ,

ξ5 = (εa − εb)2 sin
ψa

2
sin

ψb

2
,

and

η = εa(2 + cos ψb) sin2 ψa

2
+ εb(2 + cos ψa) sin2 ψb

2
+ nanb sin ψa sin ψb,

ζ = εa (4ψbεb − ψbεa + 3ψananb) sin2 ψa

2
sin ψb

+ εb (4ψaεa − ψaεb + 3ψbnanb) sin2 ψb

2
sin ψa

+ 8(εa − εb)2 sin2 ψa

2
sin2 ψb

2

−
(

ψ2
a ε2

b sin2 ψb

2
+ ψ2

b ε2
a sin2 ψa

2

)
,

and the following combinations of the functions introduced
above:

σ = εaεb(α4 − 4α3) − α2,

τ = 4(ξ3ξ5 + ξ2ξ4).

Note that by symmetry we mean here invariance with respect
to permutation of indexes a ↔ b.

Then, the closed-form expressions for the current-driven
effective parameters of the layered medium considered in this
paper can be stated as follows [we adduce the expressions for
βxx and βzz; μxx and μzz are given by (29)]:

εyy = x

Z
(εaεb)2D0,

βxx = 2ξ 2
1

Z2
(εb − εa)2[ζ − x2papbεaεbη],

βzz = − ξ1

Z2
(εb − εa)2

×{nanb[2ρ + xξ2(σ − α1ε‖)] − 2α1ξ5 + τ },
where

Z = x
(εaεb)2

ε⊥
D0 − 4ξ1ξ5

and D0 is the determinant (23) evaluated at k = 0:

D0 = 1 − cos(qzh)|kx=0

= 1 − cos ψa cos ψb + 1

2

(
na

nb

+ nb

na

)
sin ψa sin ψb,

and, finally,

ρ = εaεbξ2x
2(2 + papbD0)

− nanbx sin
ψa

2
sin

ψb

2
(εaεbx

2 + 2ε‖D0).

APPENDIX C: S-PARAMETER RETRIEVAL TECHNIQUES
USED IN THIS PAPER

S-parameter retrieval is a well-established technique. How-
ever, the vast majority of papers that consider S-parameter
retrieval are focused on normal incidence only. This limitation
does not allow one to access all tensor elements of the effective
parameters. In this appendix, we will remove this limitation
and include off-normal incidences into consideration.

Consider an anisotropic homogeneous slab characterized by
the tensors ε = diag(ε⊥,ε⊥,ε‖) and μ = diag(μ⊥,μ⊥,μ‖). The
transmission and reflection coefficients are given in Sec. IV.
It is convenient to rewrite the expressions given in that section
in the following form:

T = 4pC

(C + 1)2 − p2(C − 1)2
, (C1a)

R = (1 − p)2(C2 − 1)

(C + 1)2 − p2(C − 1)2
. (C1b)

Here,

C = qzη‖
κ0

, p = exp(iqzL). (C2)

We refer the reader to Sec. IV for relevant notations.
Note the symmetries R(p,C) = −R(p,1/C) and T (p,C) =
T (p,1/C).

If T and R are known at some incidence angle (parametrized
by kx), so are C and p. The expressions for C and p in terms
of T and R [inversion of (C)] are unique up to the branch of a
square root and widely known:

C = ±D

T 2 − (1 − R)2
, p = 1 + T 2 − R2 ± D

2T
,
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where

D =
√

(1 + T 2 − R2)2 − (2T )2.

In the case of low transmission (small |T |), one can use the
approximate formulas

C = 1 + R

1 − R
, p = T

1 − R2
(first branch),

C = −1 + R

1 − R
, p = 1 − R2

T
(second branch).

Here, we have encountered the first instance of a branch
ambiguity, but it can be easily resolved by using the condition
of medium passivity |p| < 1. Other than the branch ambiguity
mentioned, the above inversion formulas (that yield C and p

in terms of T and R) are well posed and stable and establish
one-to-one correspondence between the complex pairs (T ,R)
and (C,p).

Given the above result, we can assume that C(kx) and p(kx)
are known as functions of kx and seek effective tensors ε and
μ that are consistent with these functions. In general, purely
local tensors ε and μ that “reproduce” two given functions
C(kx) and p(kx) may not exist. Therefore, we shall focus on a
more narrow task of finding ε and μ that reproduce C(kx) and
p(kx) at normal (kx = 0) and close-to-normal incidences.

It is well known that, if we consider normal incidence
only (or any other fixed value of kx), then the solution is not
unique due to the branch ambiguity of the logarithm function.
More specifically, the quantities C and p given by (C2)
are invariant with respect to the simultaneous transformation
qz → qz + 2πm/L, η‖ → qz/(qz + 2πm/L), where m is an
integer. We therefore will include both normal and off-normal
incidences into consideration. Unfortunately, the problem is
still ill posed in this case. Generally, the retrieval problem can
not be formulated as a well-posed system of equations. We
shall now describe three different approaches to obtaining a
solution to the retrieval problem that is optimal in the sense
that it yields all relevant elements of the tensors ε and μ and
reproduces the angular dependence C(kx) and p(kx) [or T (kx),
R(kx)] in as wide a range of kx as possible.

In what follows, we assume that the effective medium
is a uniaxial crystal with ε = diag(ε‖,ε‖,ε⊥) and μ =
diag(μ‖,μ‖,μ⊥). Also, the notation η refers to μ for s

polarization and to ε for p polarization.

1. Method 1

Let t = kx/k0 and x = k0L. Given the dispersion equation
(33), we can write

C(t) =
√

1 − t2η‖
Q(t)

, p(t) = eixQ(t), (C3)

where

Q(t) =
√

n2 − η‖
η⊥

t2.

Here, n2 = ε‖μ‖ is the squared index of refraction and recall
that η refers to μ for s polarization and to ε for p polarization.

Assuming C(t) and p(t) are known functions, we can
express Q(t) by inverting each equation in (C3). This yields

two solutions for Q(t):

Q1(t) = η‖
√

1 − t2

C(t)
, Q2(t) = 1

ix
ln [p(t)] + �m,

where � = 2π/x and m an arbitrary integer.
If we could find such tensors ε and μ that Q1(t) = Q2(t)

for all values of t , then these parameters would describe
transmission and reflection by the slab for all angles of
incidence with perfect precision. This is possible only in the
h → 0 limit. Here, we will require that the functions coincide
at normal incidence and have the same second derivative with
respect to t (the first derivative is identically zero). To this end,
it is convenient to introduce the functions

F (t) = 1 − t2

C(t)
, G(t) = 1

ix
ln[p(t)].

Since these functions are expressed in terms of C(t), p(t),
and known analytical functions (they do not contain any
unknowns), we can view them as directly measurable (or
computable in terms of T and R). Then, the main equation
we wish to fit takes the form

η‖F (t) = G(t) + �m.

Here, η‖ and m (the branch index) are the unknowns. Of course,
this equation has no solutions in general. But, we can require
that it holds to second order in t in the vicinity of t = 0. We
can expand F (t) as

F (t) = F0 + F2t
2, F0 = F (0), F2 = lim

τ→0

F (τ ) − F0

τ 2

and similarly for G(t). This results in a pair of algebraic
equations

η‖F0 = G0 + �m,

η‖F2 = G2.

Even though this is a system of two linear equations
with respect to two unknowns, it still can not be solved
because m is, by definition, integer. We can, however, solve
the first equation exactly (this will guarantee the correct T

and R at normal incidence) and then minimize the norm of
the second equation. This results in the following inverse
solution:

m = Nint

[
F0G2 − G0F2

�F2

]
, (C4a)

η‖ = G0 + �m

F0
, (C4b)

where Nint[z] denotes nearest integer to the real part of z. Note
that the second expression in the above (for η‖) must use the
value of m computed using the first equation.

Once the quantities η‖ and m are known, we can also
compute the squared refractive index according to

n2 = (G0 + �m)2.

Then, if η‖ = μ‖ (s polarization), we can compute ε‖ = n2/η‖.
Otherwise, if η‖ = ε‖, we can compute μ‖ = n2/η‖.

Method 1 does not give access to ε⊥ and μ⊥. To obtain
these tensor elements, method 3 must be used.
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2. Method 2

This method combines method 1 with the main idea of
Ref. 52. Namely, starting from some sufficiently low frequency
ω or some sufficiently small h, we gradually increase the
relevant parameter (ω or h) and apply method 1 at each
iteration of this loop. However, after a few initial iterations,
we change the rule according to which the branch index m is
computed. Namely, instead of using (C4a), we chose the index
m in such a way as to minimize the jump in the refractive
index n. By “jump” we mean here |ni − ni−1|, where i is the
iteration index.

3. Method 3

This method is free from the branch ambiguity but does
not guarantee exact fitting of T and R at normal incidence.
We will fit the the index of refraction using second and fourth
normalized derivatives of p(t) and then use the function C(t)
to find the impedance.

We start by noting the following relations:

F2 ≡ p′′(0)

p(0)
= −ix

η‖
nη⊥

, (C5a)

F4 ≡ p′′′′(0)

p(0)
= −3x

i + xn

n

(
η‖

nη⊥

)2

. (C5b)

We can exclude the ratio η‖/η⊥ from the above set of
linear equations and solve for the index of refraction,
viz,

n = i

x(F4/3F 2
2 − 1)

.

This gives the index of refraction in terms of the “measur-
ables” F2 and F4. We can relate F2 and F4 to “measurements”
of p(t) at some small but nonzero values of t , say, τ1 and τ2,
as follows:

F2 = τ 2
2 b1 − τ 2

1 b2

τ 2
2 − τ 2

1

, F4 = 12
b2 − b1

τ 2
2 − τ 2

1

,

where

bk = 2

τ 2
k

[
p(τk)

p(0)
− 1

]
, k = 1,2.

At this point, we have found the index of refraction n. We then
compute η‖ and η⊥ from

η‖ = C(0)n, η⊥ = −i
xC(0)

F2
.

In the second equation above, we have used η‖/η⊥ = inF2/x,
as follows from (C5a). By considering both s and p polariza-
tions, we can find all elements of the effective tensor.
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