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Vadim A. Markel
Department of Radiology and Department of Bioengineering, the Graduate Group in Applied Mathematics and Computational Science,

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Andrey K. Sarychev
Institute for Theoretical and Applied Electrodynamics RAS, 13 Izhorskaya Street, 125412 Moscow, Russia

(Received 15 December 2011; revised manuscript received 17 February 2012; published 11 July 2012)

In this Comment, we argue that the criticism of our previous paper, which was recently articulated by Hadad
and Steinberg, is unwarranted.
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In a recently published paper,1 Hadad and Steinberg
(HS) have presented a number of analytical results for the
electromagnetic Green’s function in infinite and semi-infinite
periodic chains of small polarizable particles. We find these
results to be interesting and useful but also feel that this paper
contains an unjustified criticism of our previous paper on the
subject.2,3 Thus, on p. 2, HS wrote

“Furthermore, we show that the ‘extraordinary’ wave (‘light-
line’ mode) does not exist in longitudinal polarization; the cor-
responding poles exist only in transverse polarization (consistent
with Ref. 4). The continuous spectrum wave, due to a nearby
branch point, is responsible for an excitation in the longitudinal
polarization, which was misinterpreted as an ‘extraordinary’ wave
in Refs. 2 and 3.”

Here, the reference numbers correspond to the list at the end of
this Comment. Similar criticism can be found on p. 8 of Ref. 1.
In what follows, we argue that this criticism is unwarranted.

First, the above criticism is aimed at the use of terminology,
not at physical results. Thus, HS do not dispute the validity
of data shown in Figs. 2 and 3(a) of Ref. 2 in which we
illustrate what we have termed the extraordinary surface
plasmon polariton (SPP) for the longitudinal polarization.
Rather, HS oppose our use of the word extraordinary for the
longitudinal polarization. However, this criticism is misplaced
because the terminology in question was, in fact, introduced
by us in Ref. 2. This terminology simply did not exist at the
time when our paper was written. Incidentally, the paper by Alu
and Engheta,4 which discusses a similar physical phenomenon
(albeit with a focus on dispersion relations rather than on
Green’s functions), was submitted for publication a few weeks
later than Ref. 2. Therefore, we could not possibly misinterpret
or mislabel the longitudinally polarized SPP because the very
phenomenon was discovered by us and no other relevant term
or interpretation existed at that time.

From a physical point of view, we also see no reason for
the criticism. Our classification of SPPs (that is, ordinary vs
extraordinary) is based on different rates of spatial decay of the
corresponding excitation and on the fact that the ordinary SPPs
are well explained by the electromagnetic interaction in the
near zone, whereas, the extraordinary SPPs require accounting
for interaction in the radiation zone.

HS insist that the classification of SPPs must be based only
on the poles or branch cuts of the inverse Z transform and

that any other classification amounts to a misinterpretation.
But we see no reason to adhere to this point of view.
There may be several classification schemes, all equally
valid. Our classification is based on the physical behav-
ior of an observable and is, therefore, practically relevant.
HS’s classification is based on the analytical properties of
the Z transform and might be mathematically convenient.
Why the latter should take precedence over the former, is
not clear.

We now discuss the HS results from a more technical point
of view. The mathematical formalism of HS is obtained from
the equation published by us2 by a simple change of variables.
Thus, we have given the expression,

Gn =
∫ π/h

−π/h

exp(iqhn)

1/α − S(q)

h dq

2π
. (1)

Here, Gn is the Green’s function in an infinite chain, n labels
the particles, h is the chain period, and S is the dipole
sum,2,5,6 otherwise, we use HS’s notations. Introducing a
new integration variable Z = exp(iqh), we can transform this
equation to the form

Gn = 1

2πi

∮
|Z|=1

Zn−1dZ

1/α − S[q(Z)]
. (2)

The mathematical advances reported by HS are based on
analysis of this formula. HS take advantage of the fact that
the integral (2) is taken over a closed contour, whereas,
Eq. (1) is taken over a finite segment of the real axis. It
may seem that, if the zeros of the denominator in Eq. (2)
are known, the integral can be computed analytically without
further approximations, whereas, to evaluate Eq. (1), we have
resorted to the quasiparticle pole approximation and numerical
simulations.

Unfortunately, Eq. (2) is not as simple as it appears. While
the poles of the integrand can, indeed, be identified, albeit
only numerically, the function S[q(Z)] has a branch cut in the
complex Z plane, which also contributes to Gn. The branch-cut
contribution, denoted by HS as G(b)

n , is additive [see Eq. (16)
of Ref. 1] and cannot be disentangled from the contributions of
the poles, denoted by HS as G

(pm)
n . Moreover, G(b)

n cannot be
computed analytically except in the asymptotic regime |n| →
∞ when G(b)

n ∼ O(1/n) [Eq. (21) of Ref. 1].
HS claim that the branch-cut contribution G(b)

n is a novel
mode, which is characterized by a continuous spectrum and
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which has not been reported before. In fact, all modes reported
by us previously2 are characterized by a continuous spectrum
when evaluated without approximation, e.g., numerically. The
continuous spectrum of wave numbers is an inherent property
of a perfectly periodic infinite system. The modes in such
systems are delocalized, and the spectrum is necessarily
continuous. A discrete spectrum can result from the effect of
localization, e.g., due to disorder (considered by us in Ref. 2),
but HS restrict consideration to perfectly periodic infinite or
semi-infinite chains.1

It is true that, in the quasiparticle pole approximation,
we make an assumption that only one wave number is
dominating for a certain range of propagation distances, and
this assumption is, in some cases, well justified. In quantum
mechanics, there is a similar concept of quasidiscrete or
quasistationary energy levels7 where the imaginary part of
an energy level corresponds to its “width.” A similar situation
exists in our case: The quasiparticle pole approximation results
in complex quasidiscrete values of q, whose imaginary parts
can be used to estimate the rate of spatial decay of the ordinary
SPP. For simplicity, we have referred to this dominating wave
number as the wave number of the mode, e.g., on p. 4. However,
we have explained that the quasiparticle pole approximation is
inapplicable for the extraordinary SPPs, and the same point
was made by us earlier.6 In any case, we did not really
claim that only a single wave number contributes to any given
mode either in orthogonal or in longitudinal polarization. For
example, on p. 3 of Ref. 2, we have written

“It follows from formula (9) that the wave numbers q of SP
excitations that can propagate effectively in an infinite periodic
chain are such that 1/α ≈ S(k,q).”

Note the words “wave numbers” and the approximate
equality sign. Note that the abbreviation SP in the above quote
can be used interchangeably with the abbreviation SPP used
in this Comment and elsewhere.

Regarding the differences between the extraordinary SPPs
with orthogonal and longitudinal polarizations, which have
very different amplitudes (as noted by us on p. 6 of Ref. 2), we
have never claimed that the appearance of the extraordinary
SPP in longitudinal polarization is caused by the same reason
as in the case of orthogonal polarization, namely, by the
denominator in Eq. (1) turning to zero at the resonant wave
number q2, which in this polarization, does not exist. This is
clearly stated on p. 4 of Ref. 2. To quote directly (emphasis
added),

“In the case of oscillations polarized along the chain, the reso-
nance condition can be satisfied only at q = q1 ≈ 0.45π/h. This
is the wave number of an ordinary quasistatic SP which depends
on k only weakly, as long as kh � 0.2π . However, the extraor-
dinary (nonquasistatic) SP can be excited even for longitudinal
oscillations. Mathematically, this can be explained by observing
that ∂ Re S(k,q)/∂q diverges at q = k while ∂ Im S(k,q)/∂q is
discontinuous at q = k and performing integration (9) by parts.”

Thus, we have provided a mathematical explanation for the
existence of extraordinary SPPs in longitudinal polarization,
which does not require the denominator in Eq. (1) turning
to zero. Of course, the existence of the branch cut in HS
formalism is mathematically related to the divergence of
∂S/∂q. Therefore, this mode can be explained either by
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FIG. 1. (Color online) Amplitudes of dipole moments as func-
tions of distance from the point of excitation, measured in units of
the chain period h. The excitation point is located either at the end
or at the center of a long chain as labeled. E0 is the amplitude of the
illuminating electric field.

the branch-cut contribution to integral (2) in HS formalism
or by the divergence of ∂S/∂q, and we see no over-riding
physical significance in preferring one explanation over the
other.

It should be mentioned that Ref. 1 contains one criticism
of our paper, which we find valid. This concerns comparison
of the Green’s functions in infinite chains and in semi-infinite
chains excited at the terminal dipole. Namely, HS wrote on
p. 7 of Ref. 1:

“In the domain near the source . . . G for infinite and semi-
infinite chains differs only by a constant multiplication factor
. . .However, the two solutions deviate for larger distances. Hence,
the statement made in Ref. 2 that the Green’s function of infinite
and semi-infinite chains differs only by a multiplication factor is
somewhat incomplete; it is correct only within the limited region
near the source.”

Indeed, we have neglected to mention that the proportionality
coefficients are somewhat different for the ordinary and
extraordinary SPPs. This was not so much a mistake but an
omission. A relevant example is given in Fig. 1 where we plot
the amplitude of the dipole moment as a function of distance
from the point of excitation. In one case, the source is located
at the end, and in the other case, the source is located in the
center of a long but finite chain containing N = 2001 dipoles.
Orthogonal polarization and the same parameters as in Fig. 2
of Ref. 2 have been used. Note that, in Fig. 1, we plot the dipole
moment amplitudes directly and do not use normalization to
the amplitude of the illuminated dipole as was done previously
by us2 and also by HS, particularly, in Fig. 8 of Ref. 1. Such
normalization tends to magnify the difference between the two
curves and makes it appear more significant than it is in reality.

It can be seen that the differences are truly insignificant as
was correctly mentioned by us earlier.2 The proportionality
between the two curves holds but with different coefficients
for the ordinary (fast decaying) and the extraordinary (slow
decaying) SPPs. In the first case, the coefficient is ≈1.7 (for the
ratio of amplitudes), and in the second case, it is ≈0.92. Thus,
HS’s discussion of this topic is also somewhat incomplete: The
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proportionality holds not “only within the limited region near
the source,” but also in the range where one of the SPPs (either
ordinary or extraordinary) is dominating. The proportionality
does break in the crossover region.

To summarize, it was always understood that all modes
discussed by us consist of a spectrum of wave numbers,
all differently decaying. Our focus, however, was not on
these mathematical intricacies but on the physical behavior.

Consequently, HS’s criticism that we have misidentified or
missed some important excitation modes is not justified. Fi-
nally, we note that Ref. 3, which was also critically mentioned
by HS, does not simulate or discuss the extraordinary SPPs
at all, apart from a brief remark that these excitations have
been previously observed in numerical simulations. Therefore,
Ref. 3 should have not been mentioned by HS in this particular
context.
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