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We consider propagation of surface plasmon polaritons �SPPs� in linear periodic chains �LPCs� of prolate
and oblate metallic spheroids. We show that the SPP group velocity can be efficiently controlled by varying the
aspect ratio of the spheroids. For sufficiently small aspect ratios, a gap appears in the first Brillouin zone of the
chain lattice in which propagating modes do not exist. Depending on the SPP polarization, the gap extends to
certain intervals of the Bloch wave number q. Thus, for transverse polarization, no propagating SPPs exist with
wave numbers q such that qc

�� �q��� /h, h being the chain period. For longitudinally polarized SPPs, the gap
spans the interval �q��qc

� . Here qc
� and qc

� are different constants, which depend on the chain parameters,
spheroid aspect ratio, and its orientation with respect to the chain axis. The dependence of the dispersion curves
on the spheroid aspect ratio leads to a number of interesting effects. In particular, bandwidth of SPPs that can
propagate in an LPC can be substantially increased by utilizing prolate or oblate spheroids. When q is close to
a critical value, so that �q−qc

���� /h or �q−qc
� ��� /h, the decay length of the SPPs is dramatically increased.

In addition, the dispersion curves acquire a very large positive or negative slope. This can be used to achieve
superluminal group velocity for realistic chain parameters. We demonstrate superluminal propagation of
Gaussian wave packets in numerical simulations. Both theory and simulations are based on Maxwell equations
with account of retardation and, therefore, are fully relativistic.
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I. INTRODUCTION

Propagation of surface plasmon polaritons �SPPs� in lin-
ear periodic chains �LPCs� of metal nanoparticles has been in
the focus of considerable recent attention.1–8 The interest is,
in part, motivated by the potential application of such chains
as subwavelength plasmonic waveguides.9–11 Since energy in
a waveguide can be transported in the form of wave packets,
the dispersion relation becomes of primary importance. In
the case of LPCs, the dispersion relation is a mathematical
dependence of the SPP frequency � on its Bloch wave num-
ber q. It is important to emphasize that the elementary exci-
tations �electromagnetic modes� in LPCs are Bloch waves
rather than sinusoidal waves which propagate in continuous
media. Only when the Bloch wave number is sufficiently
small, so that qh�1, where h is the chain period, can we
neglect the mathematical distinction between the Bloch and
the sinusoidal waves and treat an LPC as an essentially con-
tinuous system. How strong the above inequality should be is
not evident a priori; we will comment on this question in the
concluding part of the paper.

Dispersion curves have been previously computed for po-
larization waves propagating in periodic chains of Drudean
spherical nanoparticles.1–4 It was found that there exist exci-
tations with frequencies � and Bloch wave numbers q such
that ��qch, ch being the speed of light in the surrounding
�host� medium. The phase velocity of such excitations, vp
=� /q, is less in magnitude than ch. SPPs with �vp��ch are
considered to be outside of the “light cone” and can propa-
gate along the chain without radiative losses, similarly to
plane waves in homogeneous dielectrics. We will reserve the
term “SPP” specifically for this type of excitations. In a
chain of perfectly conducting �lossless� particles, an SPP can

propagate infinitely without decay. Of course, absorptive
�Ohmic� losses in realistic metals always result in exponen-
tial spatial decay of SPPs.

The property of the dispersion curve ��q� which is spe-
cific to the case of LPCs made of spherical particles is that it
is very flat,1,2,5 with only a weak dependence of the fre-
quency on the Bloch wave number. The dispersion curves are
particularly flat for SPPs polarized transversely to the chain.
This results in very small group velocities, vg�ch. A factor
vg /ch�10−2 is typical. One practically important conse-
quence of the dispersion curve flatness is a relatively narrow
SPP bandwidth. That is, an SPP can be excited in a chain by
a spatially localized external source only in a narrow band of
frequencies. This can be expected to significantly limit the
potential application of LPCs as optical waveguides.

Maier et al.12 have pointed out that the use of spheroidal
rather than of spherical nanoparticles can result in an in-
creased SPP bandwidth and, correspondingly, in a longer
propagation distance. In the above work, the bandwidth was
defined as twice the spectral shift of the nearly homogeneous
SPP �characterized by q=0� with respect to the plasmon peak
of an isolated nanoparticle and it was assumed that the
propagation distance is proportional to the inverse of the
latter. The results were confirmed by FDTD simulations in an
LPC of seven prolate nanospheroids whose longer axis was
perpendicular to the chain.

In this paper, we further investigate the effects of non-
sphericity of the LPC constituents. We compute the disper-
sion relations in such LPCs in the dipole approximation. We
find that the dispersion curves in LPCs are dramatically al-
tered by replacing spherical particles with prolate or oblate
spheroids. In particular, the SPP bandwidth can be signifi-
cantly increased, in agreement with the results of Maier et al.
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Here, however, we define the bandwidth as the range of fre-
quencies in which efficient SPP transport along the chain is
possible. This includes modes with various values of q, in-
cluding those with q�� /h. We also find that the use of
oblate spheroids �nanodisks�, whose shorter semiaxis is par-
allel to the chain, is even more beneficial because it allows
one to achieve the desired effect at relatively modest values
of the aspect ratio. The increased bandwidth is expected to
result in a higher maximum bit rate and longer propagation
distances for signals transported by an LPC waveguide.

We further report that, at some critical values of the spher-
oid aspect ratio, gaps appear in the first Brillouin zone of the
lattice. Propagating SPPs do not exist when the Bloch wave
number q is inside one of such gaps. When q is near the gap
edge, a number of interesting phenomena take place. First,
the propagation distance �the decay length� is dramatically
increased, as compared to the same quantity when q is far
from the edge. Second, the dispersion curves acquire very
large positive or negative slopes. In this case, relatively fast
�ch− �vg��ch� and even superluminal ��vg��ch� wave packet
propagation can be obtained. Note that superluminal group
velocity does not contradict special relativity.13 Superluminal
wave packets exist in nature and were observed
experimentally.14,15

Theory and numerical simulations presented below are
based on the dipole approximation. The use of this approxi-
mation dictates that the interparticle spacings are larger than
a certain threshold at which excitation of higher multipole
moments in nanospheroids becomes non-negligible. This has
limited the range of chain parameters considered in this pa-
per. We, however, expect on physical grounds that using
chains with smaller interparticle separations may be benefi-
cial. For instance, we expect that the SPP propagation length
in such chains can be increased. However, in order to obtain
quantitative results in that limit, a considerably more com-
plex mathematical formalism must be used. The latter has
been developed by Park and Stroud5 for chains of spherical
nanoparticles in the quasistatic limit. Unfortunately, generali-
zation of this formalism to nonspherical particles and beyond
the quasistatic approximation �which we deem to be essential
for describing SPP propagation in long chains, as was con-
firmed recently in the experiments by Koenderink et al.16�
appears to be problematic.

The paper is organized as follows: In Sec. II, we describe
and justify the basic model used to simulate Bloch waves
and wave packets in LPCs. In Sec. III, we compute the dis-
persion curves for SPPs in chains of prolate and oblate nano-
spheroids. In Sec. VI, we discuss the attenuation of SPPs due
to Ohmic losses in LPCs and, for comparison, in metallic
nanowires. In Sec. V, we describe direct numerical simula-
tions of wave packet propagation in LPCs. Sec. IV contains a
summary and a discussion of obtained results.

II. BASIC MODEL

Consider a linear periodic chain of identical metallic
spheroids with semiaxes a and b �a�b�. We will discuss
below two different cases. In the first case, the chain is made
of prolate spheroids whose axis of symmetry �which coin-

cides with the longer axis� is perpendicular to the chain. In
the second case, the chain is made of oblate spheroids whose
axis of symmetry �which coincides with the shorter axis� is
parallel to the chain. In both cases, the longer axes of the
spheroids are perpendicular to the chain and the eccentricity,
e, is given by

e = �1 − �b/a�2. �1�

We will refer to the ratio b /a�1 of the shorter and longer
semiaxes of the spheroids as the aspect ratio.

The spheroids are centered at the points xn=hn, where n is
an integer and h is the chain period. The surface-to-surface
separation of two neighboring spheroids is �=h−2b; we re-
quire that h�2b to avoid geometrical intersection of par-
ticles. Note that a stronger condition on the interparticle
separation will be imposed below. The smaller semiaxis b is
assumed to be on the order of 10 nm, while a can be up to a
few times larger. We will see that SPPs propagating in such
chains have frequencies � such that the corresponding wave-
length in the host medium, 	=2�ch /�, is considerably larger
than both a and b. Accordingly, we adopt the dipole approxi-
mation.

This choice, however, requires an additional justification.
While the dipole approximation accuracy for electromagneti-
cally interacting spheroids has not been studied directly,
many results are available for spheres. The most basic and
frequently considered example is that of two electromagneti-
cally interacting spheres in close proximity of each other.17,18

In this case, the spatially inhomogeneous fields scattered by
the spheres result in the excitation of vector spherical har-
monics of all orders, even if the spheres are small compared
to the wavelength. More specifically, the electric field inside
each sphere can be expanded into the vector spherical har-
monics with nonzero coefficients appearing in arbitrarily
high orders. In the dipole approximation, only the first-order
terms �l=1, m=0, 
1� are retained in this expansion. The
accuracy of this approximation was found to be dramatically
affected by polarization. If the electric field polarization is
parallel to the axis connecting the spheres, the dipole ap-
proximation starts to deviate from the exact solution when
��0.5R, with R being the sphere radius, for both dielectric17

and conducting18 spheres. However, if the polarization is per-
pendicular to the axis, the dipole approximation yields re-
sults �i.e., the total dipole moment of the spheres18� with a
relative error of only 2% even in the case �=0. A careful
study19 of the transversely polarized electromagnetic modes
of finite-length linear chains of interacting spheres has re-
vealed that the effect of multipole interaction is to slightly
shift and broaden the dipole resonance—an effect hardly ob-
servable in most materials due to the spectral line broadening
associated with Ohmic losses.

Below, we work in the regime when �=2b �h=4b�. In the
case of spheres �b=R�, one could expect the dipole approxi-
mation to be very accurate for such relative separations re-
gardless of polarization. We can, however, apply a more
stringent test and compare � to the larger semiaxis of the
spheroid, a. Within the dipole approximation, the physical
effect described below is manifest for the following aspect
ratios. For transversely polarized SPP, the gap in the first
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Brillouin zone of the chain lattice appears when b /a�0.25
in the case of prolate spheroids, and when b /a�0.35 in the
case of oblate spheroids. For longitudinal SPP polarization,
the gap appears when b /a�0.1 in the case of prolate sphe-
roids, and when b /a�0.25 in the case of oblate spheroids.

Consider first the transverse polarization. The aspect ratio
b /a=0.25 corresponds to � /a=0.5. In the case of two
spheres of radius R separated by the surface-to-surface dis-
tance �=0.5R, the multipole effects are negligible. In fact,
even a smaller aspect ratio of b /a=0.15, which is used in the
numerical simulations of transversely polarized wave pack-
ets in Sec. V, corresponds to the relative separation �
=0.3R. At this separation, the multipole effects can still be
safely ignored. In the case of the longitudinal polarization,
the aspect ratio, which is required to observe the effect in
chains of prolate spheroids, is 0.1, which corresponds to �
=0.2R. The multipole effects in this situation are expected to
be significant but not dramatic. However, in oblate spheroid
chains, the required aspect ratio is 0.25, which corresponds
to �=0.5R. At this relative separation, the effects of higher
multipoles are noticeable but small, even for the longitudinal
polarization.

Finally, a simple physical explanation for the dramatic
polarization dependence of the dipole approximation accu-
racy is available. When the polarization is parallel to a chain
of spheres, the sphere surfaces, which are adjacent to the
“junctions,” are similar to usual capacitors, and acquire large
and sign-opposite surface charge densities, which, in turn,
results in highly nonuniform strongly enhanced local fields.
This causes excitation of very high multipole moments.
However, for the case of transverse polarization, the surface
charge densities near the junctions are proportional to the
geometrical factor cos� �� being the angle between the po-
larization vector and the radius vector of a point on the
sphere surface� and are small. Obviously, this consideration
holds for spheroids as well.

We thus conclude that the use of the dipole approximation
is well justified for the purpose of this paper. In the case of
transverse SPP polarization, the approximation accuracy is
exceedingly good. For the longitudinal polarization, the ac-
curacy can be questioned in prolate spheroid chains but is
quite reasonable when oblate spheroids are used. We will
report numerical computation of the dispersion curves for
both prolate and oblate spheroids, in transverse and longitu-
dinal polarization, and for various aspect ratios of the sphe-
roids �Sec. III, Figs. 1–5�. However, direct simulation of
wave packet propagation �Sec. V, Figs. 8 and 9� is reported
only for the choice of parameters such that the accuracy of
the dipole approximation is not in doubt.

In the dipole approximation, each nanoparticle is charac-
terized by a �possibly, tensor� dipole polarizability ��� and
radiates as a point dipole. The Cartesian components of the
nanoparticle dipole moments dn are coupled to each other
and to the external electric field by the coupled-dipole
equation,8,20–22 which we write here in the frequency domain
as

dn = ����En
ext + 	

m�n

Gk�xn,xm�dm
 . �2�

Here En
ext is the external field amplitude at the nth site, k

=� /ch is the wave number in the host material at the fre-
quency � and Gk�x ,x�� is the appropriate element of the
frequency domain free-space Green’s tensor. In this paper,
we consider both the transverse and the longitudinal polar-
izations of the SPP. In the absence of magnetic polarizability
of the nanoparticles �which is assumed�, the SPPs with the
three orthogonal polarizations are not electromagnetically
coupled to each other. Therefore, each polarization can be
considered separately and the quantities appearing in Eq. �2�
should be understood as follows: dn and En

ext are projections
of the dipole moments and of the external electric field on
the selected polarization axis, ��� is the appropriate scalar
element of the polarizability tensor and Gk�x ,x�� is defined
by

Gk�x,x�� = ��
k2

�x − x��
+

ik

�x − x��2
−

1

�x − x��3
exp�ik�x − x���, transverse polarization,

2�−
ik

�x − x��2
+

1

�x − x��3
exp�ik�x − x���, longitudinal polarization. � �3�

III. DISPERSION RELATIONS

An SPP mode is an excitation that propagates along the chain without an external source. Thus, to find the dispersion
relation, we seek a solution to Eq. �2� with zero free term, En

ext=0, in the form dn� exp�iqxn�, where q is in the first Brillouin
zone of the lattice, q� �−� /h ,� /h�. Substitution of this ansatz into Eq. �2� yields the equation

−1��� = h−3S�hk,hq� , �4�

where S�hk ,hq� is the dimensionless dipole sum �the dipole self-energy� of the chain defined by
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S��,�� = �2�3	
n=1

� � 1

n�
+

i

�n��2 −
1

�n��3
exp�in��cos�n��, transverse polarization,

4�3	
n=1

� �−
i

�n��2 +
1

�n��3
exp�in��cos�n��, longitudinal polarization. � �5�

Note that the dipole sum is a function of two dimensionless
parameters �=kh and �=qh but does not depend on the par-
ticle shape and material properties.

The dispersion relation, i.e., the mathematical dependence
of the SPP frequency �=kch on its Bloch wave number q,
can be obtained by finding all pairs of variables �� ,q� that
satisfy Eq. �4�. This can give rise to one or more branches of
the complex function ��q�. Generally, purely real pairs
�� ,q� that solve Eq. �4� do not exist. One can, however,
consider purely real values of q and seek complex frequen-
cies, as was done by Koenderink and Polman.3 The imagi-
nary part of � is then interpreted as the SPP decay rate.
Alternative approaches include numerical computation of
discrete modes in a finite chain1 and plotting Im�−1

−h−3S�−1 as a function of two variables k and q and visually
identifying the points at which this function appears to have
a maximum or a saddle point.4

In this paper, we are interested in propagation of wave
packets, which are excited as superpositions of oscillations
with purely real frequencies. Since SPPs propagate without
radiative losses, their Bloch wave numbers q are purely real
if the chain is made of a nonabsorbing material such as an
ideal conductor. However, when Ohmic losses in realistic
metal are accounted for, q acquires an imaginary part. In
what follows, we use two different approaches to computing
the dispersion curve. In Sec. III A, we consider chains made
of ideal �lossless� metal and seek purely real solutions ��q�,
as was suggested by Simovski.2 Numerically, this is accom-
plished by finding pairs of real variables �� ,q� that satisfy
the dispersion equation �4� by the method of bisection. Such
purely real solutions exist if the permittivity of metal is taken
to be real. Next, in Sec. III A, we consider realistic metals.
Here we seek pairs �� ,q� that satisfy the dispersion equation
such that � is purely real but q is complex. Numerically,
such pairs are obtained by utilizing the root-finding algo-
rithm implemented in Wolfram’s Mathematica. For the spe-
cific case of silver, we find that both approaches yield the
results which are very close quantitatively when the depen-
dence of � on Re�q� is considered; the first approach, how-
ever, provides no information on SPP attenuation which is
governed by Im q. In both cases, we seek solutions only in
the region Re q�k=� /ch; as was discussed in the Sec. I,
excitations with Re q�k experience radiative decay in addi-
tion to Ohmic losses and are not considered in this paper.

A. Dispersion relations for ideal metal

In this section we assume that q and k are real and view
the dipole sum S�kh ,qh� as a function of two purely real

variables. As the first step, we write the inverse polarizability
in Eq. �4� in the form:23

−1��� = LL
−1��� − 2ik3/3, �6�

where LL��� is the Lorenz-Lorentz quasistatic polarizability
of nanoparticles and 2ik3 /3= i�2 /3��� /ch�3 is the first non-
vanishing radiative correction to the inverse polarizability.
The inverse of the Lorenz-Lorentz polarizability is given by

LL
−1��� =

4�

�hv
�� +

�h

�m − �h
 , �7�

where � is the appropriate depolarization factor, v is the
spheroid volume, and �m and �h are the permittivities of the
�metallic� spheroids and of the host medium, respectively.24

In the case of prolate spheroids, the volume is given by

v =
4�

3
ab2, �8�

and the three depolarization factors are �1 for polarization
along the spheroid axis of symmetry and �2=�3= �1−�1� /2
for two linearly independent transverse polarizations, where

�1 =
1 − e2

e2 �− 1 +
1

2e
ln

1 + e

1 − e

 . �9�

Here e is the spheroid eccentricity given by formula �1�.
For oblate spheroids, the volume is

v =
4�

3
a2b , �10�

and the depolarization factors are �1=�2 for two linearly in-
dependent polarizations which are orthogonal to the spheroid
axis of symmetry and �3=1−2�1 for the polarization along
the axis of symmetry, where

�1 =
g�e�
2e2 ��

2
− arctan g�e�
 −

g2�e�
2

, g�e� =
�1 − e2

e
.

�11�

While both permittivities �m and �h have, in general, some
frequency dependence, here we neglect the dispersion in the
host and assume that �h=const�0. Then, for nanoparticles
made of a lossless material, Im�LL

−1�=0. At the same time, if
q�k, the imaginary part of the dipole sum is8,25

Im�S�kh ,qh��=−2�kh�3 /3 and, in the region of �k ,q� which
is of interest to us, Im�−1−h−3S�=0. Therefore, the imagi-
nary part of Eq. �4� is satisfied identically and only its real
part needs to be considered. We then utilize Eqs. �6� and �7�
and arrive at the following dispersion equation:
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� + Re� �h

�m − �h
 = �h

v
4�h3Re�S�hk,hq�� . �12�

In the case of a lossless metal and a transparent host medium,
the real part symbol in the left-hand side of Eq. �12� can be
omitted.

Equation �12� allows one to analyze the relation between
the spheroid aspect ratio and the dispersive properties of the
LPCs. Consider first the SPP polarization which is transverse
to the chain. For this polarization, the dependence of the real
part of the dipole sum S�kh ,qh� on its arguments is illus-
trated in Fig. 1�a� and the relevant depolarization factor is �1
�for both prolate and oblate spheroids�. We now notice the
following: In the spectral region where the metal experiences
anomalous dispersion, the second term in the left-hand side
of Eq. �12� is negative, assuming that the host medium is a
transparent dielectric. When the aspect ratio b /a is de-
creased, the depolarization factors �1 given by Eqs. �9� or
�11�, for prolate and oblate spheroids, respectively, both ap-
proach zero. As a result, the whole left-hand side in Eq. �12�
becomes negative. On the other hand, there are regions in the
�k ,q� space in which the right-hand side of Eq. �12� is
strictly positive. Thus, it can be seen from Fig. 1�a� that
Re�S�kh ,qh���0 if qh /��0.5 and q�k. As a result, for
sufficiently small ratio b /a, Eq. �12� ceases to have real-
valued solutions if q�qc

�, where qc
� is the �aspect ratio-

dependent� critical value of q specific to the transverse po-
larization. The interval of Bloch wave numbers q�qc

�

corresponds to a gap in the first Brillouin zone of the chain
lattice. In this gap, SPPs do not exist. It is important to em-
phasize that the critical constant qc

��� /h exists only for
sufficiently small ratio b /a.

Similar considerations can be applied to the longitudinal
SPP polarization, except that the relevant depolarization co-
efficient is, in this case, �3. The dependence of Re�S�kh ,qh��
on its arguments is illustrated in Fig. 1�b�. It can be seen that
Re�S�kh ,qh�� is strictly positive for qh /��0.4 and q�k.
Correspondingly, Eq. �12� ceases to have real-valued solu-
tions for q�qc

� , which defines a gap in the first Brillouin
zone of the lattice. Here qc

� is the critical Bloch wave number
for the parallel polarization; as in the case of transverse po-
larization, qc

� exists only for sufficiently small aspect ratios
and is aspect ratio-dependent. Note that the depolarization
factor �3 approaches a finite value rather than zero when the
aspect ratio is decreased. This limit is 1/2 for prolate and 1
for oblate spheroids. Due to this reason, observation of the
gap for longitudinally polarized SPPs requires a smaller as-
pect ratio. This point will be illustrated below by numerical
examples.

We now compute the dispersion curves numerically. To
solve Eq. �12�, a specific expression for the metal permittiv-
ity �m is needed. We use here the Drude formula,

�m = �0 −
�p

2

��� + i��
, �13�

where �0 is the contribution due to interzone transitions,26 �p
is the plasma frequency, and � is the relaxation constant. In
this subsection, we set �=0 to describe a lossless metal �re-

alistic values of � will be used in Secs. III B and V below�.
We then solve Eq. �12� by the method of bisection to obtain
the dispersion curves and the SPP group velocity.
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FIG. 1. �Color online� Contour plot of the real part of the dipole
sum, Re�S�kh ,qh�� for the transverse �top� and the longitudinal
�bottom� polarizations. Due to the symmetry S�� ,��=S�� ,−��, only
the positive half of the first Brillouin zone is shown. Note that, for
the transverse polarization, Re�S�kh ,qh�� diverges logarithmically
�approaches positive infinity� on the light line q=k. Near this line,
the function changes so fast that it is not feasible to depict it quan-
titatively using the contour plot; the region of divergence is sche-
matically shown as a diagonal white line in the top panel. There is
no divergence for the longitudinal polarization.
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The results are shown in Figs. 2–5. The top panels in
these four figures show a number of dispersion curves com-
puted for different aspect ratios b /a, as labeled, and for dif-
ferent SPP polarizations. The group velocity of the SPPs,
vg=�� /�q, is plotted as a function of q in the bottom panels.
The values of �h and �0 are taken to be 2.5 �as in the case of
a glassy medium� and 5.0 �the experimental value for
silver26�, respectively. The computation does not depend on
the absolute value of the plasma frequency �p but on the
dimensionless parameter 	p /h, where 	p=2�ch /�p is the
wavelength �in the host medium� at the plasma frequency.
This ratio was chosen to be 	p /h=3.4. Finally, we have set
the ratio h /b=4 so that the minimum surface-to-surface
separation of two neighboring spheroids, �, was equal to 2b.
As an illustration, for the specific case of silver, we have the
following parameters: the vacuum plasma wavelength is
	p

�vac��136 nm and the corresponding value in the host me-
dium is 	p=	p

�vac� /��h�86 nm; correspondingly, h
�25 nm, b�6 nm, and a varies from 6 to 60 nm. The latter
value was obtained for the smallest aspect ratio used, b /a
=0.1. It can be seen that, for all points on the dispersion
curves shown in Figs. 2–5, SPP frequencies are well below

the plasma frequency �p and kh /��1. The last inequality is
especially strong for the central frequencies �indicated by
horizontal arrows in Figs. 2 and 5� which were used to simu-
late wave packet propagation in Sec. V below. This recon-
firms the dipole approximation validity.

We now discuss the computed dispersion curves in more
detail, starting with the case of transverse SPP polarization
�Figs. 2 and 3�. First, we note that in infinite, strictly periodic
chains, the dispersion curves of transversely polarized SPPs
start at the point k=q=0 and then follow the light line k=q
for some range of q. This small-q part of the dispersion curve
is related to the logarithmic divergence of the dipole sum on
the light line22 and is extremely difficult to find numerically.
Indeed, in order to satisfy Eq. �12�, the points on the small-q
section of the dispersion curve must be specified with expo-
nentially large numerical precision. This is why the small-q
section of the dispersion curve has not been reported in a
number of numerical investigations.1–4 However, the SPPs
with q�k�� /h exist and were observed in numerical
simulations.8

In this paper, we do not consider the small-q part of the
dispersion curve but focus on the SPPs for which the ratio
k /q is considerably less than unity. Such modes exist for
qh /��0.2 for all four values of b /a shown in Figs. 2 and 3.
The main point of this paper is that the dispersion curve
shape is strongly influenced by the ratio b /a. When b /a
=1.0, the corresponding dispersion curve is almost flat �apart
from the linear small-q section of the curve�. At b /a=0.5, the
curve begins to bend down noticeably at larger values of q.
Finally, when b /a�0.25 �in the case of prolate spheroids� or

k = q
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FIG. 2. �Color online� �a� Dispersion curves and �b� group ve-
locity for transversely polarized SPPs in chains built from prolate
spheroids whose axis of symmetry is perpendicular to the chain, for
different spheroid aspect ratios b /a and for fixed ratios h /b=4 and
	p /h=3.4. Since the dispersion curves are symmetric with respect
to the k axis, only the positive half of the first Brillouin zone �q
�0� is shown. Only data points that were found numerically are
plotted. Theoretically, however, all dispersion curves in infinite
chains start at the point k=q=0 and follow the light line �labeled as
k=q in the top panel� for some range of q’s. Horizontal arrows
indicate central frequencies of the Gaussian wave packets whose
simulated propagation is illustrated in Fig. 8 below.
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FIG. 3. �Color online� Same as in Fig. 2 but for a chain made of
oblate spheroids whose axis of symmetry is parallel to the chain and
for a different set of aspect ratios. SPP polarization is orthogonal to
the chain.
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when b /a�0.35 �in the case of oblate spheroids�, the curves
cross the k=0 axis at the point q=qc

� and no solutions exist
for q�qc

�. Near the critical point, the dispersion curves ac-
quires a very large negative slope. Note that the correspond-
ing slope is positive in the q�0 part of the first Brillouin
zone �which is not shown in the figures�.

From comparison of Figs. 2 and 3, a conclusion can be
made that the dispersion curves are more sensitive to the
aspect ratio in the case of oblate spheroids. In particular, the
gap in the first Brillouin zone of the chain lattice appears for
more moderate values of b /a if the chain is made of oblate
spheroids.

Dispersion curves for the longitudinal SPP polarization
are shown in Figs. 4 and 5. It can be seen that, for suffi-
ciently small aspect ratios, there exists a critical value qc

�

such that Eq. �12� has no real-valued solutions for q�qc
� .

Thus, SPP propagation in the chain is only possible for q
larger than the critical value qc

� �if the latter exists�. The
group velocity shown in Figs. 4�b� and 5�b� acquires large
positive values in the vicinity of qc

� .
Similarly to the case of transverse SPP polarization, the

dispersion curves are more sensitive to the aspect ratio if the
chains are made of oblate spheroids. Thus, in the case of
prolate spheroids, the gap in the first Brillouin zone of the
lattice appears only when b /a�0.1. However, if the chain is
composed of oblate spheroids, the gap appears when b /a
�0.25.

B. Dispersion relations for realistic metal

The dispersion curves shown in Fig. 2 through Fig. 5
contain no information on either the rate or the direction of
SPP spatial decay. However, it can be seen in these figures
that an SPP is characterized by phase and group velocities
and that these can have different signs when projected onto
the x axis. On physical grounds, we expect that wave packets
should decay in the direction of propagation. This imposes
certain restrictions on the signs of the real and the imaginary
parts of q. Thus, if vgvp�0, we expect that Re�q�Im�q��0,
while if vgvp�0, we expect that Re�q�Im�q��0.

The above statement can be illustrated by considering the
following thought experiment: Assume that a short Gaussian
optical pulse is injected into the central part of a long chain
by a spatially localized source such as a near-field micro-
scope tip operating in the illumination mode. The pulse will
propagate in the form of two wave packets in both directions
along the chain. If vgvp�0, both wave packets would be
composed of Bloch waves whose phase velocities point to-
ward the source and group velocities point away from the
source. Since the sign of the phase velocity is the same as
that of Re�q�, and since both wave packets should decay in
the direction of propagation, we expect in this case that
Re�q�Im�q��0. Similar consideration can be applied to the
case vgvp�0.
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FIG. 4. �Color online� Same as in Fig. 2 but for longitudinal
SPP polarization and a different set of aspect ratios. Note that, un-
like in the case of transverse polarization, the dispersion curves do
not have linear small-q segments. As stated in the text, only data
points that satisfy q�k are plotted, since there are no real-valued
solutions in the region q�k.
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FIG. 5. �Color online� Same as in Fig. 3 but for longitudinal
SPP polarization and a different set of aspect ratios. Note that, un-
like in the case of transverse polarization, the dispersion curves do
not have linear small-q segments. As stated in the text, only data
points that satisfy q�k are plotted, since there are no real-valued
solutions in the region q�k. Horizontal arrows indicate central fre-
quencies of the Gaussian wave packets whose simulated propaga-
tion is illustrated in Fig. 9 below.
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In the numerical simulations of this subsection, we have
verified that the above analysis is, indeed, correct. To this
end, we have incorporated the Ohmic losses into the model
of metal permittivity. Specifically, we have set the Drude
relaxation constant in Eq. �13� to be �=0.002�p which is the
experimental value for silver. Note that Eq. �12� can still be
satisfied in this case with a purely real pair of �� ,q� �the real
part symbol in the left-hand side of the equation must be
retained if �m is complex-valued�. However, the imaginary
part of the more general Eq. �4� is no longer satisfied iden-
tically. We, therefore, must seek such pairs of variables
�� ,q�, where q is now complex, that satisfy both the real and
the imaginary parts of Eq. �4�. This cannot be achieved by
the use of the simple bisection algorithm that was employed
in the previous subsection. Instead, we employ here the Wol-
fram’s Mathematica root finder to obtain complex roots of
Eq. �4�, q, for each real value of �.

The results of this simulation are plotted parametrically in
the complex q plane in Fig. 6 for a chain of prolate spheroids
of the aspect ratio b /a=0.15 and in Fig. 7 for a chain of
oblate spheroids of the aspect ratio b /a=0.25. Other param-
eters are the same as in Fig. 2. As expected, the real and

imaginary parts of the Bloch wave number have opposite
signs for the transversely polarized SPPs so that the wave
packets decay in the direction of propagation specified by vg,
even though the phase velocity is pointing into the opposite
direction. For longitudinally polarized SPPs the product vpvg
is always positive and, correspondingly, Im�q�Re�q��0.

An important observation is that when Re q approaches
one of its critical values, Im q tends to zero. Correspond-
ingly, the decay length of the SPPs is dramatically increased.

We note that the data shown in Fig. 6 represent essentially
the same dispersion curves as the ones plotted in Figs. 2�a�
and 4�a� for the case b /a=0.15. Similarly, data in Fig. 7
correspond to the dispersion curves plotted in Figs. 3�a� and
5�a� for b /a=0.25. The discrepancy between the curves
��Re�q�� computed by the two methods is negligibly small.
This further justifies the utility of the simple numerical
method of Sec. III A for computing the dispersion curves in
LPCs.

IV. ATTENUATION OF SPPS AND DECAY LENGTH

The nonzero relaxation constant in Eq. �13� leads to ex-
ponential decay of SPPs even in the absence of radiative
losses. The decay lengths in LPCs is given by �LPC
=1 / Im�q�. If q is not very close to the edge of one of the
gaps that were discussed above, �LPC can be computed in the

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

Re�qh�Π�

Im
�q

h�
Π�
�1

02

0.14

0.12
0.040.08
0

0.14

0.12
0.080.04

0

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

Re�qh�Π�

Im
�q

h�
Π�
�1

02

0.24

0.22
0.180.14

0.10

0.24

0.22
0.18 0.14

0.10

(a)

(b)

FIG. 6. Dispersion curves plotted parametrically in the complex
q plane for �a� transversely and �b� longitudinally polarized SPPs in
an LPC of prolate spheroids. Parameters: � /�p=0.002, b /a=0.15,
and other parameters same as in Fig. 2. Dots label the values of the
dimensionless parameter kh /�=�h /�ch. In panel �a�, only the
points in the region vpvg�0 are shown, which corresponds, ap-
proximately, to �Re�q��h /��0.17.
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FIG. 7. Same as in Fig. 6 for an LPC of oblate spheroids whose
aspect ratio is b /a=0.25
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quasiparticle pole approximation8 which results in the fol-
lowing expression:

�LPC �
1

− h2 Im�LL
−1����

� � Re S��,��
��

�
�=q0���h

�14�

where S�� ,�� is the dipole sum given by Eq. �5� and q0��� is
a purely real solution to Eq. �12� for a given value of the
dimensionless parameter �=�h /ch. Under the assumptions
that �h , Im��m��Re��m�, we have

− Im�LL
−1���� � 4���/v�p

2. �15�

As we have seen above, the real-valued solutions to Eq. �12�
satisfy, albeit approximately, the more general dispersion
equation �4�. Therefore, we can evaluate the derivative in Eq.
�14� at the point �� ,�� with the understanding that � and �
are purely real variables that satisfy the approximate disper-
sion equation �12�. We further neglect the terms that are of
the order of �1 /� and �1 /�2 in the square brackets of the
expression �5� for the dipole sum and arrive at the following
estimate:

�LPC � h
Av

2�h3

�p
2

��
�	

m=1

�
cos��hm/ch�sin�qhm�

m2 � , �16�

where A=1 for the transverse polarization and A=2 for the
longitudinal polarization.

A direct calculation for the transversely polarized SPP in a
prolate spheroid chain, b /a=0.15 and other parameters same
as in Fig. 2 yields the decay lengths �LPC�7 �m for �
=0.1�p and �LPC�15 �m for �=0.05�p. Interestingly, the
polarization dependence of decay length is contained solely
in the factor A. However, the two polarizations have mark-
edly different dispersion curves and therefore same pairs of
variables �� ,�� may not be accessible for the two different
polarizations.

It is instructive to compare the SPP decay length in nano-
particle chains and metallic nanowires. The dispersion equa-
tion in a metallic cylindrical waveguide is:27,28

�mI1��mR�
�mI0��mR�

+
�hK1��hR�
�hK0��hR�

= 0, �17�

where R is the cylinder radius, Il�x� and Kl�x� are the modi-
fied Bessel functions, �m,h=�q2−�m,h�2 /ch

2, and the indices
“m” and “h” label the quantities for the metal and for the
surrounding dielectric host, respectively. If the wire is suffi-
ciently thin, we can expand the Bessel function to the first
nonvanishing order in �mR and �hR to obtain the simplified
dispersion equation

�m =
2�h

��hR�2

1

ln��hR/2� + C
, �18�

where C is the Euler constant. This equation can be solved
approximately �with logarithmic precision� as

��hR�2 �
2�h

− �m

1

1

2
ln

− 2�m

�h
− C

. �19�

We then use the Drude formula for �m, take into account the
fact that the propagation constant Re q in a metal nanowire is
much larger than ��h� /c �which is the wave number in the
surrounding medium�, and obtain the following estimate for
the decay length:

�wire �
�p

�

R

2�2�h

, �20�

One additional condition that has been used in deriving the
above estimate is ���. For a silver nanowire of radius R
=25 nm, the estimate yields �wire�2.8 �m.

The following conclusions can be made: While the SPP
decay length in nanowires depends only on the metal and
host permittivities and the waveguide radius, the same quan-
tity in the LPCs can be controlled by changing the interpar-
ticle separation and the particle dimensions. Decreasing the
interparticle spacings results in stronger electromagnetic
coupling and larger propagation distances. However, for suf-
ficiently small values of h, the dipole approximation breaks
down and the estimate �Eq. �16�� becomes invalid. The di-
mensions of a nanoparticle provide another set of degrees of
freedom in controlling the decay length in LPCs. Note that
the expression �16� contains an overall factor v /2�h3, which
can be interpreted as the volume fraction of metal �in a unit
cell of the chain lattice�. For an LPC of prolate spheroids,
this factor is equal to 2ab2 /3h3. However, for an LPC made
of oblate spheroids, the factor is 2a2b /3h3. It obtains that the
propagation distance in oblate spheroid LPCs is effectively
increased by the factor of a /b�1 compared to prolate spher-
oid LPCs. Thus constructing an LPC from thin nanodisks
whose axis of symmetry is parallel to the chain axis may be
beneficial.

V. MODELING OF WAVE PACKET PROPAGATION

We now demonstrate that superluminal wave packets can
indeed propagate in chains with sufficiently small aspect ra-
tios b /a. To this end, we consider a finite chain of N nano-
particles excited by a pulse with Gaussian temporal profile
incident on the first particle in the chain. In the time domain,
the pulse is described by the formula

En
ext�t� = �n1E exp�− i�0t − �t/�t�2� , �21�

where E is an arbitrary amplitude and �t is the pulse dura-
tion. This function has the Fourier transform

Ẽn
ext��� = �n1

���tE exp�−
�� − �0�2

����2 
, �� =
2

�t
.

�22�

The numerical procedure is as follows: The above expression

for Ẽn
ext��� is used as the free term in the right-hand side of

Eq. �2�. The equation is solved numerically by direct matrix
inversion for multiple values of � sampled in a sufficiently
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large interval and with sufficiently small step to ensure con-

vergence. This yields a family of numerical solutions d̃n���.
The real time quantities dn�t� are then obtained by the inverse
Fourier transform according to

dn�t� =� d̃n���exp�− i�t�
d�

2�
. �23�

Numerically, this integral is evaluated by the trapezoidal
rule.

We have simulated transversely polarized wave packets in
LPCs of prolate spheroids with the aspect ratio b /a=0.15.
Longitudinally polarized SPPs were simulated in chains of
oblate spheroids with the aspect ratio b /a=0.25. Simulations
were performed in a chain consisting of N=5·103 spheroids;
the overall length of the chain was �given h=25 nm� L
=125 �m. All parameters were the same as those used for
calculating dispersion curves shown in Fig. 2, with the only
exception that Ohmic losses in the metal were taken into
account by means of using the nonzero Drude relaxation
constant �=0.002�p. Four sets of simulations have been per-
formed, the first two for the transverse and the other two for
the longitudinal polarization.

In the case of the transverse polarization, two different
central frequencies of the pulse have been used. The first
pulse had the central frequency �0=0.1�p �correspondingly,
k0h /�=0.06 where k0=�0 /ch� and the pulse spectral width
was ��=�0 /5. Thus the excitation was relatively broadband
but very narrow in the time domain: given the experimental
value of �p for silver, the above spectral width corresponds
to �t�7.2 fsec. The second pulse had the central frequency
twice smaller than the first, �0=0.05�p, with the same rela-
tive spectral width ��=�0 /5. In the time domain, this cor-
responds to �t�14.2 fsec. The central frequencies of the
two pulses are shown in Fig. 2�a� by the horizontal arrows.
Amplitudes of the obtained wave packets are illustrated in
Fig. 8 at different moments of time measured in the units
of �=h /ch. The maximum time shown on the plots is
t=6�103��800 fsec.

It can be seen that the wave packet with �0=0.1�p propa-
gates away from the source with the subluminal group ve-
locity vg�0.57ch. However, the wave packet with the
smaller central frequency propagates at the speed vg
�1.16ch. These group velocities are in quantitative agree-
ment with the data shown in Fig. 2�b�. Note that the group
velocities can be evaluated as the slopes of the dispersion
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FIG. 8. �Color online� Envelopes of transversely polarized wave
packets in a chain of N=5000 prolate nanospheroids with the aspect
ratio b /a=0.15 at different moments of time t. Spheroids are ori-
ented so that their axes of symmetry are perpendicular to the chain
axis. Time is measured in the units of �=h /ch. Column �a�: �0

=0.1�p and vg�0.57ch. Column �b�: �0=0.05�p and vg�1.16ch.
Arrows indicate that the wave packet propagates from right to left
after being reflected from the far end of the chain.
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FIG. 9. �Color online� Envelopes of longitudinally polarized
wave packets in a chain of N=5000 oblate nanospheroids with the
aspect ratio b /a=0.25 at different moments of time t. Spheroids are
oriented so that their axes of symmetry coincide with the chain axis.
Time is measured in the units of �=h /ch. Note that the largest time
shown in this figure is two times smaller than the respective quan-
tity in Fig. 8. Column �a�: �0=0.25�p and vg�0.77ch. Column �b�:
�0=0.10�p and vg�2.57ch. Arrows indicate that the wave packet
propagates from right to left after being reflected from the far end of
the chain.
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curve drawn for b /a=0.15 in Fig. 2�a� at the central frequen-
cies indicated by the horizontal arrows. As expected, the su-
perluminal wave packet is spreading faster than the sublumi-
nal wave packet. This is so because of the larger value of the
second derivative �2� /�2q at the smaller central frequency.
Yet, near the end of the chain, the duration of the superlumi-
nal pulse is still only �1 psec.

The two sets of simulations for the longitudinal polariza-
tion are shown in Fig. 9. Here we have used a chain of oblate
spheroids with the aspect ratio b /a=0.25. The central fre-
quencies of the two pulses were �0=0.25�p and �0=0.1�p.
The pulses’ relative spectral widths were the same as in the
case of the transverse polarization, namely, the pulse spectral
width was ��=�0 /5. By tracing the maximum of each wave
packet, we deduce vg�0.88ch for �0=0.25�p and vg
�2.17ch for �0=0.1�p. This is in full agreement with the
group velocities shown in Fig. 5�b�.

Finally, note that the decay lengths in each simulation
cannot be easily deduced from the time evolution of the
maxima of the wave packets. This is because the propagation
is accompanied by both decay and spreading. The latter takes
place even in the absence of Ohmic losses.

VI. CONCLUDING REMARKS

In this paper, we have employed the coupled dipole ap-
proximation to compute the dispersion curves and to model
propagation of wave packets of surface plasmon polaritons
�SPPs� in linear periodic chains �LPCs� of metallic nano-
spheroids.

We have shown that the group velocity, the decay length,
and the bandwidth of SPPs propagating in LPCs of metallic
nanoparticles can be effectively tuned. The tunability is
achieved by means of varying the nanoparticles aspect ratio.
The decay length can be dramatically increased for Bloch
wave numbers q near the edges of gaps that appear in the
first Brillouin zone of the lattice for sufficiently small aspect
ratios. At the same time, the SPP group velocity is increased
up to superluminal values. By replacing the host medium
with vacuum, it is also possible to excite a wave packet
whose group velocity is larger than the speed of light in
vacuum. Such wave packets exist in nature and were ob-
served experimentally.14,15

Comparison of Figs. 2–5 reveals that the parameters of
two different LPCs can be tuned so that one LPC supports
transversely polarized SPPs and the other chain supports lon-
gitudinally polarized SPPs with the same electromagnetic
frequency. This fact can be utilized for guiding the SPPs
through corners �ninety degree turn in an LPC� and/or for
splitting and coupling the SPPs at T junctions. Another po-
tentially interesting element of an integrated photonic circuit
a two-segment straight LPC. Assume that, at a given fre-
quency, one segment can support only transversely polarized
SPPs while the other segment supports only longitudinally
polarized SPPs. At the junction of the two segments, an ex-
ternally manipulated �i.e., by magnetic field� coupling nano-
spheroid is placed. When the coupling nanospheroid makes
the angle of either 0 or � with respect to the chain axis, the
two segments are decoupled and do not allow direct trans-

mission of light pulses. However, if the coupling spheroid is
rotated by the angle of � /4 with respect to the axis, the
transversely polarized SPP propagating in the first segment is
coupled to the longitudinally polarized SPP in the second
segment and transmission along the chain becomes possible.
Detailed investigation of these possibilities will be the sub-
ject of future work.

In the case of transverse SPP polarization, the group and
phase velocities of SPPs can be antiparallel. We, however,
have found that the negative group velocity per se �defined
here by the condition vgvp�0� does not necessarily imply
superluminal propagation or a negative time delay as was
suggested previously.13,29 For example, the wave packet
shown in Fig. 8�a� propagates slower than ch even though it
is composed of waves whose frequencies are in the negative
dispersion region. It is important to realize that the effects
theoretically described in these two references, as well as the
corresponding experimental observations,14,15 involve propa-
gation of an optical pulse from a medium with normal dis-
persion to a medium with negative dispersion and the pres-
ence of the interface is essential. In this paper, we are
looking at a somewhat different physical situation when the
optical pulse is injected into a waveguide by a predetermined
external source, which is located in the near field of the
waveguide. We then observe that the pulse propagates away
from the source with the velocity �vg�, irrespectively of the
sign of the product vgvp. Thus the superluminal propagation
is obtained when �vg��ch but not necessarily when vgvp

�0.
Antiparallel phase and group velocities that we have ob-

served in the case of transverse SPP polarization deserve a
separate discussion. We believe that this phenomenon cannot
be interpreted as “negative refraction.” The reason is that the
LPCs considered in this paper are essentially discrete objects
and cannot be described by effective medium parameters.
The elementary excitations that propagate in LPCs are Bloch
waves rather than sinusoidal waves, and this fact should not
be disregarded. The region of negative dispersion shown in
Fig. 2�a� starts at qh�0.2��0.6. In general, the chain can
be viewed as continuous only when qh�1. The above con-
dition is not satisfied in the region of negative dispersion. It
is, however, not clear a priori, how strong this inequality
should be for the effective medium approximation to be
valid. In the specific case of LPCs, one can consider the
following argument: We expect the effective medium param-
eters such as the permittivity ���� or the refraction index
n��� to be single-valued functions of their argument. How-
ever, for every point on the negative slope section of the
dispersion curves shown in Fig. 2�a�, there is another point
on the same curve with the same frequency but a smaller
value of q. This second point is located on the linear small-q
section of the dispersion curve. Although this small-q section
is difficult to find numerically �and, as a result, is often over-
looked�, it exists. It is therefore logical to assume that, if a
chain be assigned some effective medium parameter for a
given frequency �, this parameter must be computed using
the point on the small-q section of the dispersion curve. The
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latter exhibits positive �and linear� dispersion. In the above
argument, we have disregarded the possibility of introducing
nonlocal effective medium parameters, which are character-

istic, for example, of chiral media and can result in negative
dispersion.30 However, the physical object that we consider
in this paper is essentially nonchiral.
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