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I have recalculated the extinction spectra of aggregates of two silver nanospheres shown in Figs. 2 and 3 of
the paper by J. J. Xiao, J. P. Huang, and K. W. Yu �Phys. Rev. B 71, 045404 �2005��. I have used the
approximate method of images according to the formulas published in that reference and an exact numerical
technique. I have found that the three sets of data �those I have obtained by the method of images, the
numerical results, and the results published in the reference in question� do not coincide. In this Comment, I
discuss the reasons for these discrepancies and the general applicability of the method of images to the
quasistatic electromagnetic problem of two interacting nanospheres.
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The method of images �MOI� is a powerful tool for solv-
ing electrostatic problems.1 In particular, it has been used to
calculate the electrostatic force between two charged
spheres.2 It was shown that the force can be well approxi-
mated by the Coulomb formula when the spheres are far
apart. However, as the spheres approach each other, they
cannot be effectively replaced by point charges and the Cou-
lomb formula overestimates the actual force. The MOI was
recently extended beyond the electrostatics.3–7 However, this
generalization was the subject of some controversy.8,9 In par-
ticular, I have argued that the MOI, as used in the above
references, is not a physically justifiable approximation and,
therefore, cannot be used for calculating electromagnetic re-
sponses of interacting spheres at finite frequencies.8 I have
further argued that the formulas derived in Refs. 3–7 do not
provide accurate results even within electrostatics, when the
MOI is, in principle, applicable. The authors of Ref. 9 argued
that the MOI is an accurate approximation at sufficiently low
frequencies, e.g., for f �1 GHz. However, in Ref. 7, which is
the subject of this Comment, the MOI is used for a dimer
of silver nanospheres in the spectral range from
250 to 1500 nm, i.e., at much larger electromagnetic fre-
quencies. I have recalculated the data shown in Figs. 2 and 3
of Ref. 7 using the MOI as it is defined in Refs. 3–7. I have
also calculated the relevant quantities using the exact method
�e.g., see Ref. 10�. I have found that the three sets of data
�i.e., the data shown in Figs. 2 and 3 of Ref. 7, the data I
have obtained according to the MOI using the same formulas
as in Ref. 7, and the exact results� do not coincide. The
deviations are significant. This and other points relevant to
the applicability of the MOI are discussed in this Comment.

First, we specify the dielectric function of silver �, used in
the calculations. This is given in Eq. �10� of Ref. 7 as a
function of frequency �. Since the electromagnetic fre-
quency is expressed in the units of energy in Figs. 2 and 3 of
Ref. 7, we rewrite equivalently this equation as ��E�=�h

+Ep
2 /E�E+ i��, where �h=5.45 is the bounded electron con-

tribution to the dielectric function �assumed to be constant
over the spectral region of interest�, E=��, Ep=9.68 eV, �
=0.00181�Ep�1+2� /d�, �=52 nm is the electron free path,
and d is the sphere diameter. This expression, with the nu-
merical values of parameters as given, provides a good ap-
proximation for the dielectric function of silver. The function
��E� is plotted in Fig. 1 for different values of the sphere

diameter d. An analogous graph is also shown in Fig. 1 of
Ref. 7 for d=10 nm. While the real parts of the dielectric
function are qualitatively similar in both figures, the imagi-
nary parts �for d=10 nm� are very different. By comparison
with other curves in Fig. 1, I infer that the dashed curve
shown in Fig. 1 of Ref. 7 corresponds to the case d→�
rather than to d=10 nm, as claimed.

The mathematical formalism of MOI �Refs. 3–7� is based
on the Bergman-Milton spectral representation.11 Namely,
the polarizability of each sphere in a two-sphere aggregate is
written as

	 =
�d/2�3

3 �
n=1

�
Fn

�L,T�

s + sn
�L,T� , �1�

where Fn
�L,T� is the oscillator strength of the nth polarization

mode, sn
�L,T� are the generalized depolarization factors, s

=�m / ��−�m� is the spectral parameter of the theory, with �m

being the dielectric function of the transparent matrix in
which the spheres are embedded, the upper index L corre-
sponds to polarization of the external field parallel to the axis
of symmetry of two spheres, and the index T corresponds to
orthogonal polarization. We note that the factors Fn

�L,T� of Eq.
�1� differ from those of Refs. 3–7 by the overall factor of −3
and the spectral parameter s by the factor of −1. In particular,
oscillator strengths that appear in Eq. �1� satisfy the sum rule
�n
0Fn

�L,T�=1. This corresponds to the more conventional no-

FIG. 1. Size-dependent dielectric function for different values of
the sphere radius d in the spectral range of interest.
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tations adopted, for example, in Refs. 12–14. With the ac-
count of these two differences, Eq. �1� is completely equiva-
lent to Eq. �5� of Ref. 7.

The spectral expansion �1� is quite general and is not the
subject of a controversy. The values of Fn

�L,T� and sn
�L,T� can

be, in principle, found numerically. The potential advantage
of the theoretical development of Refs. 3–7 is that it provides
analytical expressions for these coefficients. These expres-
sions are given in Eq. �7� of Ref. 7 �up to the numerical
factor discussed above�, or, in a form that allows direct sub-
stitution into Eq. �1�, in Ref. 8. However, I have previously
argued that �i� the values of these coefficients cannot be, in
principle, found from MOI, even approximately, and �ii� the
expressions suggested in Refs. 3–7 for these coefficients are
inconsistent with the electrostatic limit8 �and, thus, are inap-
plicable even in the spectral range f �1 GHz�. Therefore,
MOI does not provide a physically meaningful approxima-
tion. This is illustrated in Figs. 2 and 3 below.

In what follows, we consider only the results for the po-
larization of the external field being parallel to the axis of
symmetry of two spheres �and omit the upper index “�L�”�,
since the multipole interaction is strongest in this case. The
surface-to-surface intersphere separation is denoted by �
��=0 for touching spheres�. I have used the dielectric func-
tion defined above to calculate the extinction cross section of
a bisphere aggregate for the same sets of parameters as in

Figs. 2 and 3 of Ref. 7. Namely, the dielectric constant of the
matrix was �m= �1.61�2, the sphere diameters were chosen to
be d=5 nm �Fig. 2� and d=10 nm �Fig. 3�, and the ratio � /d
was 0.1 and 0.3 �Fig. 2� and 0.05, 0.15, 0.25, and 0.35 �Fig.

FIG. 2. Extinction spectra for a two-sphere aggregate in a trans-
parent matrix with �m=1.61 �Ref. 2� and d=5 nm. Polarization of
the external field is parallel to the axis of symmetry. The exact
results are compared to MOI and to the spectra for isolated �nonin-
teracting� spheres.

FIG. 3. Same as in Fig. 2, but for d=10 nm and a different
selection of the ratio � /d.
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3�. The extinction in Ref. 7 was plotted in arbitrary units and
not defined precisely. Therefore, I plot the quantity
�E /3�Im�n
0Fn / �s+sn�, where E is expressed in electron
volts. This quantity differs from the actual extinction cross
section only by an energy-independent overall factor, and I
have found that it has approximately the same numerical
values as the data shown in Figs. 2 and 3 of Ref. 7.

We first discuss Fig. 2, which is analogous to Fig. 2 of
Ref. 7, except that data for orthogonal polarization are not
shown. The exact spectra were calculated by the method of
Ref. 10 with the maximum multipole order L=400 and con-
vergence was verified by doubling this number. The MOI
calculations were carried out by truncating summation in Eq.
�1� at n=400, which is much more than is needed for con-
vergence. First, it should be noted that the shape of the
curves that I have obtained by the MOI are markedly differ-
ent from those shown in Fig. 2 of Ref. 7. In particular, the
second, low-energy peak in the extinction spectrum for
� /d=0.1 is significantly less pronounced in Ref. 7 than in
my data. A noticeable deviation is also visible in the case
� /d=0.3. A possible cause of this discrepancy is discussed
below. More importantly, the MOI curves in both cases differ
from the exact result. The difference is very apparent at the
smaller separation �� /d=0.1� and still visible at the rela-
tively large separation � /d=0.3.

The spectra in Fig. 2 are characterized by very strong
relaxation because the ratio 2� /d is in this case of the order
of 20. Thus, the finite-size contribution to the relaxation con-
stant is approximately 20 times larger than the respective
constant in bulk. We then consider the case d=10 nm when
the relaxation is not as strong. The results are shown in Fig.
3, which corresponds to Fig. 3 of Ref. 7 with the exception
that the results for orthogonal polarization are not shown.
Again, there is a clearly visible difference between the MOI
results obtained here and in Ref. 7. In all cases, the MOI
spectra are very different from the exact spectra. This is es-
pecially apparent at the relatively small separation � /d
=0.05 when the MOI predicts a spectral peak at E�1.5 eV,
which is not present in the exact data. Even for the relatively
large separation � /d=0.35, the MOI produces a two-peak
structure, while the exact spectrum has only one peak. �Note
that in Fig. 3�d� of Ref. 7, the respective curve has also only
one peak, but its maximum is about 10% smaller than the
maximum of the spectrum in the noninteracting case. In the
exact result, the maximum is approximately equal to that for
the noninteracting case.�

The conclusion that can be drawn so far is that the MOI is
inadequate for the spectral range and set of parameters used
in Figs. 2 and 3 of Ref. 7. The inaccuracy of the MOI is
especially evident at smaller intersphere separations and for
larger sphere diameters.

We now discuss the possible cause of the discrepancy of
the MOI calculations presented here and in Ref. 7. In Fig. 4
we plot the MOI curve for � /d=0.35 and different values of
d. The two-peak spectrum obtained at d=10 nm is the same
as the one shown in Fig. 3�d�, while the single-peak spec-
trum obtained at d=5 nm closely resembles the curve shown
in Fig. 3�d� of Ref. 7. Thus, the possible cause of the dis-
crepancy is that in Ref. 7 the actual value of the sphere
diameter used in calculations was twice smaller than what is

shown in the figure captions. That is, calculations in Fig. 2 of
Ref. 7 were actually performed for d=2.5 nm and in Fig. 3
of Ref. 7 for d=5 nm. Under these circumstances, the relax-
ation due to the finite-size effects is extremely strong and the
spectral parameter s has a large imaginary part, which effec-
tively weakens the multipole interaction of the spheres.

The role of relaxation can be elucidated by considering
the case when the complex spectral variable s is sufficiently
separated in the complex plane from all �purely real� num-
bers sn. Then one can replace the denominator s+sn in Eq.
�1� by s. �In the mean-field approximation, the denominators
are replaced by s+Q, where Q is the appropriate average of
the interaction operator.15� The result is �taking into account
the sum rule for Fn’s� the polarizability of an isolated �non-
interacting� sphere. We can further expand the result in pow-
ers of the small parameter sn /s and thus obtain corrections to
the noninteracting result. Unlike the former, these corrections
depend on the particular choice of Fn and sn. While the cor-
rections are still small, the noninteracting result is modified
only modestly and the resultant spectra may not display ob-
vious anomalies and seem to be “qualitatively correct.” An
important point is that even if the corrections are small, they
are not necessarily physically meaningful since there is an
infinite number of ways to introduce arbitrary but small cor-
rections. Still, while the corrections are relatively small, the
exact and the MOI spectra may seem to coincide, at least
qualitatively. However, any coincidences between the MOI
and the exact spectra, such as the ones shown in Ref. 9, are
due to weak electromagnetic interaction of nanospheres in
which case the MOI spectra do not differ much from the
spectra of noninteracting nanospheres.

One way in which the complex spectral variable s can be
removed far from the interval on the real axis, which con-
tains the numbers sn, is by introducing strong relaxation. In
particular, this can be achieved by making the diameter d in
the formula �=0.00181�Ep�1+2� /d� for the Drude relax-
ation constant to be arbitrarily small. Then s acquires a large
imaginary part. This was the case in Ref. 7 where the elec-
tromagnetic interaction of nanospheres was suppressed by
relaxation due to the finite-size effects. In addition, the diam-
eter of nanospheres used in calculations of Ref. 7 appears to
be one half of the value that is claimed in the figure captions.

FIG. 4. The MOI result for the extinction spectrum of two
spheres of different diameters d and the ratio � /d=0.35. Polariza-
tion of the external field is parallel to the axis of symmetry.
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This resulted in relatively modest spectral changes �com-
pared to the spectra of noninteracting spheres�, which appear
to be realistic. However, comparison with numerical results
clearly demonstrates that even when the relaxation strength

is overestimated, the MOI results are still inaccurate, and that
this inaccuracy becomes very substantial for actual values of
the relaxation constant �i.e., for � corresponding to the val-
ues of d shown in the figure captions�.
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