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Nonlinear optical phenomena on rough surfaces of metal thin films
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Nonlinear optical phenomena on rough self-affine metal surfaces are theoretically studied. Placing nonlin-
early polarizable molecules on such surfaces results in strong enhancement of optical nonlinearities. A quasi-
static approximation is used to calculate local-enhancement factors for the second and third harmonic genera-
tion, degenerate four-wave mixing, and nonlinear Kerr effect. The calculations show that the average
enhancement factors on a self-affine surface can be as large as 107 and 1015 for optical nonlinearities of the
second and third order, respectively, with the maximum average enhancement in the infrared spectral range.
Strong spatial inhomogeneity of local-enhancement distribution is demonstrated for the second and third
harmonic generation. The local enhancement can exceed the average by several orders of magnitude, reaching
extremely high values. Sharp peaks in local-field intensities at fundamental and generated frequencies are
localized in spatially separated nanometer-sized areas of the film.@S0163-1829~98!01124-2#
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I. INTRODUCTION

Electromagnetic properties of inhomogeneous me
nanocomposites, such as rough thin films and colloidal
gregates, have been intensively studied in the past
decades.1 As many studies indicate,1–4 nanocomposites often
possess geometrical properties of fractal objects~see, for ex-
ample, Ref. 2!. Physical properties of fractal composites a
substantially different from those of conventional order
and disordered media. Recent studies suggest that in m
cases rough metal films~e.g., films obtained by atomic depo
sition onto a low-temperature substrate! have the properties
of self-affine fractal structures.3,4

Although self-affine structures differ from self-simila
fractal objects~to reveal the scale invariance they requ
two different scaling factors in the surface plane and in
normal direction!, optical properties of self-affine thin film
are, in many respects, similar to those of fractal aggrega5

For example, both fractal aggregates and self-affine fi
possess a variety of dipolar eigenmodes distributed ov
wide spectral range.5–7 In contrast, for the case of conven
tional ~nonfractal! random ensembles of monomers, such
a gas of particles or randomly close-packed spheres, the
sorption spectra are peaked near a relatively narrow r
nance of an individual particle. In fractals, a variety of dip
lar eigenmodes can be excited by a homogeneous ele
field, whereas only one dipolar eigenmode can be excite
a small dielectric sphere.8 These striking differences are ex
plained by localization of optical modes in various rando
spatially separated, parts of a fractal object.6,7

In random but homogeneous media, dipolar modes
typically, delocalized over large spatial areas. All monom
absorb light energy with approximately equal rate in the
gions whose linear dimensions significantly exceed
incident-field wavelength. This is, however, not the case
fractal nanocomposites and self-affine films. Optical exc
tions in fractal objects tend to be localized.6,7 Due to this
570163-1829/98/57~23!/14901~13!/$15.00
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localization, and because of a large number of different re
nance frequencies corresponding to various local geomet
structures, the fractal optical modes cover a large spec
interval.

The field distributions are extremely inhomogeneous
the rough surfaces of thin films; there are ‘‘cold’’ regions
small local fields and ‘‘hot’’ areas of high local fields. Stron
enhancements of a number of optical phenomena in ro
metal films6,9 are associated with much higher values of loc
fields in the hot spots, where the optical modes
localized.6

The approach employed in this paper is based on the
crete dipole approximation~DDA!.10,11 By using the DDA,
linear and nonlinear optical properties of fractal aggrega
of particles5–7 and linear optical properties of self-affin
films5,12,13have been previously studied.

In the present paper, we investigate nonlinear optical
fects in self-affine films. For simplicity, we assume that t
‘‘seed’’ nonlinear susceptibility is due to molecules adsorb
on the film surface rather than due to a nonlinearity of
film itself ~most of the obtained results, however, are app
cable in the latter case as well!. We calculate the averag
enhancement factors for a number of optical phenomen
self-affine films.

It is important to note that the values of generated lo
signals in the ‘‘hot’’ spots can be by many orders of mag
tude larger than the average~over the whole surface! signal.
This opens a fascinating possibility of nonlinear optics a
spectroscopy of single molecules located in the hot spots
rough surface.~A similar pattern for the field distribution
occurs in random metal-dielectric films near th
percolation.14! To demonstrate strongly inhomogeneo
character of fields on a rough surface, we calculate the s
tial distributions for the local-field intensities at the fund
mental frequency and for the generated nonlinear sign
Whereas the average enhancement can be probed by m
of conventional far-zone optics, to study the local distrib
14 901 © 1998 The American Physical Society
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14 902 57POLIAKOV, MARKEL, SHALAEV, AND BOTET
tions of the fields at the fundamental and the generated
quencies one can use the near-field scanning op
microscopy15 that allows sub-wavelength resolution.

II. GENERAL APPROACH AND REVIEW OF THE
DISCRETE DIPOLE APPROXIMATION

The discrete dipole approximation was originally su
gested by Purcell and Pennypacker10 and developed in late
papers11,16–18to calculate optical responses from an object
an arbitrary shape. It is based on replacing an original die
tric medium by an array of pointlike elementary dipoles. T
DDA has been also applied to fractal clusters built from
large number of small interacting monomers.6,7,19,20 Below
we briefly recapitulate the DDA and the related metho
based on solving the coupled-dipole equations.5–7

Following the main idea of the DDA, we treat a se
affine film as a collection ofN identical polarizable particles
~monomers! possessing a linear scalar polarizabilitya.
When irradiated by a plane monochromatic incident wave
the form

Einc~r ,t !5E0exp~ ik•r2 ivt !, ~1!

the monomers interact with the incident field and with ea
other through induced-dipole moments. The local elec
field Ei at the monomer’s positionr i is given by the sum of
the incident wave and all the scattered~secondary! waves:
Ei5Einc(r i ,t)1Esc(r i ,t). The dipole momentdi at the i th
site is determined as

di5aEi . ~2!

The fieldEsc(r i), scattered from all other dipoles, gene
ally, contains the near-, intermediate-, and far-zone terms
this paper, we restrict our consideration to the quasi-st
limit, i.e., the characteristic system sizeL is assumed to be
much smaller than the wavelengthl52pc/v. In this ap-
proximation, we leave only the near-field term in the expr
sion for Esc(r i) and the factor exp(ik•r i) is always close to
unity. In addition, the time dependence, exp(2ivt), is the
same for all time-varying fields, so that the whole expon
tial factor can be omitted. After that, the coupled-dipo
equations~CDE! for the induced dipoles acquire the follow
ing form:6,7

di ,a5aS E0,a1(
j Þ i

Wi j ,abdj ,bD , ~3!

Wi j ,ab5~3r i j ,ar i j ,b2dabr i j
2 !/r i j

5 , ~4!

whereWi j ,ab is the quasistatic interaction operator betwe
two dipoles,r i is the radius vector of thei th monomer, and
r i j 5r i2r j . The Greek indices denote Cartesian compone
of vectors and should not be confused with the polarizabil
a. Hereafter, summation over repeated Greek indices is
plied, except if stated otherwise.

We model a self-affine film by point dipoles placed a
cording to an algorithm described below in sites of a sim
cubic lattice with a perioda0. The occupied sites correspon
to the spatial regions filled by the film, while empty sit
correspond to the structural voids. The linear polarizabi
of an elementary dipole~monomer! a is given by the
e-
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Lorenz-Lorentz formula having the same form as the po
izability of a dielectric sphere with radiusRm5(3/4p)1/3a0
~see, for example, Ref. 21!:

a5Rm
3 @~e21!/~e12!#, ~5!

where e5e81 i e9 is the bulk dielectric permittivity of the
film material. The choice of the sphere radiusRm provides
equality of the cubic-lattice elementary-cell volume (a0

3) and
the volume of an imaginary sphere~monomer! that repre-
sents a pointlike dipole (4pRm

3 /3).10,11,17Consequently, for
large films consisting of many elementary dipoles, the v
ume of the film is equal to the total volume of the imagina
spheres. Sincea0,2Rm , the neighboring spheres interse
geometrically. The model of the effective intersectin
spheres allows one to take approximately into account
effects of the multipolar interaction within the pure-dipo
approximation.6

Since Wi j ,ab is independent of the frequencyv in the
quasistatic approximation, the spectral dependence of s
tions to Eq.~3! is manifested only througha(v). For con-
venience, we introduce the variableZ(v)[1/a(v)
52@X(v)1 id(v)#. Using Eq.~5!, we obtain

X[2Re@a21#52Rm
23@113~e821!/ue21u2#, ~6!

d[2Im@a21#53Rm
23e9/ue21u2. ~7!

The variableX indicates the proximity ofv to an indi-
vidual particle resonance and plays the role of a freque
parameter;d characterizes dielectric losses. The resona
quality factor is proportional tod21. One can findX(l) and
d(l) for a specific material using theoretical or experimen
data for e(l) and formulas~6! and ~7!. In Figs. 1~a! and
1~b!, we plot X andd as functions of the wavelengthl for
silver particles22 (a051 units are used!. As seen,X changes
significantly from 400 nm to 800 nm and then, for long
wavelengths, remains almost constant,X'2a0

3/Rm
3

524p/3. The relaxation constantd is small in the visible
spectral range and decreases toward the infrared.

Now we write Eq.~3! in a matrix form. Following Refs. 6
and 7, we introduce a 3N-dimensional vector spaceR3N and
an orthonormal basisu ia&. The 3N-dimensional vector of
dipole moments is denoted byud&, and the incident field is
denoted by uEinc&. The Cartesian components of thre
dimensional vectorsdi and Einc are given by^ iaud&5di ,a
and ^ iauEinc&5E0,a . The last equality follows from the as
sumption that the incident field is uniform throughout t
film. The matrix elements of the interaction operator are
fined by^ iauŴu j b&5Wi j ,ab . Then Eq.~3! can be written as

@Z~v!2Ŵ#ud&5uEinc&. ~8!

The interaction operatorŴ in Eq. ~8! is real and symmetri-
cal, as it can be easily seen from the expression~4! for its
matrix elements.

By diagonalizing the interaction matrixŴ with Ŵun&
5wnun& and expanding the 3N-dimensional dipole vectors
in terms of the eigenvectorsun& ~as ud&5(nCnun&), we ob-
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57 14 903NONLINEAR OPTICAL PHENOMENA ON ROUGH . . .
tain a relation between the local fields and the amplitudes
linear dipoles induced by the incident wave~1!:6,7

Ei ,a5a21di ,a5Z~v!a i ,abE0,b , ~9!

where we introduced the polarizability tensor of thei th di-
pole, â i(v), with its matrix elementsa i ,ab given by

a i ,ab[a i ,ab~v!5(
j ,n

^ iaun&^nu j b&
Z~v!2wn

. ~10!

We note that the only source of dependence on mate
properties in solution~10! is Z(v)51/a(v); the eigenvec-
tors and eigenvalues of the operatorŴ depend only on the
film’s geometry. For any given dielectric functione(l), one
can calculate the dipole moment components by simple su
mation according to Eq.~9!, provided the eigenvectors an
the eigenvalues are known:6,7

FIG. 1. Spectral dependence of the frequency parameterX and
loss parameterd for silver.
of

al

-

di ,a5(
n

^ iaun&^nuEinc&
Z~v!2wn

5(
n, j

^ iaun&^nu j b&
Z~v!2wn

E0,b .

~11!

As mentioned in Sec. I, strong spatial fluctuations of t
local fields lead to huge enhancements for a number of
tical effects in nanocomposites.5,6,12,13For optical processes
considered below, the enhancement of local fields associ
with the dipole-dipole interactions in a film is characteriz
by the interaction operatorŴ in Eq. ~4!. The induced non-
linear dipoles can have different relative phases. Because
are interested in the average generated nonlinear signa
sum up the amplitudes of the generated signal over all
points in a film. The average enhancement of the gener
signal for coherent nonlinear optical processes can be c
acterized by the following factor:

G5
u^DNL~vg!&u2

uD0
NL~vg!u2 , ~12!

where^DNL& is the average surface-enhanced dipole mom
of the nonlinear molecules when they are adsorbed on a
surface, and̂ D0

NL& is the dipole moment of the same mo
ecules in vacuum.

Note that a definition of the enhancement is arbitrary
some extent. In some cases it is more convenient to de
the enhancement in terms of work done by a linearly po
ized probe field,E0(vg), at the generated frequencyvg on a
self-affine film and in vacuum,DNL

•E0(vg) and D0
NL

•E0(vg), respectively, i.e., as

G5
u^DNL~vg!•E0~vg!&u2

u^D0
NL~vg!•E0~vg!&u2 . ~13!

The probelinear field E0(vg) should not be confused with
the generated fieldEi(vg); the former produces the loca
field at vg through the linear relation~9!. Note that the en-
hancement in Eq.~13! does not depend on the magnitude
the probe fieldE0(vg). Formula~13! is convenient becaus
the enhancement factors can be expressed in terms o
local fields only.

III. PROPERTIES OF SELF-AFFINE STRUCTURES

A. General properties of self-affine films

Surfaces formed by condensing atomic beams onto a l
temperature substrate are characterized by microscopic
face roughness3 and belong to the Kardar-Parisi-Zhang un
versality class.23 Rough-surface profiles exhibit th
properties of self-affine fractal structures,3,4 which reveal
their scale-invariance properties when different scaling f
tors are applied in the plane of the film and in the norm
growth directionz. Contrary to the case of ‘‘usual’’ rough
ness, there is no correlation length for self-affine surfac
which implies that inhomogeneities of all scales are pres
~within a certain size interval! according to a power-law dis
tribution. A self-affine surface contains roughness feature
very small~asymptotically zero! radii of curvature, i.e., the
profile’s derivatives can be very large. However, this kind
divergence is only formal, because the scale invarianc
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14 904 57POLIAKOV, MARKEL, SHALAEV, AND BOTET
valid in the intermediate asymptote region, i.e., on the sc
between the size of the smallest roughness features an
size of a sample.

B. Numerical models for rough films

To model a self-affine rough film, we use the restrict
solid-on-solid~RSS! model.24,25 In this model, we add a par
ticle in a growing sample only if the newly created interfa
does not have steps higher than the lattice perioda0. The
surface structure of the generated film does not have o
hangs or steps higher than one lattice unit, and a true sca
behavior is clearly pronounced, even for relatively small fi
sizes. Initially, we generated 12 different random films w
a large (;106) number of sites that allowed us to achie
the scaling condition for the height distribution

^@h~r1R!2h~r !#2&'R2DH, ~14!

whereR is the vector in the plane of growth,x-y plane, and
the scaling exponentDH is related to the fractal dimension
D52.6, byDH532D. The expression in the left-hand sid
of formula ~14! is known as the height-height correlatio
function. In Fig. 2, we show a typical self-affine film gene
ated in the RSS model, after removing the regular part at
bottom ~see below!.

The analysis demonstrated in Sec. II requires the kno
edge of all the eigenstates and eigenvalues of the ma
Wi j ,ab . We stored all the eigenvalues and eigenfunctions
order not to repeat time-consuming calculations of the lo
polarizabilities in Eq.~10! for each wavelength. To diagona
ize Wi j ,ab , we used the Householder algorithm.

For calculating nonlinear optical responses, we restric
our model to an average number ofN;103 monomers per
film sample~cluster!. To make the reduction of the numbe
of particles, we cut a ‘‘parent’’ cluster. The ‘‘excess’’ mono
mers that represent a regular part at the bottom of the
were removed, so that the resultant sample had at least
hole. Note that such a procedure does not change the sc
properties~14! of the surface. As a result, the total number
monomers left was in the interval (^N&2sN ,^N&1sN),
wheresN is a constant.

Twelve nearly monodisperse samples with monomers
tributed on a 14314 surface lattice were used for most of o
numerical calculations. The lattice unit was chosen to
a0;5 nm and the inequalityL,l was fulfilled, i.e., the
quasistatic approximation was valid.

The actual characteristics of the ‘‘14314’’ ensemble of
12 films were as follows: total number of monomers,N

FIG. 2. Self-affine thin film obtained in the RSS model.
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58271, providing^N&5N/12'690 andsN5110, the aver-
age number of monomers occupying the surface,^NS&
5218 so that̂ NS&/^N&'1:3: None of the clusters was com
posed of more than five adjacent monomer layers.

IV. SECOND-ORDER NONLINEAR EFFECTS

In this section, we consider the second harmo
generation26,27 ~SHG! as a typical example of nonlinear op
tical phenomena of the second order. Because SHG is
tremely sensitive to the surface roughness conditions~which
made it a widely used technique for studying structural a
electronic properties of surfaces and interfaces27–29!, this
process is of fundamental importance for understanding
nonlinear interaction of light with self-affine films.

A. SHG from noncentrosymmetric molecules
on a self-affine surface

For SHG, the nonlinear polarizationP(2)(2v) is com-
monly introduced through the definition of the nonlinear su
ceptibility surface tensor of a third rankx̂ (2)(2v;v,v) as

P~2!~2v!5x̂~2!~2v;v,v!:E~v!:E~v!. ~15!

Extensive studies of different mechanisms of SHG
surfaces30,31and in bulk32,33have been carried out for jellium
and other models since they were first proposed by Rudn
and Stern.34 In this paper, we assume that contributions
x̂ (2) are associated with adsorbed molecules placed on
film’s surface. The nonlocal effects~related to the spatia
dispersion! and the effects of finite depth field penetratio
are left out of the analysis.

We adopt the following asymmetrical structure for th
nonlinear absorbed molecules. They are assumed to ha
‘‘preferred’’ direction n that coincides with the normal vec
tor to the (x,y) plane of the film, so that the film anisotrop
is reproduced by the adsorbed molecules.35

We construct the vectorP(2)(2v) from the obvious inde-
pendent combinations of the triplet (n,E,E) in Eq. ~15!:

P~2!~2v!5A~E•E!n1B~n•E!E, ~16!

whereA and B are two independent complex constants d
termined only by the internal structure of the molecules
sorbed on the surface~they are not related to the paramete
a andb originally introduced by Rudnick and Stern in Re
34 and frequently used in the literature on the SHG!.

Comparing the components of the polarization vec
given in Eq.~15! with the ones introduced in Eq.~16!, we
obtain the following relations for the nonzero components
x̂ (2):

xxxz
~2! 5xxzx

~2! 5xyzy
~2! 5xyyz

~2! 5B,

xzxx
~2! 5xzyy

~2! 5A, xzzz
~2!5A1B. ~17!

The amplitude of a nonlinear dipole located ati th site can
be written in a form similar to Eq.~16! as

di
NL5a~Ei•Ei !n1b~n•Ei !Ei , ~18!

wherea5Av,b5Bv,v54pRm
3 /3, andEi is the local field.
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First, we find the average nonlinear dipole moment for
nonlinear molecules on the plane withe'1 ~in vacuum!,
^D0

NL&. In this case, the induced dipoles are excited only
the uniform incident fieldE0 so thatEi5E0 . It follows from
Eq. ~18! that

^D0
NL&5a~E0•E0!n1b~n•E0!E0 . ~19!

Vector P(2)(2v) strongly depends on the incident polariz
tion ~see, for example, Refs. 5 and 12!. In this paper, we
assume that an incident wave~1! is linearly polarized, unless
noted otherwise. Then

u^D0
NL&u25$uau21@ ubu212 Re~ab* !#cos2~u!%uE0u4,

~20!

where the asterisk denotes complex conjugation, andu is the
angle between thez axis and the direction ofE0.

When the incident wave is polarized along thez axis ~that
hereafter we refer to asp polarization! or in the (x,y) plane
(s polarization!, expression~20! simplifies to

u^D0
NL&u25uE0u4ua1bu2, p polarization, ~21!

u^D0
NL&u25uE0u4uau2, s polarization. ~22!

Because the induced nonlinear dipoles on surface can
teract with each other via thelinear polarizabilitiesa(2v),
we can write an analog of the CDE in Eq.~3! for the non-
linear dipole amplitudes as

di
NL5vx̂~2!~2v;v,v!:Ei

2~v!1a~2v!(
j Þ i

Ŵi j dj
NL~2v!

~23!

and its matrix counterpart

udNL&5vux̂~2!:E2&1a~2v!ŴudNL&, ~24!

where

v^ iaux̂~2!:E2&5anaEibEib1bnbEiaEib . ~25!

In Eqs.~23! and~24!, we included the linear interaction o
the local nonlinear dipoles at the double frequency 2v; this
provides an additional contribution to the nonlinear SHG s
nal ~cf. Eq. 18!.

B. Interaction of linear dipoles in a cluster

First, we take into account only interactions of linear d
poles at the fundamental frequencyv and ignore the dipole
interactions at the generated frequency 2v. This is justified
when the frequency 2v is out of resonance with any of th
surface eigenmodes~at the same time, the fundamental fr
quencyv can be within the resonance band!. Then Eq.~23!
reduces to Eq.~18!. Using Eqs.~18! and ~2!, we obtain

u^DNL&u25uZ~v!u4$ua^d2&u212 Re@ab* ^d2&^dz
2&* #

1ub^dzd&u2%, ~26!

^d2&5~1/NS!(
i PS

~di•di !, ~27!
e

y

in-

-

^dz
2&5~1/NS!(

i PS
~di•n!2, ~28!

^ddz&5~1/NS!(
i PS

di~di•n!, ~29!

whered ~and related quantities! in Eqs. ~26!–~29! refer to
linear dipoles, andNS is the total number of surface mono
mers.

Since a self-affine film is, on average, isotropic in thex-y
plane, we adopt the following approximation~verified also
by our numerical simulations!: u^ddz&u'u^dz

2&u for the s and
p polarizations of the incident wave. Note that the sa
approximation was used in Ref. 36. Then Eq.~26! takes the
form

u^DNL&u25uZ~v!u4u~a1b!^dz
2&1a^dx

21dy
2&u2. ~30!

Using Eq.~2! and Z51/a, we rewrite Eq.~30! in terms of
the local fieldsEi :

u^DNL&u25u~a1b!^Ez
2&1a^Ex

21Ey
2&u2. ~31!

Now we substitute Eqs.~21!, ~22!, and~31! into Eq. ~12!
to obtain the enhancement factors for thep and s polariza-
tions:

GSHG5u^Ez
2&1G21^Ex

21Ey
2&u2/uE0u4, p polarization,

~32!

GSHG5uG^Ez
2&1^Ex

21Ey
2&u2/uE0u4, s polarization,

~33!

where the oblique coefficientG is defined with the use of Eq
~17! as

G[
xzzz

~2!

xzxx
~2! 5

xzzz
~2!

xzyy
~2! 511b/a. ~34!

C. Interaction of nonlinear dipoles at double frequency

The interactions of nonlinear dipoles at the generated
quency 2v become important, if this frequency is within th
surface mode band. In this case the local fields at both
fundamental and generated frequencies can excite the r
nant surface modes and thus get strongly enhanced. Acc
ingly, the resultant enhancement can become much la
than for the case without interaction of nonlinear dipoles.
order to take into account the coupling of nonlinear dipol
we must use Eq.~23!. A formal solution to a similar equation
for linear dipole moments~8! was given in Sec. II@see Eq.
~11!#. It can be easily generalized for the case of the coup
nonlinear dipoles~24!:

udNL&5vZ~2v!(
n

un&^nux̂~2!:E2&
Z~2v!2wn

, ~35!

where Z(2v)[a21(2v) and a(2v) is the scalar polariz-
ability of a monomer at the double frequency.

Using definition~25! of ux̂ (2):E2& together with Eqs.~35!
and~9!, we express the Cartesian components of the ave
nonlinear dipole moment̂DNL(2v)& as
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^Da
NL&5Z~2v!Z2~v!@~a1b!^azadz

2&1a^aza~dx
21dy

2!&

1b^axadxdz1ayadydz&#, ~36!

whereaab[aab(vg) is the local linear polarizability at the
generated frequencyvg . @For simplicity, we omit the argu-
ment 2v for aab(vg) in Eq. ~36!.# The linear polarizability
at the generated frequency is defined similarly to Eq.~10! as

a i ,ab~vg!5(
j ,n

^ iaun&^nu j b&
Z~vg!2wn

, i PS. ~37!

Herevg is the generated signal frequency for the nonlin
process under consideration. The summation overj , i.e.,
over all the monomers in Eq.~37!, is the consequence of th
coupling of nonlinear dipoles given by the second term
Eq. ~23!.

The average~over a film surface! SHG enhancement fac
tor can be obtained by substituting Eqs.~21!, ~22!, and~36!
into Eq. ~12!; with the use of Eq.~2! this gives

GSHG5
uZ~2v!u2

uE0u4 (
b

u^azbEz
2&1

1

G
^azb~Ex

21Ey
2!&

1S 12
1

G D ^axbExEz1aybEyEz&u2,

p polarization, ~38!

GSHG5
uZ~2v!u2

uE0u4 (
b

uG^azbEz
2&1^azb~Ex

21Ey
2!&

1~G21!^axbExEz1aybEyEz&u2,

s polarization, ~39!

where aab5aab(2v) is given by Eq.~37! and Ea repre-
sents the local-field components.

Note that the above expressions contain the nonlinear
larizability tensor â i(2v) and cannot be written only in
terms of the local fieldsEi . Therefore, if interactions of the
generated nonlinear dipoles at frequencyvg are important, it
is impossible to express the enhancement factor in term
the local and incident fields only.@Compare with Eqs.~32!
and ~33!.#

If we use definition~13! to express the enhancement
terms of work done by a probe field at the generated
quency, then for the case ofp polarization, for example, we
obtain the following expression

GSHG5
1

uE0
2E0~2v!u2 u^Ez~2v!Ez

2&1
1

G
^Ez~2v!~Ex

21Ey
2!&

1S 12
1

G D ^Ex~2v!ExEz1Ey~2v!EyEz&u2,

p polarization, ~40!

whereE is the local field at frequencyv, andE(2v) is the
local linear field at 2v, which is related to the probe fiel
E0(2v) as Ei ,a(2v)5Z(2v)a i ,ab(2v)E0,b(2v) with
a i ,ab(2v) defined in Eq.~37!. Although the enhancemen
does not depend on the magnitude ofE0(2v); it depends, in
r

o-

of

-

general, on the chosen polarization forE0(2v). Therefore,
the above formula can be used only as an approximatio
characterize enhancement in terms of the local fields.

Equations~38!–~40! can be simplified to Eq.~32! and
~33! when the coupling of nonlinear dipoles is not effecti
on a surface. As mentioned, it occurs when the genera
frequencyvg52v is far from any of the surface eigen
modes, so thatuZ(vg)u@wn ,;n. Then the polarizability ma-
trix ~37! becomes diagonal:a i ,ab(vg)'dab /Z(vg). By ap-
plying this to Eqs.~38! and ~39! @or, equivalently, setting
E(2v)5E0(2v) in Eq. ~40!#, and using the previously
adopted approximationu^dzda&u;0,a5x,y, we obtain Eqs.
~32! and ~33!.

In addition to the average enhancement factors, we ca
late spatial distributions of local enhancements on a film s
face,gSHG(r i)5udi

NLu2/ud0
NLu2, i PS in Sec. VI B. The non-

linear local dipoles on a metal self-affine surface,di
NL

[di
NL(2v), and in vacuum,d0

NL[d0
NL(2v), are given by Eq.

~35! and Eqs.~25! and ~19!, respectively.

V. THIRD-ORDER NONLINEAR EFFECTS

In this section, we assume that nonlinear optical susc
tibilities are associated with spherically symmetrical m
ecules adsorbed on a self-affine surface. This means
there is only one independent component for the fourth-r
susceptibility tensorxabgd

(3) that is responsible for the third
order nonlinear optical processes.

A. Third harmonic generation

The spherical symmetry of the adsorbed molecules
plies that the amplitudes of the nonlinear dipole mome
can be expressed as

di
NL~3v!5cEi~Ei•Ei !, ~41!

wherec is the only independent element of the third-ord
susceptibility tensor. In Eq.~41!, we neglected interaction
of the nonlinear dipoles at the frequency 3v. Using Eq.~41!
and replacingEi by E0 , we find the denominator in Eq.~12!:

u^D0
NL&u25ucu2uE0u6. ~42!

Interaction of nonlinear dipoles at the frequencyvg
53v occurs due to nonzero linear polarizabilitya(3v).
This interaction further amplifies amplitudes of the nonline
dipoles, whose values are given by Eqs.~24! and ~25! with
ux̂ (2):E2& replaced byux̂ (3):E3& and 2v by 3v, so that we
have

udNL&5vux̂~3!:E3&1a~3v!ŴudNL&, ~43!

where

v^ iaux̂~3!:E3&5cEiaEibEib . ~44!

To solve Eqs.~43! and~44!, we can use the formalism o
the previous section. Thea component of the nonlinear di
pole moment, averaged over the surface, is given by
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^Da
NL&5

cZ~3v!

NS
(
j PS

a j ,ba~3v!Ej bEj gEj g , ~45!

whereZ(3v)5a21(3v). The nonlinear polarizability ma
trix for the i th monomer is defined by Eq.~37!. It is inter-
esting to note that̂Da

NL& is, in general, complex, even ifc is
real, i.e., there is no nonlinear absorption in the system. T
property reflects the fact that the average nonlinear dip
moment̂ DNL& is affected by the surface eigenmodes hav
finite losses. Also,̂DNL& is elliptically polarized because th
complex matrix~10! transforms the linear polarization of th
incident field into an elliptical polarization of dipole mo
ments@see formula~9!#.

Substitution of Eqs.~42! and ~45! into Eq. ~12! gives the
following expression for the surface-enhanced THG in
case of linear polarization of the incident wave:

GTHG5
uZ~3v!u2

uE0u6 (
g

u^abg~3v!Eb~E•E!&u2. ~46!

If we use formula~13! for the enhancement factor, it ca
be expressed in terms of the local fields as

GTHG5
u^@E~3v!•E#~E•E!&u2

uE0
3E0~3v!u2 , ~47!

whereE andE(3v) are the local linear fields at frequencie
v and 3v, induced by the applied fieldE0 and the probe
field E0(3v), respectively.

If the generated 3v signal does not excite the surfac
eigenmodes, so thataab(3v)'dab /Z(3v), expression~46!
simplifies to

GTHG5
u^E~E•E!&u2

uE0u6
. ~48!

Analogously to SHG, we also calculate the spatial dis
butions for local enhancements for THG on a film surfa
gTHG(r i)5udi

NLu2/ud0
NLu2,i PS, where di

NL and d0
NL are the

local nonlinear dipoles at 3v on a metal self-affine surfac
and in a vacuum, respectively.

B. Degenerate four-wave mixing in self-affine films

A typical degenerate four-wave mixing~DFWM! experi-
ment involves two oppositely directed pump beams,Ef and
Eb , and a signalEs , usually directed at some small ang
with respect to the pump beams. All the waves have
same~or close! frequency and differ either in their propag
tion direction or in polarization~or both!.

In the process resulting in the optical phase conjugat
the generated waveEg has the same frequency as the pum
waves. This feature makes DFWM different from the seco
and third harmonic generation. In a standard DFWM p
cess, the generated wave propagates against the signal b
so that the phase matching condition,k f1kb1ks1kg50, is
fulfilled.

We consider the total applied field as a superposition
the pump and signal fields:

E05Ef1Eb1Es . ~49!
is
le
g

e

-
,

e

n,

d
-
am,

f

Since the optical nonlinearities are caused by spheric
isotropic molecules, the nonlinear polarization can be writ
as37

P~3!~v!5A~E•E* !E1B~E•E!E* /2, ~50!

where the coefficientsA and B are different from those in
Sec. IV. When the nonlinear response of the adsorbed m
ecules is due to nonresonant electronic response~the surface
modes, however, can be in resonance with the applied fie!,
A is equal toB.37 By adopting the conditionA5B, we write
the amplitude of an average nonlinear dipole, induced o
by the applied field, as

u^D0
NL&u5 9

4 uau2uE0u6, ~51!

where, as above,a5Av, and v54pRm
3 /3. In Eq. ~51!, we

assumed thatE0 is linearly polarized. For the case of circula
polarization, the coefficient in front ofuau2 becomes unity in
formula ~51!. For DFWM, the CDE have the form

udNL&5vux̂~3!:E3&1a~v!ŴudNL&, ~52!

v^ iaux̂~3!:E3&5a~EiaEibEib* 1 1
2 Eia* EibEib!. ~53!

The exact solution to Eq.~52! is determined by the following
formula, valid for any polarization,

u^DNL&u25uau2uZ~v!u2

3(
g

u^abg~v!@EbuEu21 1
2 Eb* ~E•E!#&u2.

~54!

The final expression for the enhancement factor is f
mally the same as in Eq.~12! with u^D0

NL&u2 given by Eq.
~51! and u^DNL&u2 given by Eq.~54!.

Using formula~13!, we obtain the following formula for
the enhancement

GDFWM5
z^uEu2~E•E!& z2

uE0u8 . ~55!

C. Kerr nonlinearity

In the optical Kerr effect, the nonlinear correction to th
refractive index is proportional to the intensity of local ele
tromagnetic field in a medium. For the complex refracti
index,n5n81 in9, we write

n85n081n28I 5n081
n08c

2p
n28uEu2, ~56!

aabs5n9
2v

c
5~n091n29I !

2v

c
. ~57!

Heren08 andn09(2v/c) are the linear refraction and absor
tion coefficients, whereasn28I andn29I (2v/c) are the nonlin-
ear corrections to the refractionn8 and absorptionaabs.

The Kerr-type nonlinear polarization is given by the fo
mula
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Pa
~3!~v!53xabgd

~3! EbEg* Ed . ~58!

The prefactor 3 represents the number of distinct perm
tions of the frequenciesv, v, and2v of the fields in Eq.
~58! ~see, for example, Ref. 37!. For an isotropic particle
there is only one independent component ofxabgd

(3) that we
denote simply asx (3). Then Eq.~58! simplifies to

P~3!~v!53x~3!uEu2E. ~59!

Note that this expression is similar to the first term in t
right-hand side of Eq.~50! for the DFWM process.

The complex refractive indexn is related to the suscept
bility of the mediumx by n25114px, wherex contains,
in general, linear and nonlinear terms. For the third-or
nonlinearities of the Kerr type, this formula takes the fo
n25114p(x (1)13x (3)uEu2).

By considering real and imaginary parts corresponding
the different powers of the electric field in the equality

n25~n81 in9!25114p~x~1!13x~3!uEu2!, ~60!

we obtain the following expressions for the nonlinear corr
tions to the refractive and absorption:

n285
12p2

n08c
Fn08Re~x~3!!1n09Im~x~3!!

~n08!21~n09!2 G ~61!

and

n295
12p2

n08c
Fn08Im~x~3!!1n09Re~x~3!!

~n08!21~n09!2 G . ~62!

If the linear absorption is weak (n08@n09) but the nonlin-
ear absorption is significant@ uRe(x (3))u;uIm(x (3))u#, for-
mulas~61! and~62! can be simplified to the following well-
known expressions:

n28'
12p2

~n08!2c
Re~x~3!!, ~63!

n29'
12p2

~n08!2c
Im~x~3!!. ~64!

Experimentally, the refractive index change is determin
for a sample with characteristic geometrical size much lar
than the wavelength. But the quasistatic approximation tre
the objects with dimension less thanl. However, we can
consider a medium built of many films with linear sizes le
thanl ~for example, a layered material!. Then the resultan
size of the medium can be larger than the wavelength so
the refractive index can be introduced in the usual way. T
‘‘seed’’ Kerr susceptibilityx (3) in such composite materia
can be strongly enhanced so that the effective nonlinear
ceptibility xe f f

(3) of the composite is

xe f f
~3!5px~3!GK , ~65!

wherep is the volume fraction filled by the films providin
the enhancement andGK is the enhancement factor of th
Kerr nonlinearity for an individual film.
a-
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Formulas~61!–~64! describe the nonlinear changes in t
complex refractive index with account of Eq.~65!. The spec-
tra for n28 andn29 can be obtained froml dependences ofGK

~studied below! andx (3).
Note that the enhancement factorGK in Eq. ~65! is, in

general, complex because of the resonant excitation of
surface eigenmodes having finite losses. If the seedx (3) is
complex as well, both the real and imaginary pa
of GK contribute to the nonlinear refraction and abso
tion: n85Re(x (3))Re(GK)2Im(x (3))Im(GK) and n9
5Re(x (3))Im(GK)1Im(x (3))Re(GK). If, however, x (3) is
real, thenn85x (3)Re(GK) andn95x (3)Im(GK).

First, we consider a single arbitrarily oriented film excite
by a polarized incident wave. When the scattered fields at
generated frequency are included, a nonlinear dipole mom
at thei th site is described by the equation

di
NL5cuEi u2Ei1a~v!(

j Þ i
Ŵi j dj

NL , ~66!

where the constantc is related tox (3) by c5vx (3).
Solving the CDE in Eq.~66! by the method used in Secs

IV and V A, we find the average nonlinear dipole mome
^DNL& with its componentŝDa

NL& given by

^Da
NL&5cuZ~v!u2Z2~v!^udu2dbaba~v!&, ~67!

wherea i ,ab is defined by Eq.~10!.
Vector ^DNL& is complex and the phases of its Cartesi

components are, typically, different. This means that^DNL&
is elliptically polarized. It is neither collinear with the inci
dent fieldE0 , nor with the average local field. This follow
from the fact that we cannot neglect the interaction of no
linear dipoles, since this interaction takes place at the fun
mental frequency. Vector̂DNL& is also different for different
light polarizations, and so is the enhancement factorGK .

If the nonlinear molecules are in vacuum~i.e., there are
no interactions between the dipoles!, then the average dipole
moment is collinear with the applied field,

^D0
NL&5cuE0u2E0. ~68!

Now we compare the values of^Db
NL& and the amplitude

of ^D0
NL& for the case whenb does not coincide with the

polarization directiona of the applied field. We introduce
the enhancement factors in the plane perpendicular to
direction of polarization,a:

GK,ab5
Z~v!^uEu2Egagb~v!&

uE0u2E0
, bÞa, ~69!

for a polarization ofE0 . For GK,ab , the subscripta indi-
cates the direction of the light polarization, whereas the s
scriptb gives the one of the Cartesian components of^DNL&
in Eq. ~69!. The origin of such tensor structure of the e
hancement is physically transparent. The system that we
sider is not homogeneous and isotropic, so that the struct
anisotropy results in excitation of nonlinear dipole mome
in the directions different from the light polarization dire
tion.
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We also introduce enhancement factors for the projec
of the nonlinear dipole on the polarization direction of t
incident light as

GK,aa5
^uEu2~E•E!&
uE0u2~E0•E0!

. ~70!

A similar expression was derived differently~by using the
microscopic approach and Maxwell equations! in Ref. 38.

Note that a simple relation between the enhancements
DFWM and the Kerr effect follows from Eqs.~55! and~70!:6

GDFWM5uGK,aau2. ~71!

Now we generalize our approach to the case when
films that compose the material are arbitrarily oriented
space; this is also equivalent to the case when the app
field has random polarization. Without any preferred dire
tion, all the enhancement factorsGK,aa are equiprobable, on
average. Thus, the value of the average enhancement f
is given by

^GK&5
1

3K (a GK,aaL . ~72!

VI. NUMERICAL CALCULATIONS

In this section we present results of numerical simulatio
for silver self-affine films. The enhancement coefficients
calculated based on formulas derived in Secs. IV and V.
experimental data22 for the dielectric permittivity of silver
are used to calculate the parameterZ(l) using Eqs.~6! and
~7!. The characteristic monomer’s sizeRm is set to be 5 nm,
which is a typical value for silver nanocomposites.

A. Optical nonlinearities in films of different sizes

Because the enhancement factors introduced in Secs
and V are defined by the collective linear and nonlinear
citations of films, one might think that these factors depe
on the average number of monomers~dipoles! in a film or, in
other words, on the average film size.

To address this question, we generated several diffe
ensembles~for details of the algorithm, see Sec. III B!. The
maximum linear size was 14314 lattice units. Taking
samples of bigger linear sizes would violate the quasist
approximation that we used to derive the enhancement
tors in previous sections.

We found that the enhancement coefficients did not sh
any systematic dependence on the linear size of the fi
~starting from 434 lattice units!, and were the same within
statistical errors for all the ensembles. This observation
lows us to conclude that in the quasistatic limit, the nonlin
properties of rough self-affine structures do not depend
the linear size of a system or the number of monomers. N
that the same property was observed earlier for linear op
responses of self-affine surfaces.5

B. Giant enhancements of optical nonlinearities

In Fig. 3, we show the averaged~over 12 different film
samples! enhancement factor for SHG from a self-affine s
face; the enhancement was calculated using formulas~38!
n
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and~39!, for p ands polarizations, respectively. We plot ou
results forG52 (a5b). Note that real values ofG indicate
absence of nonlinear absorption by molecules.39 We also ob-
tained a number of curves for different values ofb/a
P@1022,10# @see Eq.~34!#. We found that for different nu-
merical values ofG, the enhancement factorsG are similar
in terms of their magnitudes and spectral dependences~the
results are not shown!. This is in agreement with the fact tha
the spectral dependence of linear dipoles in Eq.~11! does not
correlate with the value ofG chosen to be independent of th
incident wavelength.

We see that the anticipated inequalityGi@G' holds,
since the linear dipoles and corresponding local fields in
~11! are, on average, larger for the incident field polarized
the plane of the film than in the normal direction; this
because a thin film can be roughly thought of as an ob
spheroid with a high aspect ratio. The largest average
hancement for SHG is;107.

We also note that contributions from the last terms in E
~38! and ~39!, which are proportional to strongly fluctuatin
~and changing their signs! productsExEz and EyEz , are
small and can be neglected with good accuracy. Also, in
short-wavelength part of the spectrum, when the interac
of the dipoles at 2v can be neglected~because the surfac
modes are not excited!, the diagonal elementazz(2v) in
Eqs. ~38! and ~39! dominates the off-diagonal ones, so th
the local dipoles at 2v are directed along the correspondin
local fields at 2v. In contrast, in the long-wavelength part o
the spectrum, when the oscillations at 2v lie within the sur-
face mode band, the largest dipoles at 2v are excited for the
light polarized in the plane of the film, and therefore, t
off-diagonal elementsazx(2v) andazy(2v) are larger than
azz(2v). These arguments allow one to simplify the gene
expressions~38! and ~39!, when they are used in the corre
sponding limiting cases.

In Fig. 4, we show the enhancement factor for TH
GTHG , calculated using formula~46!. The values ofGTHG

FIG. 3. The average enhancement factors for SHG from a s
affine silver surface, for the light polarized in the (x,y) plane of the
film (GSHG[Gi) and in the normalz direction (GSHG[G').
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are even larger than forGSHG, reaching;1011 values. The
THG involves higher power of electric fields, so that t
dominance of local fieldsEi overE0 leads to larger values o
enhancement factors.

In Figs. 5 and 6, we plot spatial distributions for loca

FIG. 4. The average enhancement factors for THG from a s
affine silver surface, for the light polarized in the (x,y) plane of the
film (GTHG[Gi) and in the normalz direction (GTHG[G').
field enhancements at the fundamental frequency,g
5u^E&/E0u2 and for the local enhancements of SHG a
THG, gSHG5udi

NL(2v)u2/ud0
NL(2v)u2 and gTHG

5udi
NL(3v)u2/ud0

NL(3v)u2. The interactions of the nonlinea
dipoles at the generated frequency is taken into accoun
both SHG and THG effects. The distributions of local e
hancements are calculated for two wavelengths, 1mm and 10
mm, for the light polarized in the plane of the film. As wa
discussed above, the largest average enhancements
achieved in the infrared region for thes-polarized incident
light.

In the counterplots of Figs. 5 and 6, the white spots c
respond to higher intensities whereas the dark areas repre
the low-intensity zones. We can see that spatial position
the ‘‘hot’’ and ‘‘cold’’ spots in the local enhancements at th
fundamental and generated frequencies are localized in s
spatially separated parts of the film. Since the fundame
and generated frequencies are different, the fundamental
generated waves excite different optical modes of the fi
surface and, therefore, produce different local-field distrib
tions. With the frequency alternation, the locations of t
‘‘hot’’ and ‘‘cold’’ change for all the fields at the fundamen
tal and generated frequencies. Thus different waves invol
in the nonlinear interactions in a self-affine thin film produ
nanometer-sized ‘‘hot’’ spots spatially separated for differe
waves. A similar effect was previously shown for Ram
scattering from self-affine films.12

The values of the local-field intensities in Figs. 5 and
grow with the wavelength. The highest local enhancem

f-
length is

FIG. 5. Spatial distributions of the local enhancements for the field at the fundamental wavelength,g, for SHG signal,gSHG, and for

THG signal,gTHG . The corresponding counter plots for the spatial distributions are also shown in all cases. The fundamental wave
l51 mm. The linear scales are used in all cases. The highest enhancement values in the figures are as follows:g553103, gSHG55
3108, andgTHG5231012.
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FIG. 6. Same as Fig. 5, but forl510 mm. The highest enhancement values are as follows:g533104, gSHG51013, and gTHG

5231019.
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factor in the spatial distributiong changes from 53103 at
l51 mm to 33104 at l510 mm. For the SHG and the THG
spatial distributions, the maximum increases from 53108 to
1013 and from 231012 to 231019, respectively. Such behav
ior correlates with the fact that the average enhancement
tor increases toward the infrared spectral region. We emp
size that the local enhancements can exceed the averag
by several orders of magnitude. For example, compariso
the maximum local enhancement with the average enha
ment forl51 mm shows that the maximum intensity pea
exceed the average intensity by approximately 2 orders
magnitude for SHG~cf. Figs. 3 and 5! and by 4 orders of
magnitude, for THG~cf. Figs. 4 and 5!. This occurs, in part,
due to the fact that the spatial separation between the
spots can be significantly larger than their characteri
sizes, and also due to destructive interference between
generated fields in different peaks.

The giant local enhancements of nonlinear processes~e.g.,
up to 1019 for THG at 10mm! open a fascinating possibility
of the fractal-surface-enhanced nonlinear optics and s
troscopy of single molecules. Also, if the near-field scann
optical microscopy is employed, nonlinear nano-optics a
nanospectroscopy~with nanometer spatial resolution! be-
come possible. In contrast, with the conventional far-zo
optics only the average enhancement of optical processes
typically be measured.

The huge average enhancement for DFWM on a s
affine film is illustrated in Fig. 7. The larger values of e
hancement for DFWM, compared to THG, are explained
the fact that the interaction of nonlinear dipoles is stron
when the generated frequency is equal to the fundame
one. Also, the role of destructive interference for the fie
c-
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generated in different points is much larger for high-ord
harmonic generation than for DFWM.

In Figs. 8~a! and 8~b!, we show the calculated real an
imaginary parts of the Kerr enhancement factor. We cal
lated the enhancements using formulas~69! and ~70!. The
enhancement factorsGK,ab for the incident light polarized
parallel to the film’s plane (a5x,y) are the largest, and
approximately equal to each other forb5x,y, i.e., uGK,xxu
'uGK,yyu'uGK,xyu'uGK,yxu. Note, however, that the sign

FIG. 7. The average DFWM enhancement factors from a s
affine silver surface, for the light polarized in the (x,y) plane of the
film (GDFWM[Gi) and in the normalz direction (GDFWM[G').
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of both Re(GK,ab) and Im(GK,ab) can be different for dif-
ferent tensor components and strongly vary withl. This
means that for somel, the a-polarized incident light can
undergo self-focusing in, say, thex direction and defocusing
in the y direction; the situation can be reversed for so
other wavelength. Similarly, competition between differe
modes may result in both positive and negative correction
the resultant nonlinear absorption, depending on the po
ization and wavelength of the applied field. These interes
properties can be important for various applications of rou
thin films, for example, as photonic devices, such as opt
switches.

In Figs. 8~a! and 8~b!, we plot the absolute values of th
real and imaginary parts ofGK defined, for simplicity, as

FIG. 8. The absolute values of the realuRe(GK)u and imaginary
uIm(GK)u parts of the average enhancement factors for the K
nonlinearity for the light polarized in the (x,y) plane of the film
~see the text for details!.
e
t
to
r-
g
h
al

GK5(a,b5x,yGK,ab/4. The calculations show tha
uRe(GK)u;uIm(GK)u, and both are especially large~up to
;107) in the near-infrared. With the calculatedGK(l),
spectral dependences for the nonlinear corrections to abs
tion and refraction can be found using formulas~61!, ~62!,
and~65! and thel dependence of the ‘‘seed’’ nonlinear su
ceptibility x (3).

VII. SUMMARY AND CONCLUDING REMARKS

In this paper nonlinear optical effects on rough surfaces
metal films were studied in the quasistatic approximati
The spectral dependence of the average enhancement fa
for optical nonlinearities on a silver self-affine surface w
calculated in a wide spectral range. The average enha
ments are very large, reaching values of up to 107 and 1015

for the second- and third-order nonlinear optical process
respectively. The huge enhancements are due to excitatio
strongly inhomogeneous dipolar modes of a self-affine fi

In addition to the average enhancement factors, we ca
lated the spatial distributions of the local enhancements
the surface. In certain areas the local enhancements can
ceed the average ones by several orders of magnitude.
existence of these extremely high peaks in the local ge
ated signals~‘‘hot’’ spots! makes feasible the nonlinear op
tical probing of single molecules adsorbed on the self-affi
surface of a thin film.

The spatial distributions of local enhancements for
second and the third harmonic generation were calculated
the wavelengths 1mm and 10mm. It is shown that maxi-
mums of the local enhancements at the fundamental and
erated frequencies are spatially separated on the surface
spatial positions of the ‘‘hot’’ spots at the fundamental a
generated frequencies are different because they resona
general, with different surface modes. The spatial positi
of the ‘‘hot’’ spots change with the wavelength of the a
plied field.

The observed giant enhancements are related to the
face fractal geometry. In self-affine thin films, optical exc
tations tend to be localized in small subwavelength regio
so that the local fields fluctuate strongly on the surface of
film. A typical pattern of the local field distribution consis
of a number of high peaks separated by distances larger
the characteristic peak sizes. Such field distributions can
detected in the near-zone region, whereas the average~over
the whole surface! enhancement factors are registered in
far zone. The recent developments in experimental meth
of the near-field scanning optical microscopy make poss
measurements of local fields, including nonlinear ones, w
the subwavelength resolution.15,40
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