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Nonlinear optical phenomena on rough surfaces of metal thin films
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Nonlinear optical phenomena on rough self-affine metal surfaces are theoretically studied. Placing nonlin-
early polarizable molecules on such surfaces results in strong enhancement of optical nonlinearities. A quasi-
static approximation is used to calculate local-enhancement factors for the second and third harmonic genera-
tion, degenerate four-wave mixing, and nonlinear Kerr effect. The calculations show that the average
enhancement factors on a self-affine surface can be as largd and @8° for optical nonlinearities of the
second and third order, respectively, with the maximum average enhancement in the infrared spectral range.
Strong spatial inhomogeneity of local-enhancement distribution is demonstrated for the second and third
harmonic generation. The local enhancement can exceed the average by several orders of magnitude, reaching
extremely high values. Sharp peaks in local-field intensities at fundamental and generated frequencies are
localized in spatially separated nanometer-sized areas of thel 801.63-18208)01124-2

[. INTRODUCTION localization, and because of a large number of different reso-
nance frequencies corresponding to various local geometrical
Electromagnetic properties of inhomogeneous metastructures, the fractal optical modes cover a large spectral
nanocomposites, such as rough thin films and colloidal aginterval.
gregates, have been intensively studied in the past two The field distributions are extremely inhomogeneous at
decades.As many studies indicate;* nanocomposites often the rough surfaces of thin films; there are “cold” regions of
possess geometrical properties of fractal objést®, for ex- small local fields and “hot” areas of high local fields. Strong
ample, Ref. 2 Physical properties of fractal composites areenhancements of a number of optical phenomena in rough
substantially different from those of conventional orderedmetal film$:° are associated with much higher values of local
and disordered media. Recent studies suggest that in maffiglds in the hot spots, where the optical modes are
cases rough metal filme.g., films obtained by atomic depo- localized®
sition onto a low-temperature substrat@ve the properties The approach employed in this paper is based on the dis-
of self-affine fractal structure®’ crete dipole approximatiofDDA).1%!! By using the DDA,
Although self-affine structures differ from self-similar linear and nonlinear optical properties of fractal aggregates
fractal objects(to reveal the scale invariance they requireof particleS™’ and linear optical properties of self-affine
two different scaling factors in the surface plane and in thefilms®*?*2have been previously studied.
normal direction, optical properties of self-affine thin films In the present paper, we investigate nonlinear optical ef-
are, in many respects, similar to those of fractal aggregatesfects in self-affine films. For simplicity, we assume that the
For example, both fractal aggregates and self-affine film§seed” nonlinear susceptibility is due to molecules adsorbed
possess a variety of dipolar eigenmodes distributed over an the film surface rather than due to a nonlinearity of the
wide spectral rang®.’ In contrast, for the case of conven- film itself (most of the obtained results, however, are appli-
tional (nonfractal random ensembles of monomers, such asable in the latter case as welWe calculate the average
a gas of particles or randomly close-packed spheres, the abnhancement factors for a number of optical phenomena in
sorption spectra are peaked near a relatively narrow resaelf-affine films.
nance of an individual particle. In fractals, a variety of dipo- It is important to note that the values of generated local
lar eigenmodes can be excited by a homogeneous electriignals in the “hot” spots can be by many orders of magni-
field, whereas only one dipolar eigenmode can be excited itude larger than the averagever the whole surfagesignal.
a small dielectric sphefeThese striking differences are ex- This opens a fascinating possibility of nonlinear optics and
plained by localization of optical modes in various random,spectroscopy of single molecules located in the hot spots of a
spatially separated, parts of a fractal objtt. rough surface(A similar pattern for the field distribution
In random but homogeneous media, dipolar modes argccurs in  random metal-dielectric films near the
typically, delocalized over large spatial areas. All monomerpercolationt¥) To demonstrate strongly inhomogeneous
absorb light energy with approximately equal rate in the recharacter of fields on a rough surface, we calculate the spa-
gions whose linear dimensions significantly exceed thdial distributions for the local-field intensities at the funda-
incident-field wavelength. This is, however, not the case fomental frequency and for the generated nonlinear signals.
fractal nanocomposites and self-affine films. Optical excita\Whereas the average enhancement can be probed by means
tions in fractal objects tend to be localizBd.Due to this of conventional far-zone optics, to study the local distribu-
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tions of the fields at the fundamental and the generated frd-orenz-Lorentz formula having the same form as the polar-
quencies one can use the near-field scanning opticatability of a dielectric sphere with radiuR,,= (3/47)%a,
microscopy® that allows sub-wavelength resolution. (see, for example, Ref. 21

Il. GENERAL APPROACH AND REVIEW OF THE a=R3[(e—1)/(e+2)], (5)
DISCRETE DIPOLE APPROXIMATION
: : o . wheree=¢'+i€” is the bulk dielectric permittivity of the
The discrete dipole approxwggtlon was Or'g'n"?‘"y SU9°fim material. The choice of the sphere radidg provides
gested by Purcell and Pennypackeand developed in later equality of the cubic-lattice elementary-cell volunag) and

paper$!%~18o calculate optical responses from an object Of e volume of an imadinary § hefenonomer that repre-
an arbitrary shape. It is based on replacing an original dielec- ginary sp P

. . . 3 s s

tric medium by an array of pointlike elementary dipoles. TheSents a pomthkg q|pole (#R/3) SO Conse_.\quently, for
DDA has been also applied to fractal clusters built from al2'9€ films consisting of many elementary dipoles, the vol-
large number of small interacting monomé&rst®2°Below ume of the film is equal to the total volume of the imaginary
we briefly recapitulate the DDA and the related methodsSPheres. Sinc@g<2Ry, the neighboring spheres intersect
based on solving the coupled-dipole equatidrs. geometrically. The model of the effective intersecting

Following the main idea of the DDA, we treat a self- spheres allows one to take approximately into account the
affine film as a collection o identical polarizable particles €ffécts of the multipolar interaction within the pure-dipole

(monomers possessing a linear scalar polarizability. approximatiorf.

When irradiated by a plane monochromatic incident wave of Sif‘ce Wij ap s ?ndependent of the frequenay in the
the form guasistatic approximation, the spectral dependence of solu-

tions to Eq.(3) is manifested only througlv(w). For con-
Einc(r,t)=Egexpik-r—iot), (1) venience, we introduce the variabl&(w)=1l/a(w)

=—[X(w)+id . Using Eq.(5), btai
the monomers interact with the incident field and with each [X(@)+18(w)]. Using Eq.(5), we obtain

other through induced-dipole moments. The local electric
field E; at the monomer’s position is given by the sum of
the incident wave and all the scatterembcondary waves:
Ei=Ein(r; 1)+ EgJr; ,t). The dipole moment; at theith o6=—Imla 1]=3R.3€"/|e— 1| 7
site is determined as

=-Rda ]=-R, ¥ 1+3(e'—1)/|e—1]?], (6)

The variableX indicates the proximity ofw to an indi-
vidual particle resonance and plays the role of a frequency
parameter;5 characterizes dielectric losses. The resonance
fuality factor is proportional té 1. One can findX(\) and
©(\) for a specific material using theoretical or experimental

d;= ok, . )

The fieldEg(r;), scattered from all other dipoles, gener-
ally, contains the near-, intermediate-, and far-zone terms. |

this paper, we restrict our consideration to the quasi-stati )
limit, i.e., the characteristic system siteis assumed to be data fore(A) and formulas(6) and (7). In Figs. X&) and

much smaller than the wavelength=2mc/w. In this ap- (P, we p,|°tX2a”d 4 as functions of the wavelength for
proximation, we leave only the near-field term in the expresSilver particled” (ag=1 units are used As seenX changes
sion for Eq(r;) and the factor expk-r;) is always close to significantly from 4OQ nm to 800 nm and then, fog Iognger
unity. In addition, the time dependence, expgt), is the ~Wavelengths, remains —almost constanX~—ag/Rp,
same for all time-varying fields, so that the whole exponen= —47/3. The relaxation constar is small in the visible
tial factor can be omitted. After that, the coupled-dipole SPectral range and decreases toward the infrared.

equations(CDE) for the induced dipoles acquire the follow-  Now we write Eq.(3) in a matrix form. Following Refs. 6
ing form®”’ and 7, we introduce al8-dimensional vector spad@®™ and

an orthonormal basi$i ). The 3N-dimensional vector of
dipole moments is denoted Kg), and the incident field is

dio=a EOvaJ’;i Wij.apdj g 3 denoted by|E;,.). The Cartesian components of three-
dimensional vectorsl, and E;,,. are given by(ia|d)=d, ,
Wi op= (3 ol ij 5~ 5aﬁri2j)/ri5j ' (4)  and(ia|Ej,)=Eo,. The last equality follows from the as-

) S ) sumption that the incident field is uniform throughout the
whereW;; .z is the quasistatic interaction operator betweenfiim. The matrix elements of the interaction operator are de-

two dipoles,r; is the radius vector of thith monomer, and ¢4 by<ia|\7V|j,8>=Wi- 5. Then Eq.(3) can be written as
rij=ri—r;. The Greek indices denote Cartesian components e

of vectors and should not be confused with the polarizability, A

a. Hereafter, summation over repeated Greek indices is im- [Z(w)~W]|d)=|Einc)- ®)

plied, except if stated otherwise. ) . . ] )
We model a self-affine film by point dipoles placed ac- The interaction operatdV in Eq. (8) is real and symmetri-

cording to an algorithm described below in sites of a simplecal. as it can be easily seen from the express#rfor its

cubic lattice with a period,. The occupied sites correspond Matrix elements. A A

to the spatial regions filled by the film, while empty sites By diagonalizing the interaction matri¥v with W|n)

correspond to the structural voids. The linear polarizability=w,|n) and expanding the I8-dimensional dipole vectors

of an elementary dipol§monomey « is given by the in terms of the eigenvectots) (as|d)==,C,|n)), we ob-
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6 T T T T T T T (i a|n){n|Ejnc) (ialn)(n|jB)
X di a 2 _ = 2 _ Eoﬁ )
n Z(w)—W, i Z(w)—wy
11
WL 1 (1D
As mentioned in Sec. |, strong spatial fluctuations of the
local fields lead to huge enhancements for a number of op-
2| - tical effects in nanocomposité$:*>*3For optical processes
considered below, the enhancement of local fields associated
with the dipole-dipole interactions in a film is characterized
0 - by the interaction operatdd/ in Eq. (4). The induced non-
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FIG. 1. Spectral dependence of the frequency parametand
loss parameteé for silver.

linear dipoles can have different relative phases. Because we
are interested in the average generated nonlinear signal, we
sum up the amplitudes of the generated signal over all the
points in a film. The average enhancement of the generated
signal for coherent nonlinear optical processes can be char-
acterized by the following factor:

_ (D" (wg))I?

G_—u
1Dy (wg)|?

(12

where(D) is the average surface-enhanced dipole moment
of the nonlinear molecules when they are adsorbed on a film
surface, andDy") is the dipole moment of the same mol-
ecules in vacuum.

Note that a definition of the enhancement is arbitrary to
some extent. In some cases it is more convenient to define
the enhancement in terms of work done by a linearly polar-
ized probe fieldEy(wg), at the generated frequenay on a
self-affine film and in vacuumDP™-Ey(wy) and Dy-
-Eo(wyg), respectively, i.e., as

_ |<DNL(wg)' EO(‘Ug)>|2
[{Dp"(wg) - Eg(wg))|?

The probelinear field Eq(wg) should not be confused with
the generated field;(wy); the former produces the local
field at wg through the linear relatiof®). Note that the en-
hancement in Eq(13) does not depend on the magnitude of
the probe fieldEy(wgy). Formula(13) is convenient because
the enhancement factors can be expressed in terms of the

(13

tain a relation between the local fields and the amplitudes ofocal fields only.

linear dipoles induced by the incident wai®:°®”’
Ei o= 'di ,=Z(®) i 4pEop, (9)

where we introduced the polarizability tensor of ik di-
pole, &i(w), with its matrix elementsy; .5 given by

oy =S, alnNRliA)

j.n Z(w)_Wn (10)

Ill. PROPERTIES OF SELF-AFFINE STRUCTURES
A. General properties of self-affine films

Surfaces formed by condensing atomic beams onto a low-
temperature substrate are characterized by microscopic sur-
face roughnessand belong to the Kardar-Parisi-Zhang uni-
versality clas$® Rough-surface profiles exhibit the
properties of self-affine fractal structuré$ which reveal
their scale-invariance properties when different scaling fac-
tors are applied in the plane of the film and in the normal

rowth directionz. Contrary to the case of “usual” rough-

We note that the only source of dependence on matefidﬂess, there is no correlation length for self-affine surfaces,

properties in solutior(10) is Z(w) =1/a(w); the eigenvec-

which implies that inhomogeneities of all scales are present

tors and eigenvalues of the opera\i\v’rdepend only on the (within a certain size intervalaccording to a power-law dis-

film’'s geometry. For any given dielectric functiag\), one

tribution. A self-affine surface contains roughness features of

can calculate the dipole moment components by simple sumeery small(asymptotically zerpradii of curvature, i.e., the
mation according to Eq9), provided the eigenvectors and profile’s derivatives can be very large. However, this kind of

the eigenvalues are knowr:

divergence is only formal, because the scale invariance is
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=8271, providing{(N)=N/12~690 andoy =110, the aver-
age number of monomers occupying the surfaQ¥g)
=218 so thafNg)/(N)~1:3: None of the clusters was com-
posed of more than five adjacent monomer layers.

IV. SECOND-ORDER NONLINEAR EFFECTS

In this section, we consider the second harmonic
generatiof®?’ (SHG) as a typical example of nonlinear op-
tical phenomena of the second order. Because SHG is ex-
tremely sensitive to the surface roughness condit{arsch

FIG. 2. Self-affine thin film obtained in the RSS model.  made it a widely used technique for studying structural and
electronic properties of surfaces and interfat&s), this
valid in the intermediate asymptote region, i.e., on the scalegrocess is of fundamental importance for understanding the
between the size of the smallest roughness features and th@nlinear interaction of light with self-affine films.
size of a sample.

A. SHG from noncentrosymmetric molecules
B. Numerical models for rough films on a self-affine surface

To model a self-affine rough film, we use the restricted For SHG, the nonlinear polarizatioR®(2w) is com-
solid-on-solid(RSS model?*#In this model, we add a par- monly introduced through the definition of the nonlinear sus-
ticle in a growing sample only if the newly created interfaceceptibility surface tensor of a third rafk?(2w; w,w) as
does not have steps higher than the lattice peagdThe
surface structure of the generated film does not have over- PP (2w)=%?(2w;»,0):E(w):E(w). (15)
hangs or steps higher than one lattice unit, and a true scaling
behavior is clearly pronounced, even for relatively small film  Extensive studies of different mechanisms of SHG on
sizes. Initially, we generated 12 different random films with surfaced>**and in bulk***have been carried out for jellium

a large (~10°) number of sites that allowed us to achieve and other models since they were first proposed by Rudnick

the scaling condition for the height distribution and Sterrt® In this paper, we assume that contributions to
% are associated with adsorbed molecules placed on the
([h(r+R)—h(r)]?)~R?PH, (14) film’'s surface. The nonlocal effectgelated to the spatial

dispersion and the effects of finite depth field penetration
whereR is the vector in the plane of growtR;y plane, and are left out of the analysis.
the scaling exponerD is related to the fractal dimension, We adopt the following asymmetrical structure for the
D=2.6, byD,=3—D. The expression in the left-hand side nonlinear absorbed molecules. They are assumed to have a
of formula (14) is known as the height-height correlation “preferred” directionn that coincides with the normal vec-
function. In Fig. 2, we show a typical self-affine film gener- tor to the &,y) plane of the film, so that the film anisotropy
ated in the RSS model, after removing the regular part at this reproduced by the adsorbed molecifes.
bottom (see below. We construct the vectd?®(2w) from the obvious inde-
The analysis demonstrated in Sec. Il requires the knowlpendent combinations of the triplen,E,E) in Eq. (15):
edge of all the eigenstates and eigenvalues of the matrix
Wi; 5. We stored all the eigenvalues and eigenfunctions in P@(2w)=A(E-E)n+B(n-E)E, (16)
order not to repeat time-consuming calculations of the local hereA andB wo ind dent | tants de-
polarizabilities in Eq(10) for each wavelength. To diagonal- whereA andb are two Independent compiex constants de
: . termined only by the internal structure of the molecules ab-
ize Wij o5, We used the Householder algorithm. orbed on the surfadghey are not related to the parameters
For calculating nonlinear optical responses, we restricted L . y . para
a andb originally introduced by Rudnick and Stern in Ref.
our model to an average number Nf10° monomers per

film sample(cluste). To make the reduction of the number 34 gg% fr:r?#entwé uisg]'r;:]:igeg?utjgz onofgﬁzzgfn vector
of particles, we cut a “parent” cluster. The “excess” mono- paring P P

mers that represent a regular part at the bottom of the filngven in Eq.(15) with the ones introduced in Eq16), we

were removed, so that the resultant sample had at least or(l)%fm the following relations for the nonzero components of

hole. Note that such a procedure does not change the scaliﬁ(g :

propertieqg14) of the surface. As a result, the total number of 2 2_ (2 _ (2_pg
monomers left was in the intervakN)— oy ,(N)+ay), xxz— Xxax™ Xyzy™ Xyyz™ =
whereoy is a constant. (2)_ (2 _ 2 _
Twelve nearly monodisperse samples with monomers dis- X Xayy=As - Xazr=ATB. (17

tributed on a 1% 14 surface lattice were used for most of our

numerical calculations. The lattice unit was chosen to bebe

ap~5 nm and the inequality. <\ was fulfilled, i.e., the

guasistatic approximation was valid. d-NL=a(E~ -E,)n+b(n-E)E (18)
The actual characteristics of the “¥414” ensemble of ' b v

12 films were as follows: total number of monomebks, Wherea=Av,b=Bv,v=4wRﬁ1/3, andE; is the local field.

The amplitude of a nonlinear dipole located #t site can
written in a form similar to Eq(16) as



57 NONLINEAR OPTICAL PHENOMENA ON ROUG . . . 14 905
First, we find the average nonlinear dipole moment for the
nonlinear molecules on the plane with=1 (in vacuum, (d2)=(1/Ng) >, (di-n)?, (28)
(D). In this case, the induced dipoles are excited only by s
the uniform incident fieldg, so thatE;=E,. It follows from
Eq. (18) that (ddz)=(1/NS)zS di(d.-n), (29)
le

NL\ _
(Do) =a(Eq- Eg)n+b(n-Eo)Ey. 19 whered (and related quantitigsn Egs. (26)—(29) refer to
Vector P@(2w) strongly depends on the incident polariza- linear dipoles, andNs is the total number of surface mono-

tion (see, for example, Refs. 5 and)12n this paper, we MErS. o _ o
assume that an incident wa(® is linearly polarized, unless ~ Since a self-affine film is, on average, isotropic in tg

noted otherwise. Then plane, we adopt the following approximatiguerified also
by our numerical simulations|(dd,)|~|(d?)| for the s and

|(DR")|2={|a|?+[|b|?+2 Reab*)]cod(8)} Eol*, p polarizations of the incident wave. Note that the same
(200  approximation was used in Ref. 36. Then E26) takes the

where the asterisk denotes complex conjugation, @iscthe form

angle between the axis and the direction dE. DN 2= [ Z( )[4l (at b)(d2) +ald2+d2 2 (30
When the incident wave is polarized along thaxis (that KE™=1Z(@)II( Hdz)+afdctdyfs (30
hereafter we refer to gs polarization or in the (x,y) plane  Using Eq.(2) andZ=1/a, we rewrite Eq.(30) in terms of

(s polarization, expressior(20) simplifies to the local fieldsE; :
[(DRYY|2=|Eq|*la+b|?, p polarization,  (21) [(DNY)[2=|(a+b)(E2) +a(E;+EZ)|2. (31)
|(DQ">|2=|EO|4|a|2, s polarization. (22 Now we substitute Eqg21), (22), and(31) into Eq.(12)

to obtain the enhancement factors for fhends polariza-
Because the induced nonlinear dipoles on surface can iriions:
teract with each other via tHear polarizabilitiesa(2w),

we can write an analog of the CDE in E@) for the non- Gsno=(E2)+T YEZ+EJ)|Y|Eol*, p polarization,
linear dipole amplitudes as (32)
. Gsno=|T(E2)+(E2+E2)|?/|Eo|*, s polarization,
diNLZU)A((Z)(Za);a),w):Eiz(w)+a(2w)z Wi]-dJNL(Zw) sno=IT(E) + (B y>| [Ed P (33)
e
(23)  where the oblique coefficieit is defined with the use of Eq.
and its matrix counterpart (17) as
~ ~ (2) (2)
NL\ _ 2). 22 NL
Where ZXX XZyy
i a|5((2):E2>:anaEi/3EiB+ bngEiEis. (25) C. Interaction of nonlinear dipoles at double frequency

) , , . The interactions of nonlinear dipoles at the generated fre-
In Egs.(23) and(24), we included the linear interaction of 4,ency 2, become important, if this frequency is within the
the local nonlinear dipoles at the double frequenay, #his g rface mode band. In this case the local fields at both the
provides an additional contribution to the nonlinear SHG sigtyndamental and generated frequencies can excite the reso-

nal (cf. Eq. 18. nant surface modes and thus get strongly enhanced. Accord-
ingly, the resultant enhancement can become much larger
B. Interaction of linear dipoles in a cluster than for the case without interaction of nonlinear dipoles. In

First, we take into account only interactions of linear di- order to take into account the coupling of nonlinear dipoles,

poles at the fundamental frequeneyand ignore the dipole W€ must use Eq23). A formal solutipn tola similar equation
interactions at the generated frequenay. Zhis is justified [OF linear dipole moment¢8) was given in Sec. I[see Eq.
when the frequency @ is out of resonance with any of the (11)]_. It can_be easily generalized for the case of the coupled
surface eigenmodegt the same time, the fundamental fre- Nnlinear dipoleg24):
guencyw can be within the resonance bandihen Eq.(23) ~(2). g2
reduces to Eq(18). Using Egs.(18) and(2), we obtain I =02(20) S, |nZ>§2|<j()—.vv >, (35
n n

[(DN5)2=]Z(w)[*{a(d?)|?+2 Reab*(d?)(d)*]

where Z(2w)=a }(2w) and a(2w) is the scalar polariz-

+[b(d,d)|?}, (26)  ability of a monomer at the double frequency.
Using definition(25) of | y®:E?) together with Eqs(35)
d2) = (1N d-d), 2 and(9), we express the Cartesian components of the average
(d9=( S)gs( o) @ nonlinear dipole momentDN"(2w)) as
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(DY =7(2w)Z%(w)[(a+b)(a,,d2) +a( a,,(d2+ d§)> general, on the chosen polarization ©§(2w). Therefore,
the above formula can be used only as an approximation to
+b(ay,did,+ ay,dyd,) ], (36)  characterize enhancement in terms of the local fields.

Equations(38)—(40) can be simplified to Eq(32) and
(33) when the coupling of nonlinear dipoles is not effective
on a surface. As mentioned, it occurs when the generated
frequency wg=2w is far from any of the surface eigen-
modes, so thdZ(wgy)|>w,,Vn. Then the polarizability ma-
(ialn)(n|jB) | trix (37) becomes diagonaky; ,z(wq)~ d.5/Z(wg). By ap-

, ieS. (37 plying this to Egs.(38) and (39) [or, equivalently, setting
E(2w)=Ey(2w) in Eq. (40)], and using the previously

Here wq is the generated signal frequency for the nonlineamdopted approximatiof{d,d,)|~0,a=x,y, we obtain Egs.

process under consideration. The summation gvere., (32 and(33).

over all the monomers in E@37), is the consequence of the  In addition to the average enhancement factors, we calcu-

coupling of nonlinear dipoles given by the second term inlate spatial distributions of local enhancements on a film sur-

wherea ,z=a,z(wg) is the local linear polarizability at the
generated frequenay, . [For simplicity, we omit the argu-
ment 2w for a,z(wg) in Eq. (36).] The linear polarizability
at the generated frequency is defined similarly to @€) as

i apl0g)= >

j.n Z(wg)_Wn

Eq. (23). face, gspa(ri)=|d""%/|dy"|?, i € S in Sec. VI B. The non-
The averagéover a film surfaceSHG enhancement fac- linear local dipoles on a metal self-affine surfaat)"
tor can be obta_uned by substituting E_((;El), (22), and(36) =dM(2w), and in vacuumdy-=dy-(2w), are given by Eq.
1Z(2w)|? N 2, =2
GSHG:W% [(azpB2) + F(azp(EX+EY)) V. THIRD-ORDER NONLINEAR EFFECTS
1 In this section, we assume that nonlinear optical suscep-
+ 1__)<axﬁEsz+ ay,;EyEz>|2, tibilities are associated with spherically symmetrical mol-
r ecules adsorbed on a self-affine surface. This means that
o there is only one independent component for the fourth-rank
p polarization, (38)  gysceptibility tenson, that is responsible for the third-
12(20)2 order nonlinear optical processes.

Gshe= WZ |F<az,BE§> + (a8 EZ+ Ei))
0 p A. Third harmonic generation

+ (I = 1){aygExE,+ aygE E)|?, The spherical symmetry of the adsorbed molecules im-
o plies that the amplitudes of the nonlinear dipole moments
s polarization, (39 can be expressed as
where aaﬁ=aaﬁ_(2w) is given by Eq.(37) and E, repre- NL
sents the local-field components. di (3w)=CE;(E;-Ej), (41)
Note that the above expressions contain the nonlinear po- ) ) )
larizability tensor a;(2w) and cannot be written only in Wherec_ls_ _the only independent element of th_e thlrd-_order
terms of the local fieldg; . Therefore, if interactions of the susceptlbll!ty tenspr. In EqA), we neglecteq Interactions
generated nonlinear dipoles at frequengyare important, it of the nonlinear dipoles at the frequency 3Using Eq.(41)

is impossible to express the enhancement factor in terms G rePlacings; by Eo, we find the denominator in E¢12):
the local and incident fields onlyCompare with Eqs(32
and 33, yeomp =32 (DM 2= (ool 2

If we use definition(13) to express the enhancement in
terms of work done by a probe field at the generated fre- Interaction of nonlinear dipoles at the frequenay,
quency, then for the case pfpolarization, for example, we =3 occurs due to nonzero linear polarizabilit(3w).
obtain the following expression This interaction further amplifies amplitudes of the nonlinear
dipoles, whose values are given by E(&4) and (25) with
|%?:E?) replaced by ¥®:E®) and 2w by 3w, so that we

G =;I<E (20)E3)+ 1<E (2w)(E2+E2))
ST IESEo(20) PR T T Ty

have
1 —1203). i
+ 1—1:)(EX(Zw)EXEZ+Ey(2w)EyEZ>|2, |d"Y)y =0 [x*:E®) + a(3w)W[d™), (43
where
p polarization, (40)

whereE is the local field at frequency, andE(2w) is the v(ialx®:E%=CEEisEiz. (44)

local linear field at 2w, which is related to the probe field

Eo(2w) as Ej,(2w)=Z(2w)aj 45(2w)Eqz(20w) with To solve Eqgs(43) and(44), we can use the formalism of

@i .5(2w) defined in Eq.(37). Although the enhancement the previous section. The component of the nonlinear di-
does not depend on the magnitudeEgf2w); it depends, in  pole moment, averaged over the surface, is given by
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cZ(3w Since the optical nonlinearities are caused by spherically
NL (3w) . : . -aus \
(Dy )= Ng st @) po(30)EjgEjEj,, (49 |s§troplc molecules, the nonlinear polarization can be written
€ 7
a

where Z(3w) =a }(3w). The nonlinear polarizability ma- 3) . .

trix for the ith monomer is defined by Eq37). It is inter- P¥(w)=A(E-E*)E+B(E-E)E*/2, (50
esting to note tha{tDEL> Is, in general, complex, evendfis  \nere the coefficient# and B are different from those in
real, i.e., there is no nonlinear absorption in the system. Thiggc v/, When the nonlinear response of the adsorbed mol-
property refleqts the fact that the average nonlinear d"?Ol%cules is due to nonresonant electronic respdétngesurface
moment(DN') is affected by the surface eigenmodes havingmodes, however, can be in resonance with the applied field
finite losses. Also{DN") is elliptically polarized because the A s equal toB.3” By adopting the conditio=B, we write

complex matrix(10) transforms the linear polarization of the pe amplitude of an average nonlinear dipole, induced only
incident field into an elliptical polarization of dipole mo- py the applied field, as

ments[see formula9)].

Substitution of Eqs(42) and (45) into Eqg.(12) gives the DMLY — 9 [4[2/E. (6 -
following expression for the surface-enhanced THG in the (Do) = 21al*|Eol”, (52)
case of linear polarization of the incident wave: where, as abovea=Av, andv=47R3/3. In Eq. (51), we

1Z(30)|? assumed thé&k, is linearly polarized. For the case of circular
a) H - .. . 2 . .
> [{ag,(30)E4(E- E)2. (46 polarization, the coefficient in front ¢&|* becomes unity in

Gro="eg
THE™ ElI® 4 formula (51). For DFWM, the CDE have the form

If we use formula(13) for the enhancement factor, it can |dNL)=v|)}<3>:E3)+a(w)\7v|dNL>, (52
be expressed in terms of the local fields as

~ K[E(3w)-E](E- E))|2 (i a|X(3):E3>:a(EiaEiﬁEi*ﬁ+ 3 EfEigEip). (53

e EEBe)F

47

The exact solution to Eq52) is determined by the following
formula, valid for any polarization,
whereE andE(3w) are the local linear fields at frequencies

o and 3w, induced by the applied fiel&, and the probe |(D"Y))2=|a|?|Z(w)|?
field Eq(3w), respectively.

If the generated @ signal does not excite the surface % ELIEI2+ L E*X(E.-E))I2.
eigenmodes, so that, ;(3w)~ J,5/Z(3w), expressiorn46) zy |<aﬂy(w)[ B' I+ sl D
simplifies to (54)

_|<E(E'E)>|2 The final expression for the enhancement factor is for-

e [E® “9 mally the same as in Eq12) with |[(D}")|? given by Eq.

(51) and|[({D"Y)|? given by Eq.(54).
Analogously to SHG, we also calculate the spatial distri-  ysing formula(13), we obtain the following formula for
butions for local enhancements for THG on a film surfacethe enhancement
Oruc(ri)=|d" %/ |d)|%i e S, whered! and di“ are the
local nonlinear dipoles at@ on a metal self-affine surface [{|E|?(E-E))|?
and in a vacuum, respectively. GDFWM:T- (55

B. Degenerate four-wave mixing in self-affine films C. Kerr nonlinearity

A typical degenerate four-wave mixin@FWM) experi-
ment involves two oppositely directed pump beasand
E,, and a signaEg, usually directed at some small angle
with respect to the pump beams. All the waves have th
same(or close frequency and differ either in their propaga-
tion direction or in polarizatiorfor both. /

In the optical Kerr effect, the nonlinear correction to the
refractive index is proportional to the intensity of local elec-
tromagnetic field in a medium. For the complex refractive
fndex,n=n’+in", we write

In the process resulting in the optical phase conjugation, n’=ng+nyl=nj+ Ené“ﬂz, (56)
the generated wavig; has the same frequency as the pump 2m
waves. This feature makes DFWM different from the second
and third harmonic generation. In a standard DFWM pro- . ,,2_0’_ " 2_0’ 5
cess, the generated wave propagates against the signal beam, @aps=M" ¢ =(No+n3l) c’ (57)
so that the phase matching conditidn:+ k,+ks+kq=0, is ) )
fulfilled. Heren} andng(2w/c) are the linear refraction and absorp-
We consider the total applied field as a superposition ofion coefficients, whereas,| andn3l(2w/c) are the nonlin-
the pump and signal fields: ear corrections to the refractiorf and absorptiony,y,s.

The Kerr-type nonlinear polarization is given by the for-
Eo=E;+Ep+E;. (49  mula
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P (w)=3x3,E4EXEs. (58)
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Formulas(61)—(64) describe the nonlinear changes in the
complex refractive index with account of E@5). The spec-

The prefactor 3 represents the number of distinct permutara for n, andnj can be obtained fromm dependences @y

tions of the frequencie®, w, and — w of the fields in Eq.
(58) (see, for example, Ref. 37For an isotropic particle,
there is only one independent componen )75 that we
denote simply ag®. Then Eq.(58) simplifies to

P (w)=3x"*|E|?E. (59)

Note that this expression is similar to the first term in the

right-hand side of Eq(50) for the DFWM process.

The complex refractive indem is related to the suscepti-

bility of the mediumy by n?=1+4y, wherey contains,

in general, linear and nonlinear terms. For the third-orde
nonlinearities of the Kerr type, this formula takes the form

n?=1+4x(xM+3x®|EJ?).

(studied belowand y(®).

Note that the enhancement fact@k in Eq. (65) is, in
general, complex because of the resonant excitation of the
surface eigenmodes having finite losses. If the sgédtlis
complex as well, both the real and imaginary parts
of Gy contribute to the nonlinear refraction and absorp-
tion: n’'=Re(x®)ReGk)—Im(x®)IM(Gx) and n”
=Re(y®)Im(Gy) + Im(x®)Re(Gy). If, however, & is
real, thenn’ = y(®)Re(Gy) andn”= x®Im(Gy).

First, we consider a single arbitrarily oriented film excited
Py a polarized incident wave. When the scattered fields at the
generated frequency are included, a nonlinear dipole moment
at theith site is described by the equation

By considering real and imaginary parts corresponding to

the different powers of the electric field in the equality

n?=(n’+in")?=1+47(x'"+3x?[E[»,  (60)

we obtain the following expressions for the nonlinear correc-

tions to the refractive and absorption:

, 1272 ngRe(x'¥) +ngim(x?) -
n = 1A
e (np)P+(ng)?
and
) 1277.2" n6|m(X(3)) + nngX(3))
2: ' 2 "2 (62)
noC[ (ng)“+(ng)

If the linear absorption is weaknf>ng) but the nonlin-
ear absorption is significariRe(x®)|~|Im(x®)|], for-
mulas(61) and(62) can be simplified to the following well-
known expressions:

, 1272 3) 63

n2~ (n(/))ZC d)( )! ( )
2

i~ 2 (). (64)
2 (ng)’c

Experimentally, the refractive index change is determined
for a sample with characteristic geometrical size much large

o|iNL=c|Ei|2Ei+oz(w)]2¢i W,

(66)
where the constant is related toy® by c=v x®.
Solving the CDE in Eq(66) by the method used in Secs.
IV and V A, we find the average nonlinear dipole moment
(DNY) with its componentD") given by
(DEh=clZ(w)PZ%(w)(|d’dgagl(w)),  (67)
whereq; 4 is defined by Eq(10).
Vector (D"") is complex and the phases of its Cartesian
components are, typically, different. This means ")
is elliptically polarized. It is neither collinear with the inci-
dent fieldEy, nor with the average local field. This follows
from the fact that we cannot neglect the interaction of non-
linear dipoles, since this interaction takes place at the funda-
mental frequency. VectdD"") is also different for different
light polarizations, and so is the enhancement faGpr
If the nonlinear molecules are in vacuuiire., there are
no interactions between the dipolgthen the average dipole
moment is collinear with the applied field,
(Do) =c|Eol*Eo. (68)
Now we compare the values ¢D") and the amplitude
f (D)) for the case whemB does not coincide with the
polarization directiona of the applied field. We introduce

than the wavelength. But the quasistatic approximation treatd!® €nhancement factors in the plane perpendicular to the

the objects with dimension less than However, we can

consider a medium built of many films with linear sizes less
than\ (for example, a layered materialThen the resultant
size of the medium can be larger than the wavelength so that

direction of polarizationg:

Z(w)<|E|2Eyayﬁ(w))
|Eol*Eo '

B# a, (69

GK,aB:

the refractive index can be introduced in the usual way. The o o
“seed” Kerr susceptibilityx® in such composite material for « polarization ofEy. For Gg .4, the subscriptx indi-
can be strongly enhanced so that the effective nonlinear su§ates the direction of the light polarization, whereas the sub-

ceptibility Xfff)f of the composite is

xF=px¥Gy, (65)

script 8 gives the one of the Cartesian component$ift)

in Eq. (69). The origin of such tensor structure of the en-
hancement is physically transparent. The system that we con-
sider is not homogeneous and isotropic, so that the structural

wherep is the volume fraction filled by the films providing anisotropy results in excitation of nonlinear dipole moments
the enhancement an@dy is the enhancement factor of the in the directions different from the light polarization direc-

Kerr nonlinearity for an individual film.

tion.
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We also introduce enhancement factors for the projection ;7 T T T T T T
of the nonlinear dipole on the polarization direction of the Gsne
incident light as

o _(EFEE)
Koaa B %(Ep- Eg)

A similar expression was derived differentfpy using the
microscopic approach and Maxwell equatipirs Ref. 38.

Note that a simple relation between the enhancements fo
DFWM and the Kerr effect follows from Eq$55) and(70):°

Gporwm=|GkK aal? (71)
10t

Now we generalize our approach to the case when the
films that compose the material are arbitrarily oriented in
space; this is also equivalent to the case when the applie
field has random polarization. Without any preferred direc- 10! |+ i " A (nm)
tion, all the enhancement factoB ,, are equiprobable, on L L 1 I L I
average. Thus, the value of the average enhancement factc 400 600 800 1000 1200 1400 1600 1800
is given by

(70) 10°

103 -

FIG. 3. The average enhancement factors for SHG from a self-

1 affine silver surface, for the light polarized in the ¥) plane of the
(Gy)= §< E GK,W>. (72 film (Gsue=Gj) and in the normat direction Gsue=G, ).
(23

and(39), for p ands polarizations, respectively. We plot our
results forl'=2 (a=Db). Note that real values df indicate
In this section we present results of numerical simulationsabsence of nonlinear absorption by molecifag/e also ob-
for silver self-affine films. The enhancement coefficients areained a number of curves for different values bfa
calculated based on formulas derived in Secs. IV and V. The=[ 10 2,10] [see Eq.{(34)]. We found that for different nu-
experimental dafd for the dielectric permittivity of silver merical values of", the enhancement facto@ are similar
are used to calculate the parameZék) using Egs.(6) and  in terms of their magnitudes and spectral dependeftbes
(7). The characteristic monomer’s siRg, is set to be 5 nm, results are not shownThis is in agreement with the fact that

VI. NUMERICAL CALCULATIONS

which is a typical value for silver nanocomposites. the spectral dependence of linear dipoles in @) does not
correlate with the value df chosen to be independent of the
A. Optical nonlinearities in films of different sizes incident wavelength.

We see that the anticipated inequali®>G, holds,
nce the linear dipoles and corresponding local fields in Eq.
11) are, on average, larger for the incident field polarized in
he plane of the film than in the normal direction; this is

Because the enhancement factors introduced in Secs. Ig/

. L . i

and V are defined by the collective linear and nonlinear ex-
citations of films, one might think that these factors depen

gtnhg}ev\i;/rzrsag:nntwgt;?/re?;rgofr;l?nmiﬁmes in afilm or, in because a thin film can be roughly thought of as an oblate
’ : - ) . stpheroid with a high aspect ratio. The largest average en-

To address this question, we generated several d'ﬁere'ﬁancement for SHG is- 107
ensemblesfor details of the algorithm, see Sec. Il).Brhe We also note that contributions from the last terms in Eqs.

ma;:ilr{\um flltr:iear rslliae \rNaiSz Mv1v4 Ilgtg?el tung]s. Tak|?% i %38) and(39), which are proportional to strongly fluctuating
samples of bigger finear sizes wou olate the quasistalic, 4 changing their sighsproductsE,E, and E\E,, are

approximation that we used to derive the enhancement faCs'maII and can be neglected with good accuracy. Also, in the

tors in previous sections. : :
We found that the enhancement coefficients did not sho short-wavelength part of the spectrum, when the interaction

. ) ; .~ of the dipoles at & can be neglectetbecause the surface
any systematic dependence on the linear size of the films . . .
i . : . modes are not excitgdthe diagonal element,(2w) in
(starting from 4x 4 lattice unit3, and were the same within - .
- . . Egs. (38) and (39 dominates the off-diagonal ones, so that
statistical errors for all the ensembles. This observation al: . ; .
. T . the local dipoles at @ are directed along the corresponding
lows us to conclude that in the quasistatic limit, the nonlinear ; ;
. . local fields at 2». In contrast, in the long-wavelength part of
properties of rough self-affine structures do not depend o e spectrum. when the oscillations ab %ie within the sur
the linear size of a system or the number of monomers. NOtafF P '

: : . e mode band, the largest dipoles at &re excited for the
that the same property was observed earlier for linear optic ¢ . : )
responses of self-affine surfaces. Ight polarized in the plane of the film, and therefore, the

off-diagonal elements,,(2w) and a,,(2w) are larger than

a,{2w). These arguments allow one to simplify the general

expressiong38) and (39), when they are used in the corre-
In Fig. 3, we show the averagddver 12 different film  sponding limiting cases.

sampleg enhancement factor for SHG from a self-affine sur- In Fig. 4, we show the enhancement factor for THG,

face; the enhancement was calculated using form(88s Grnhg, calculated using formuléd6). The values ofGryg

B. Giant enhancements of optical nonlinearities
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film (Grue=G)) and in the normat direction Grpc=G,).

are even larger than fdBg,g, reaching~ 10 values. The

field enhancements at the fundamental frequengy,
=|(E)/Eq|? and for the local enhancements of SHG and
THG, QSHG:|di'\‘L(2w)|2/|d8‘L(2w)|2 and dT1HG
=|dM"(3w)|?/|dy"(3w)|?. The interactions of the nonlinear
dipoles at the generated frequency is taken into account for
both SHG and THG effects. The distributions of local en-
hancements are calculated for two wavelengthsiiland 10

um, for the light polarized in the plane of the film. As was
discussed above, the largest average enhancements are
achieved in the infrared region for thepolarized incident
light.
In the counterplots of Figs. 5 and 6, the white spots cor-
respond to higher intensities whereas the dark areas represent
the low-intensity zones. We can see that spatial positions of
the “hot” and “cold” spots in the local enhancements at the
fundamental and generated frequencies are localized in small
spatially separated parts of the film. Since the fundamental
and generated frequencies are different, the fundamental and
generated waves excite different optical modes of the film
surface and, therefore, produce different local-field distribu-

FIG. 4. The average enhancement factors for THG from a selftions. With the frequency alternation, the locations of the
affine silver surface, for the light polarized in the ¥) plane of the

“hot” and “cold” change for all the fields at the fundamen-
tal and generated frequencies. Thus different waves involved
in the nonlinear interactions in a self-affine thin film produce
nanometer-sized “hot” spots spatially separated for different

THG involves higher power of electric fields, so that thewaves. A similar effect was previously shown for Raman
dominance of local fieldg; overE, leads to larger values of scattering from self-affine film¥

enhancement factors.

The values of the local-field intensities in Figs. 5 and 6

In Figs. 5 and 6, we plot spatial distributions for local- grow with the wavelength. The highest local enhancement

FIG. 5. Spatial distributions of the local enhancements for the field at the fundamental wavetgnigthSHG signal,gsy g, and for

THG signal,gry¢ - The corresponding counter plots for the spatial distributions are also shown in all cases. The fundamental wavelength is

A=1 um. The linear scales are used in all cases. The highest enhancement values in the figures are agfolowls®, gsyc=5

X 108, andgTHG: 2X 1012
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‘\, "‘..4 b
4} (A / lj’ |

FIG. 6. Same as Fig. 5, but for=10 um. The highest enhancement values are as follayws3X 10%, gsnue=10" and grpg
=2x10',

factor in the spatial distributiog changes from % 10° at  generated in different points is much larger for high-order
A=1 um to 3xX 10* atA=10 um. For the SHG and the THG harmonic generation than for DFWM.
spatial distributions, the maximum increases from B? to In Figs. 8a) and 8b), we show the calculated real and
10" and from 2x 10* to 2 10'°, respectively. Such behav- imaginary parts of the Kerr enhancement factor. We calcu-
ior correlates with the fact that the average enhancement fa¢ated the enhancements using formul@8) and (70). The
tor increases toward the infrared spectral region. We emph&hhancement factoi§y s for the incident light polarized
size that the local enhancements can exceed the average digallel to the film’'s plane 4=x.,y) are the largest, and
by several orders of magnitude. For example, comparison giPProximately equal to each other f8r=x,y, i.e., |Gy x
the maximum local enhancement with the average enhancé|Ck.yyl =[Gk x|~ |Gk yxl. Note, however, that the signs
ment forA=1 um shows that the maximum intensity peaks ;s
exceed the average intensity by approximately 2 orders ol
magnitude for SHGQcf. Figs. 3 and 5and by 4 orders of
magnitude, for THQcf. Figs. 4 and b This occurs, in part,
due to the fact that the spatial separation between the ho10™
spots can be significantly larger than their characteristic
sizes, and also due to destructive interference between th
generated fields in different peaks. 108

The giant local enhancements of nonlinear procegsgs,
up to 10° for THG at 10um) open a fascinating possibility
of the fractal-surface-enhanced nonlinear optics and spec
troscopy of single molecules. Also, if the near-field scanning 10*
optical microscopy is employed, nonlinear nano-optics and
nanospectroscopywith nanometer spatial resolutiprbe-
come possible. In contrast, with the conventional far-zone
optics only the average enhancement of optical processes cs
typically be measured.

The huge average enhancement for DFWM on a self- \ | | | | | : A (rllm)
affine film is illustrated in Fig. 7. The larger values of en- 10~
hancement for DFWM, compared to THG, are explained by 200 400 600 800 1000 1200 1400 1600 1800
the fact that the interaction of nonlinear dipoles is stronger FIG. 7. The average DFWM enhancement factors from a self-
when the generated frequency is equal to the fundamentakfine silver surface, for the light polarized in the §) plane of the
one. Also, the role of destructive interference for the fieldfiim (Gprwu=G)) and in the normat direction Gprwm=G,)-
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107 E T T T T T T T Gk=2, -xyCk.ap/4. The calculations show that

|Re(Gx) |Re(Gk)[~|Im(G)|, and both are especially largep to
~10") in the near-infrared. With the calculate@(\),
spectral dependences for the nonlinear corrections to absorp-
10° - ‘ tion and refraction can be found using formul&d), (62),
and(65) and the\ dependence of the “seed” nonlinear sus-
ceptibility x(®.

10° 7] VIl. SUMMARY AND CONCLUDING REMARKS

In this paper nonlinear optical effects on rough surfaces of
. metal films were studied in the quasistatic approximation.
1001 T The spectral dependence of the average enhancement factors
for optical nonlinearities on a silver self-affine surface was
calculated in a wide spectral range. The average enhance-
ments are very large, reaching values of up té a6d 13°
for the second- and third-order nonlinear optical processes,
A (nm) respectively. The huge enhancements are due to excitation of
L L L L L 1 L strongly inhomogeneous dipolar modes of a self-affine film.
(a) 200 400 600 800 1000 1200 1400 1600 1800 In addition to the average enhancement factors, we calcu-
lated the spatial distributions of the local enhancements on
the surface. In certain areas the local enhancements can ex-
ceed the average ones by several orders of magnitude. The
existence of these extremely high peaks in the local gener-
ated signalg*hot” spots) makes feasible the nonlinear op-
tical probing of single molecules adsorbed on the self-affine
surface of a thin film.
The spatial distributions of local enhancements for the
1 second and the third harmonic generation were calculated for
the wavelengths Jum and 10um. It is shown that maxi-
mums of the local enhancements at the fundamental and gen-
erated frequencies are spatially separated on the surface. The
spatial positions of the “hot” spots at the fundamental and
generated frequencies are different because they resonate, in
general, with different surface modes. The spatial positions
of the “hot” spots change with the wavelength of the ap-
plied field.
| | | | | | A Enm) The observed giant enhancements are related to the sur-
(b) 200 400 600 800 1000 1200 1400 1600 1800 face fractal geometry. In self-affine thin films, optical exci-
tations tend to be localized in small subwavelength regions,
FIG. 8. The absolute values of the réBe(Gx)| and imaginary  so that the local fields fluctuate strongly on the surface of the
[Im(Gy)| parts of the average enhancement factors for the Kerrfilm. A typical pattern of the local field distribution consists
nonlinearity for the light polarized in thex(y) plane of the film  of a number of high peaks separated by distances larger than
(see the text for details the characteristic peak sizes. Such field distributions can be
detected in the near-zone region, whereas the avdémge
of both ReGy ) and IM(Gy ) can be different for dif- the whole surfaceenhancement factqrs are rggistered in the
ferent tensor ’components and strongly vary with This far zone. Thg recent dgvelopments_ln experimental methpds
means that for soma, the a-polarized incident light can of the near-field scanning optical microscopy make possible

undergo self-focusing in, say, tixedirection and defocusing measurements of local fiel_ds,4ioncluding nonlinear ones, with
in the y direction; the situation can be reversed for somethe subwavelength resolutidf
other wavelength. Similarly, competition between different
modes may result in both positive and negative corrections to
the resultant nonlinear absorption, depending on the polar- The authors are thankful to Z. Charles Ying and Vladimir
ization and wavelength of the applied field. These interesting®. Safonov for very useful discussions. This research was
properties can be important for various applications of rougtsupported by NSF Grant Nos. DMR-9500258 and DMR-
thin films, for example, as photonic devices, such as optica$623663, and NATO Grant No. CRG 950097. Also, ac-
switches. knowledgment is made to the donors of The Petroleum Re-
In Figs. §a) and 8b), we plot the absolute values of the search Fund, administered by the ACS, for partial support of
real and imaginary parts dby defined, for simplicity, as this research.
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