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Strong fluctuations of local fields may result in very large optical nonlinearities in small-particle composites.
Enhancement associated with particle clustering is found for a number of optical processes, including four-
wave mixing~FWM!, third-harmonic generation~THG!, Raman scattering, and nonlinear refraction and ab-
sorption in Kerr media. Field fluctuations and optical nonlinear susceptibilities are especially large in fractal
clusters. The enhancement of optical processes is expressed in terms of the resonant linear absorption by
collective dipolar eigenmodes in a cluster, and quality factors,q, of the modes (q@1). It is shown that the
susceptibility of a composite material consisting of random small-particle clusters is proportional toq3 for
Raman scattering and the Kerr optical nonlinearity, and toq4 andq6 for THG and FWM, respectively. For all
of these processes, a spectral dependence of the effective susceptibility is found. Broad-scale numerical simu-
lations of the optical response in small-particle composites are performed to complement the theory. The
simulations are in reasonable agreement with available experimental data.

I. INTRODUCTION

Nonlinear electrical and optical properties of nanostruc-
tured composites have attracted much attention in recent
years.1–14Composite materials can have much larger nonlin-
ear susceptibilities at zero and finite frequencies than those
of ordinary bulk materials. The enhancement of the nonlinear
optical response in composites is due to strong fluctuations
of the local fields; these fluctuations are especially large in
composites with fractal morphology.5,15,16 Nanostructured
composite materials are potentially of great practical impor-
tance as media with an intensity-dependent dielectric func-
tion and, in particular, as nonlinear filters and optical bistable
elements. A typical system under consideration is a compos-
ite material in which a nonlinear material is embedded in a
host medium which can be linear or nonlinear. The response
of a nonlinear composite can be tuned by controlling the
volume fraction and morphology of constitutes.

Stroud and Hui,1 and Flytzanis with co-workers,7 consid-
ered the electromagnetic response of nonlinear particles ran-
domly embedded in a linear host in the dilute limit when the
interaction between particles is small. Perturbation expan-
sions that allow one to determine small corrective terms for
nonlinear susceptibility were developed by Yu, Hui, Stroud,
and their co-workers8 ~some related problems, including the
case of spherical nonlinear inclusions, have also been studied
by Bergman with co-workers6!. These authors also consid-
ered the case where inclusions and host material may possess
nonlinearities up to the fifth order.

Sipe and Boyd studied nonlinear susceptibility of com-
posites within the Maxwell-Garnett model.9 Hui and Stroud
have generalized the differential effective-medium approxi-
mation, which they developed previously to model the effec-
tive linear response of a fractal cluster, to treat the effective
nonlinear response.10 Their analysis showed that the cluster-
ing of particles can result in an appreciable enhancement of
the nonlinear response per particle~relative to the totally
random case! only when a host is a better conductor than the
nonlinear inclusion. A similar conclusion was obtained by Yu

who applied a multifractal analysis of the voltage distribu-
tion for a deterministic fractal cluster embedded in the hier-
archical lattice.11

Strong enhancement of nonlinear susceptibilities at zero
frequency near a percolation threshold was pointed out by
Zhang and Stroud.12 Critical behavior of nonlinear compos-
ites near the percolation threshold was also analyzed by Hui
and by Yu with co-workers.13 Using the effective-medium
approximation ~EMA! and the transfer-matrix numerical
simulations for random networks, Zhang and Stroud have
obtained a strong enhancement of cubic nonlinear suscepti-
bility in a metal-insulator composite near surface-plasmon
resonances.12 Recently, Levy, Bergman, and Stroud showed
that an induced cubic nonlinearity can be generated in a
composite, even though none of its components possess it
intrinsically.14

The aggregation of particles often results in fractal clus-
ters. The number of monomers in a fractal cluster,N, scales
asN5(Rc /R0)

D, whereD is an index called the Hausdorff
dimension,Rc is the radius of gyration, andR0 is a typical
separation between nearest neighbors. The pair-correlation
function,g(r ), in a fractal cluster also has a power-law de-
pendence,g(r )}r D2d, whered is the dimension of the em-
bedding space. A fractal is called nontrivial ifD,3.

Shalaev and his co-workers2–5 studied nonlinear optical
properties of fractal aggregates and showed that the aggrega-
tion of initially isolated particles into fractal clusters results
in a huge enhancement of the nonlinear response within the
spectral range of collective dipolar resonances~e.g., surface-
plasmon resonances!. The eigenmodes were found by diago-
nalizing the interaction operator of the dipoles induced by
light on particles forming the cluster. Giant fluctuations of
the local fields were studied by Stockman with co-workers.16

Many of the dipolar eigenmodes are strongly localized in
different parts of a cluster with random local structure16–18

~however, there are delocalized modes as well!; this leads
ultimately to strong fluctuations of local fields in fractals.

The prediction of a huge enhancement of optical nonlin-
earities in fractal clusters2 was then confirmed
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experimentally3 for the example of degenerate four-wave
mixing ~DFWM!. Aggregation of initially isolated silver par-
ticles into fractal clusters in this experiment led to a
106-fold enhancement of the efficiency of the nonlinear four-
wave process.

Numerical simulations of the nonlinear optical response
in fractal clusters have been previously performed for the
special case of diluted clusters.19 This model can describe, in
particular, nanoparticles in a fractal host such as a polymer-
tree. In the central part of the diluted cluster spectrum, the
nonlinear optical response scales as a function of the gener-
alized frequency variable,4 whereas, in the wing, the re-
sponse can be well described by the binary approximation.2

In this paper we present large-scale numerical simulations
for a number of nonlinear optical processes in composite
materials consisting of original nondiluted fractal clusters. In
particular, the model of cluster-cluster aggregates~CCA’s!
with D'1.78, that provides a good description of metal col-
loid aggregates, is used in the simulations. The results of
calculations are averaged over an ensemble of 500-particle
CCA’s. Particles in a cluster are assumed to interact via light-
induced dipolar fields resulting in the formation of collective
eigenmodes. The simulations are based on exact formulas,
describing the nonlinear optical responses in an arbitrary
~fractal or nonfractal! small-particle composite. These for-
mulas are expressed in terms of the ensemble-average prod-
ucts of local fields~or local linear polarizabilities! that are
found through the decomposition over the dipolar eigen-
modes of a cluster. A comparison with available experimen-
tal data is also performed.

The paper is organized as follows. In Sec. II we present
the results of calculations of local-field intensities in fractal
and nonfractal clusters. In Sec. III we derive formulas that
describe enhanced optical processes in composites and
present the results of our numerical simulations. Specifically,
we consider the following optical phenomena: four-wave
mixing, harmonic generation, Raman scattering, and nonlin-
ear refraction and absorption in Kerr media. The obtained
results are briefly summarized and discussed in concluding
Sec. IV.

II. ENHANCED LOCAL FIELDS IN SMALL-PARTICLE
COMPOSITES

Similar to the preceding paper,20 we consider a system of
N polarizable particles~monomers! with the dipole-dipole
interactions between them at the optical frequency. The
monomers are positioned at the pointsr i ( i51, . . . ,N) and
assumed to be much smaller than the wavelength,l, of the
incident wave. For the sake of simplicity we restrict our con-
sideration to the quasistatic limit~i.e., assume thatRc!l).
Then, the interaction operator has the form

Wab
i j [~ iauWu jb!5H @dab23na

~ i j !nb
~ i j !#r i j

23 , iÞ j ,

0, i5 j ,
~1!

where Greek indices stand for Cartesian components~the
summation over repeated Greek indices is implied!,
r i j[r i2r j , andn

( i j )[r i j /r i j .
The enhancement of optical processes in a small-particle

composite occurs because local fields exhibit strong fluctua-

tions that significantly exceed the applied field. The local
field, Ei , acting on thei th particle ~monomer! in a cluster
can be found from the theory of the linear optical response:20

Eia5a0
21a i ,abEb

~0! , ~2!

whereE(0) is the applied field,a0 is the polarizability of the
individual monomer, anda i ,ab is the local polarizability of a
monomer in a cluster which is related to the local dipole
moment dia induced on thei th particle via the formula
dia5a i ,abEb

(0) @cf., Eq. ~13! of the preceding paper20#. Note
that since we restrict our consideration to the quasistatic ap-
proximation, byE(0), Ei , anddi we mean the amplitudes of
the fields and dipoles, i.e., the spatial- and time-varying fac-
tors are omitted. By solving the coupled-dipole equations
~CDE’s! in the quasistatic approximation, we obtain@see
Eqs.~1!, ~7!, and~12! of the preceding paper20#

a i ,ab5(
n j

~ iaun!~nu jb!

~wn2X!2 id
, ~3!

whereX[2Re@a0
21#,d[2Im@a0

21#, andwn and un) are
the eigennumbers and eigenvectors of the interaction opera-
tor: (nuWum)5wndnm ; accordingly, (iaun) are the compo-
nents of the vectorun) in the orthogonal basisu ia) ~see the
preceding paper20!.

The light frequencyv enters in the basic equations~2!
and ~3! implicitly via the complex variable
Z5a0

21(v)[2@X1 id#. Material and geometrical proper-
ties of monomers affect the problem only via the parameter
Z. The real part,X5X(v), plays the role of a spectral vari-
able instead ofv, and the imaginary part,d.0, describes
dissipation in a monomer; in general,d can also depend on
v. ~Note thata0 may describe not only the polarizability of
a simple monomer, such as a sphere, but also the polarizabil-
ity of a composite monomer, such as a coated sphere.! The
dependences ofX and d on v for some real systems are
discussed in the preceding paper.20

The parameter characterizing enhancements of the local-
filed intensities can be defined as follows:

G5^uEi u2&/uE~0!u2, ~4!

where the symbol̂ •••& denotes an average over an en-
semble of random clusters. As shown in Ref. 16, the en-
hancementG is related to the cluster absorption, Im
a(X)5(1/3)Im^a i ,aa&, as follows:

G5d@11X2/d2#Ima~X!. ~5!

According to~5!, the enhancement factorG'(X2/d)Ima for
uXu@d, i.e., it can be very large, if Ima(X) is not too small.
Thus, we anticipate a huge enhancement for a system with a
strong inhomogeneous broadening, when Ima(X) is rela-
tively large in a wide range ofuXu, including uXu@d.
~Clearly, in the far Lorentz wing, whenuXu→`, the absorp-
tion is Ima'd/X2 andG'1.)

As shown in the preceding paper~cf., Figs. 1, 2, and 3 of
Ref. 20!, inhomogeneous broadening in fractal cluster-cluster
aggregates~CCA’s! is significantly larger than in nonfractal
composites, such as a random gas of particles~RGP! and a
close-packed sphere of particles~CPSP!. ~For details on the
mentioned models and on the corresponding numerical simu-
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lations, see Sec. III of Ref. 20.! Accordingly, we expect a
significantly larger enhancement of the local field-intensities
in fractal CCA’s.

Note that, since in fractals the fluctuations are very large
so that^uEu2&@^uEu&2,5,16 we have^uDEu2&'^uEu2&; there-
fore, in this case,G characterizes both the enhancement of
local fields and their fluctuations as well. In other words, the
larger fluctuations, the stronger enhancement.

Below we present the results of calculations ofG for
various small-particle composites. All quantities are ex-
pressed in units such that the diameter of a particle,a, is
equal to one. Our simulations were performed for 500-
particle clusters and were averaged over an ensemble of 10
random cluster realizations.21–25

In Fig. 1 we show the results of simulations for the en-
hancement factor,G, in silver CCA’s in vacuum compared
with that for nonfractal composites, RGP and CPSP.@In con-
trast to calculations of the preceding paper,20 the material
constants of silver were taken here from Ref. 26 instead of
Ref. 27; these two sources give slightly different values of
e(l). Further, no possible corrections associated with elec-
tron scattering are taken into account.# For the quantities
X(l) and d(l) in ~5!, we used formulas~21!–~23! of the
preceding paper20 ~the factor 2k3/3 in the expression ford
was neglected!. The quantitya(X) was calculated by nu-
merically solving the CDE’s in the quasistatic limit; in this
limit, the interaction operator,Ĝ[2V̂, in Eq. ~1! of the
preceding paper20 is equal to theŴ defined above. To solve
the CDE’s, we used the method based on the diagonalization
of the interaction matrixW ~for details, see Sec. III of the
preceding paper.20!

As seen in Fig. 1, the enhancement of local-field intensi-
ties in fractal CCA’s is significantly larger than in nonfractal
RGP and CPSP clusters, as was anticipated. The enhance-
ment can reach very high values,;103, and increases with
l. This occurs because both the localization of fractal eigen-
modes and their mode quality factor (q;1/d
;ue2ehu2/3e9eh) increase for the modes located in the

long-wavelength part of the spectrum@see also Fig. 5 and
Eq. ~21! of the preceding paper20#.

We next consider a more detailed comparison between
fractal small-particle composites and non-fractal inhomoge-
neous media~see also the discussion in Sec. VI of Ref. 20!.
The simulations were performed for RGP and CCA’s having
the same volume fraction,p, filled by metal. The value ofp
in a fractal cluster is very small~in fact, p→0 atRc→`).
According to the Maxwell-Garnett theory,6 there is only one
resonant frequency in conventional (d5D) media with
p!1; the resonance is just slightly shifted from the reso-
nance of an isolated particle occurring atX(v)50. In con-
trast, in fractal media, despite the fact thatp is asymptoti-
cally zero, there is a high probability,}r D2d, of finding a
number of particles in close proximity to any chosen one.
Thus, in fractals, there is always a strong interaction of a
particle with others distributed in its random neighborhood.
As a result, there exist localized eigenmodes with distinct
spatial orientations in different parts of a cluster, where the
location depends on the frequency and polarization charac-
teristics of the mode. As mentioned above, some of these
modes are significantly shifted to the long-wavelength part
of the spectrum where their quality factors,q, are much
larger than that for a noninteracting particles atX(v)50.
Thus, the dipole-dipole interaction of constituent particles in
a fractal cluster ‘‘generates’’ a wide spectral range of reso-
nant modes with enhanced quality factors and with spatial
locations which are very sensitive to the frequency and po-
larization of the applied field. The localization of modes in
various random parts of a cluster also brings about giant
spatial fluctuations of the local fields, when one moves from
‘‘hot’’ to ‘‘cold’’ zones corresponding to high and low field-
intensity areas, respectively.

In the case of a CPSP, the volume fraction,p, is not small.
However, since the dipole-dipole interaction for a three-
dimensional CPSP is long range, one expects that eigen-
modes are delocalized over the whole sample, so that all
particles are involved in the excitation. Accordingly, fluctua-
tions ~and enhancements! of local fields are much smaller
than in a fractal aggregate where the modes are localized.

As seen in Fig. 1, enhancements and fluctuations of local
fields in CPSP and RGP are significantly less than those in
the case of fractal CCA’s, in accordance with the above ar-
guments.

The enhanced local fields result in enhancements of opti-
cal processes considered below. Based on the simulations
presented above, we anticipate that in fractal composites,
where the fluctuations are especially strong, the enhance-
ments can be very large. Below, we analyze various en-
hanced optical phenomena in a composite material consisting
of fractal CCA’s.

III. ENHANCED OPTICAL PROCESSES

In this section we consider the intensity-dependent dielec-
tric function associated, in particular, with the Kerr optical
nonlinearity and harmonic generation. Enhanced Raman
scattering is also analyzed.~Note that although spontaneous
Raman scattering is a linear optical process, its enhancement,
as will be shown, is;^uEi /E

(0)u4&, i.e., has a nonlinear de-

FIG. 1. Enhancement factors,G, of local field intensities plotted
againstl for 500-particle aggregates: fractal cluster-cluster aggre-
gates, CCA’s~solid line!, a random gas of particles~RGP! with the
same as for CCA’s volume fraction of metal~short-dashed line!, and
a close-packed sphere of particles, CPSP~long-dashed line!.
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pendence on the field and, therefore, we consider the en-
hanced Raman scattering in this paper which is concerned
with nonlinear optics.! We derive formulas for enhancement
factors for various optical processes in a small-particle com-
posite and perform numerical simulations based on these for-
mulas.

A. Four-wave mixing

Four-wave mixing~FWM! is determined by the nonlinear
polarizability28

babgd
~3! ~2vs ;v1 ,v1 ,2v2!, ~6!

wherevs52v12v2 is the generated frequency, andv1 and
v2 are the frequencies of the applied waves. Coherent anti-
Stokes Raman scattering~CARS! is an example of FWM. In
one elementary CARS process, twov1 photons are trans-
formed intov2 andvs photons. Another example is degen-
erate FWM~DFWM!; this process is used in optical phase
conjugation~OPC! which results in complete removal of op-
tical aberrations.28 In DFWM, all waves have the same fre-
quency (vs5v15v2) and differ only by their propagation
directions and, in general, by polarizations. In a typical OPC
experiment, two oppositely directed pump beams, with field
amplitudesE(1) andE8(1), and a probe beam, with amplitude
E(2) ~and propagating at a small angle to the pump beams!,
result in an OPC beam which propagates against the probe
beam. Because of the interaction geometry, the wave vectors
of the waves satisfy to the relationk11k185k21ks50.
Clearly, for the two pairs of oppositely directed beams, that
have the same frequencyv, the phase-matching conditions
are automatically fulfilled.28

Below we consider DFWM process where the total ap-
plied field isE(0)5E(1)1E8(1)1E(2). The nonlinear polar-
izability, b (3), that results in DFWM, also leads to nonlinear
refraction and absorption~to be considered in Sec. III D! and
is associated with the Kerr optical nonlinearity. For coherent
effects, including the ones discussed in this section, averag-
ing is performed over a generated field amplitude~rather
than intensity! or, equally, over nonlinear polarizability. Note
also that the nonlinear polarizability,b (3), can be associated
with either monomers or molecules adsorbed on them.

The orientation-average nonlinear polarizability in an iso-
tropic medium can be expressed, in general, through two
independent scalar functionsf s and f a as

28

^babgd
~3! &05 f sDabgd

1 1 f aDabgd
2 , ~7!

Dabgd
1 5

1

3
$dabdgd1dagdbd1daddbg%, ~8!

Dabgd
2 5

1

3
$dabdgd1dagdbd22daddbg%, ~9!

where the symbol̂ •••&0 denotes an average over orienta-
tions. The termsf sD

1 and f aD
2 are totally and partially

symmetric parts ofb (3), respectively~overab andgd).
When a cluster consists of monomers, the field acting

upon them is the local fieldEi rather than the applied field
E(0). Also, the dipolar interaction of nonlinear dipoles

should be included. Taking these arguments into account, we
write the following system of equations for the light-induced
nonlinear dipoles:

di ,a
NL53babgd

~3! Ei ,bEi ,gEi ,d* 1a~vs!(
j
Wab

i j dj ,b
NL , ~10!

where the prefactor 3 represents the degeneracy factor that
gives the number of distinct permutations of the frequencies
v, v, and2v.28

Hereafter, we assume that the corrections to the local field
Ei associated with nonlinear dipole momentsdi

NL are small
and can be neglected. This allows us to findEi @see Eqs.~2!
and~3!# by solving first the CDE’s for linear dipolesdi , and,
then, to substitute these fields to the CDE’s~10! for nonlinear
dipolesdi

NL .
Using similar procedures that were used to solve the

CDE’s for linear dipoles@see Eqs.~5!–~7! of the preceding
paper20 and Eqs.~2! and ~3! of this paper#, we obtain the
solution of ~10! in the form

dia
NL53Zbb8bgd

~3! (
n j

Ln~ iaun!~nu jb8!Ej ,bEj ,gEj ,d* .
~11!

Substituting the expression~2! for the local fieldsEi , we
find for the mean nonlinear dipole moment

^dia
NL&53^babgd

~3c! &Eb
~0!Eg

~0!Ed
~0!* , ~12!

where

^babgd
~3c! &5Z3Z* ^ba8b8g8d8

~3! &0^a j ,a8aa j ,b8ba j ,g8ga j ,d8d
* &

~13!

represents the effective nonlinear polarizability of a particle
in a cluster. To obtain~13!, we assumed that averaging over
the orientations of a nonlinear particle and averaging over an
ensemble of clusters can be performed independently.

The substitution of̂ babgd
(3) &0 from ~7!–~9! into ~13! re-

sults in several products like the following

da8b8dg8d8@a j ,a8aa j ,b8ba j ,g8ga j ,d8d
* #5~ â j

Tâ j !ab~â j
Tâ j* !gd

~14!

where (â j
Tâ j )ab[a j ,a8aa j ,a8b, and (âJ

Tâ j* )gd

[a j ,b8ga j ,b8d
* ~the T symbol in âT denotes a transposition

of the matrix â!. Averaging over the orientations in~14!
gives

^~ â j
Tâ j !ab~â j

Tâ j* !gd&0

5
1

15
dabdgd@2 Tr~ â j

Tâ j !Tr~ â j
Tâ j

* !

2Tr~ â j
Tâ j â j

Tâ j* !#1
1

30
~dagdbd1daddbg!

3@3 Tr~ â j
Tâ j !Tr~ â j

Tâ j* !2Tr~ â j
Tâ j â j

Tâ j* !#. ~15!

@Formula ~15! can be proved by performing a contraction
over all pairs of indices.#

Proceeding similarly with the other products of thed
symbols@originating fromDabgd

6 in ~7!–~9!# and polarizabil-
ities a i in ~13!, we obtain
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^babgd
~3c! &5FsDabgd

1 1FaDabgd
2 , ~16!

where

Fs5
1

15
Z3Z* f s^Tr~ â i

Tâ i !Tr~ â i
Tâ i* !12 Tr~ â i

Tâ i â i
Tâ i* !&,

~17!

Fa5
1

6
Z3Z* f a^Tr~ â i

Tâ i !Tr~ â i
Tâ i* !2Tr~ â i

Tâ i â i
Tâ i* !&. ~18!

According to~16!, the symmetry of the nonlinear polariz-
ability of an isolated monomer@see~7!–~9!#, is reproduced
in the mean polarizability of a cluster. The totally symmetric
part of the monomer’s nonlinear polarizability ‘‘generates’’ a
totally symmetric part of the cluster polarizability (Fs} f s);
the same is valid for the partially symmetrical parts (Fa
} f a).

If the laser frequency lies far outside a band of the reso-
nant modes of a cluster, i.e.,uX(v)u is much larger than all
uwnu in ~3!, then,a i'a0 for all i ~recall thatZ5a0

21). In
this case, the interaction between particles in a cluster is not
important, and, as follows from~17! and ~18!, Fs5 f s and
Fa5 f a , i.e., the nonlinear polarizability of a particle in a
composite is equal to that of an isolated particle.

We now consider the enhancement of DFWM that accom-
panies the aggregation of particles into clusters. Let particles
be first randomly embedded and well separated in a linear
host medium. We assume that the volume fraction,p, that
the particles occupy is small and one can neglect their inter-
action. Then, let particles aggregate in many random clusters
that are relatively far from each other~i.e., the inter-cluster
interaction is still negligible!. Thus, after the aggregation, we
obtain a mixture of many clusters~each cluster may consist
of thousands of particles!. The average volume fraction filled
by particles remains, obviously, the same. However, particles
within one cluster now strongly interact via light-induced
dipolar fields.

The described scenario of aggregation occurs, for ex-
ample, in a silver colloid solution. In that case one first pro-
duces a silver sol~nonaggregated particles in solution!, e.g.,
by reducing silver nitrate with sodium borohydride.24 Addi-
tion of an adsorbent~like phthalizine! promotes aggregation,
forming fractal colloid clusters with fractal dimension
D'1.78 ~see also the preceding paper20!.

Before the aggregation, the nonlinear polarization,P(3),
of particles in a spherically isotropic medium can be pre-
sented as28

P~3!~v!5aE~0!~E~0!
•E~0!* !1

1

2
bE~0!* ~E~0!

•E~0!!,

~19!

where the coefficientsa andb are related tof s and f a intro-
duced in~7! as follows:

a5
2

3
~ f s1 f a!pv0

21 , b5
2

3
~ f s22 f a!pv0

21 ~20!

with v0 being the volume of one particle@for a sphere,
v05(4p/3)Rm

3 #.

Since after the aggregation the medium remains isotropic,
on average, the nonlinear polarization,P(3c), of a composite
consisting of clusterized particles has similar to~19! form

P~3c!~v!5AE~0!~E~0!
•E~0!* !1

1

2
BE~0!* ~E~0!

•E~0!!,
~21!

whereA andB, are given by

A5
2

3
~Fs1Fa!pv0

21 , B5
2

3
~Fs22Fa!pv0

21 , ~22!

with Fs andFa defined in~17! and ~18!, respectively. Note
that expression~21! contains terms}(E(1)

–E8(1))E(2)* that
lead to a OPC signal in DWFM; it also contains the terms
leading to the Kerr nonlinear refraction~see Sec. III D!.

The nonlinear susceptibility,x̄abgd
(3c) , of a composite ma-

terial is defined via the relation

Pa
~3c!~v!53x̄abgd

~3c! ~2v;v,v,2v!Eb
~0!Eg

~0!Ed
~0!* ,

where x̄abgd
(3c) can be expressed in terms of the ensemble-

average nonlinear polarizability,^babgd
(3c) &, as follows:

x̄abgd
~3c! ~2v;v,v,2v!5pv0

21^babgd
~3c! ~2v;v,v,2v!&.

~23!

In particular, ifb (3) is due to nonresonant electronic re-
sponse of adsorbate molecules~the aggregate modes, how-
ever, can be in resonance with the exciting field!, the follow-
ing relation is valid:a5b,28 i.e., f a50 @see Eqs.~20!#, and,
using ~17!, ~18!, ~20!, and~22!, we obtain

A

a
5
B

b
5
Fs

f s
. ~24!

The efficiency of four-wave mixing is proportional to the
generated amplitude squared, and the enhancement due to
particle clustering is given by

GFWM5uFs / f su2

5
~X21d2!4

225

3u^Tr~ â i
Tâ i !Tr~ â i

Tâ i* !12 Tr~ â i
Tâ i â i

Tâ i* !&u2.
~25!

We can easily generalize~25! for the case of a nondegenerate
FWM, such as CARS:

GFWM5uFs / f su2

5
~X21d2!4

225

3u^Tr@â i
T~vs!â i~v1!#Tr@â i

T~v1!â i* ~v2!#

12 Tr@â i~vs!
Tâ i~v1!â i

T~v1!â i* ~v2!#&u2.

For a nonresonant excitation, whenuX(v)u@uwnu and
thereforea i'a0 , we see from~25! thatG51, i.e., there is
no enhancement in this case.

We consider now the expression~25! in more detail and
introduce the quantitygFWM defined as

gFWM[Tr~ â i
Tâ i !Tr~ â i

Tâ i* !12 Tr~ â i
Tâ i â i

Tâ i* !. ~26!
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Using ~3!, this expression can be transformed to

gFWM5 (
nmlk

@Mnmlk12Knmlk#LnLmL lLk* , ~27!

whereLn[@(wn2X)2 id#21,

Mnmlk[ (
j j 8 j 9 j-

~ iaun!~nu jb!~ iaum!~mu j 8b!

3~ ia8u l !~ l u j 9b8!~ ia8uk!~ku j-b8!, ~28!

and

Knmlk[ (
j j 8 j 9 j-

~ iaun!~nu jb!~ iaum!~mu j 8b8!

3~ ib9u l !~ l u j 9b8!~ ib9uk!~ku j-b!. ~29!

According to ~25! and ~26!, the enhancement factor,
GFWM , has the form

GFWM5
~X21d2!4

225
u^g FWM~X!&u2. ~30!

Performing the integration in~27!, we find the following
sum rule for functiongFWM :

E
2`

`

gFWM~X!dX52p i (
nmlk

@Mnmlk12Knmlk#RnkRmkRlk ,

~31!

where

Rnm[
1

2id1~wn2wm!
. ~32!

The product of theL factors in Eq.~27! can be rewritten
as

LnLmL lLk*5Rlk$LnLmL l2RmkLnLm

1RnkRmk~Ln2Lk* !%. ~33!

It is instructive to find firstgFWM
r which is due to the

‘‘resonant’’ difference of the eigenmodes in~27!, i.e., to cal-
culate the contribution of only those modes for which
uwn2wmu!d. In this case, theR factors become very large.
Then, retaining in~33! only the term with the highest power
of R and using~3!, we obtain from~27!–~29! the following
ensemble-average expression:

^gFWM
r ~X!&52

15

4d3
Ima~X!. ~34!

The quantity^gFWM
r (X)& satisfies the sum rule

E
2`

`

^gFWM
r ~X!&dX52

15p

4d3
. ~35!

For diluted clusters, it was shown that the enhancement
factor is closely approximated by the resonant contribution.4

Our conjecture is that for the case of nondiluted clusters the

expression̂gFWM
r (X)& also describes properly the functional

dependence onX and d. Then, the enhancement factor,
GFWM , can be presented as

GFWM'CFWM

~X21d2!4

d6
@ Ima~X!#2, ~36!

where the prefactor,CFWM , should be considered as an ad-
justable parameter.

In Fig. 2, we show the results of numerical calculations of
the enhancement factor,GFWM , in CCA’s for X,0 ~a! and
X.0 ~b!. The simulations were performed using formulas
~25! and~3!. The solid lines in Fig. 2 describe the results of
calculations based on formula~36!, with CFWM found from
the relation GFWMd651 in its maxima, occurring at
X'64. The dashed lines represent a power-law fit for the

FIG. 2. The enhancement of degenerate or nearly degenerate
four-wave mixing,GFWM , in CCA’s for negative~a! and positive
~b! values of the spectral variable,X. See the text for further expla-
nations.
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range 0.1<uXu<3 (d50.05). The computed exponents
(8.3161.00 forX,0 and 8.0061.00 forX.0! are close to
8 for both positive and negative values ofX. This value for
the exponent is not surprising, since, within the interval
uXu<3, the dependence of Ima on X ~see Fig. 1 of the pre-
ceding paper20! in ~36! is relatively weak in comparison with
that which is due to the factorX8 in ~25! and ~36!. This X
dependence differs from that obtained for diluted CCA’s,
where the absorption has a scaling dependence, Im
a;uXudo21, with do'0.360.1,21 andGFWM}uXu612do, in
accordance with~36!.4

As seen in Fig. 2, the enhancement strongly increases
toward larger values ofuXu. This occurs because the local
fields become stronger for larger values ofuXu ~according to
Fig. 1, the local-field intensities increase in the long-
wavelength part of the spectrum which corresponds to larger
uXu with X,0!.

It also follows from Fig. 2 that the productGFWMd6 re-
mains, on average, the same for the two very different values
of d, 0.01 and 0.05. This indicates that, in accordance with
~36!, the enhancement is proportional to the sixth power of
the resonance quality factor,GFWM}q6 (q;d21) and
reaches huge values in the maxima occurring atX'64.

In the end of this section, we mention that a millionfold
enhancement of DFWM due to the clustering of initially iso-
lated silver particles in a colloidal solution was experimen-
tally obtained in Ref. 3. For spherical particles of radius
Rm , the value ofX and d can be obtained from formulas
~21! and~22! of the preceding paper.20 Using the data of Ref.
26 for the material constants in silver, we find that for
l5532 nm ~used in the experiment! X'22.55 and
d'0.05. The coefficientRm

23 in Eqs. ~21! and ~22! of Ref.
20, measured in units ofa51, was chosen to be as
Rm

23[(a/Rm)
354p/3 ~for details, see Sec. V of the preced-

ing paper20!.
As seen in Fig. 2~a!, for X522.55 andd50.05, the

value ofGFWM isGFWM'106, in agreement with the experi-
mental observations of Ref. 3.

The obtained value in Ref. 3 for the nonlinear susceptibil-
ity in silver fractal composites isx̄ (3c);p31025 esu at
l5532 nm. Even for a very small metal fraction used in the
experiment of Ref. 3,p;1025, this givesx̄ (3c);10210 esu
~cf., a typical value ofx (3) in crystals is;10215 esu!. More-
over, p is a variable quantity and can be, of course, in-
creased. We can assigned the value 1025 esu to the nonlinear
susceptibility,x (3c), of silver fractal clusters; the quantity
x (3c) is related to the nonlinear susceptibility,x̄ (3c), of the
composite ~silver aggregates in water! via the relation
x̄ (3c)5p3x (3c). The huge nonlinearity,x (3c);1025 esu,
with a time of the nonlinear response<30 ps,3 makes metal
fractal aggregates very interesting for potential applications.

In the long-wavelength range of the spectrum,l.1000
nm, the quantityX is almost constant:X(l)'X0 , where
a3X0524p/3 ~i.e.,X0524p/3 in a51 units!. The excita-
tion in this spectral region, whenX(l)'X0 for all l, can be
described in terms of the single mode, called ‘‘zero mode’’
~see Sec. V the preceding paper, Ref. 20!. In this case, all the
spectral dependence forGFWM is due to al dependence of
the factor d26 in ~36!. SinceGFWM;ux̄ (3c)v0 /b

(3)u2, we
conclude thatx̄ (3c)}d23 in the long-wavelength part of the

spectrum. According to formulas~21! and~23! of the preced-
ing paper,20 for the Drude model,d}l in the infrared part of
the spectrum; thus,x̄ (3c) strongly increases towards the
longer wavelengths,}l3.

B. Enhanced harmonic generation

We consider now harmonic generation and begin with
third-harmonic generation~THG!. We assume that the phase-
matching condition is fulfilled. The THG process is due to a
third-order nonlinearity. The corresponding nonlinear dipole
moment is

di ,a
NL5babgd

~3! Ei ,bEi ,gEi ,d . ~37!

For isotropic media, the orientation-average nonlinear polar-
izability may be expressed in terms of one independent
constant28

^babgd
~3! ~23v;v,v,v!&05 fDabgd

1 . ~38!

We first assume that the generated signalvs53v lies out-
side the cluster band of resonant modes and, therefore, ne-
glect the interaction of nonlinear dipoles oscillating at the
frequencyvs @cf., Eqs.~10! and ~37!#.

Similarly as done to obtain~13! from ~10!, we substitute
~2! for the local fields in~37! and factorize the average over
the orientations and over an ensemble of random clusters.
This gives the following expression for the nonlinear polar-
izability of a particle in a cluster:

^babgd
~3c! &5Z3^bab8g8d8

~3! &0^a j ,b8ba j ,g8ga j ,d8d&. ~39!

Further, similarly to the method used to obtain~16!–~18!
from ~13!, we find

^babgd
~3c! &5FDabgd

1 , ~40!

where

F5
1

15
Z3f s^Tr~ â i !Tr~ â i

Tâ i !12 Tr~ â i â i
Tâ i !&. ~41!

Note that the cluster polarizability,^babgd
(3c) &, is totally sym-

metric as well as the polarizability of an isolated monomer,
^babgd

(3) &0; either is characterized by a single amplitude.
Enhancement of the third-harmonic generation process is

given byGTHG5u^F/ f &u2; using ~41!, this results in

GTHG5
~X21d2!3

225
u^Tr~ â i !Tr~ â i

Tâ i !12 Tr~ â i â i
Tâ i !&u2.

~42!

For the excitation outside the cluster band of resonant
modes,a i'a0 andGTHG51 in ~42!.

In Fig. 3, we present a log-log plot ofGTHG as a function
of X for three very different values ofd. Despite the strong
fluctuations, we can conclude from Fig. 3 that, on average,
the productGTHGd4 does not depend ond. Thus, in contrast
to the binary theory,2 that predicts a small enhancement for
the highest-order harmonic generation, the present calcula-
tions demonstrate a possibility of a very strong enhancement:
G THG}d24.
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Based on the results of our simulations, we suggest the
following expression for the enhancement factor within a
band of the eigenmodes:

GTHG'CTHG

~X21d2!3

d4
@ Ima~X!#2, ~43!

where the prefactor,CTHG, is an adjustable parameter. For-
mula ~43! reflects, in particular, the indicated dependence
G THG}d24.

The solid lines in Fig. 3 represent the results of calcula-
tions using~43! with CTHG found from the different relations
for positive and negativeX: GTHGd450.1 in its maximum
~at X'24) for negativeX, andGTHGd450.01 in its maxi-
mum ~at X'4) for positiveX. Recall that for FWM the
value ofCFWM was chosen so thatGFWMd651 in both of its
maxima atX'64. Thus, in order to fit the simulations, we
have to take the smaller values for the productGTHGd4 in its

maxima. This is probably due to the fact that the product of
the a i in ~41! has poles~as a function ofwn) lying in the
same complex semiplane; therefore, the average enhance-
ment, which can be estimated by integrating overwn , is
smaller. @In contrast, there is a complex conjugate term,
a i* , in the product of thea i in expression~25! that defines
the enhancement for FWM. Note that the presence ofa i*
}Ei* in the nonlinear response indicates that an elementary
quantum mechanical process includes ‘‘subtraction’’ of a
photon.# Despite the indicated difference, the enhancement,
GTHG, is very large and can reach giant values for small
values ofd.

The dashed lines in Fig. 3. show a power-law fit for
0.1<uXu<3 (d50.05). The computed exponents are
6.0861.00 for X.0 and 6.561.0 for X,0. However, the
fluctuations are so strong that based on the simulations we
cannot claim that there is a pronounced power-law depen-
dence.

In general, enhancement ofnth-harmonic generation may
be estimated by

GnHG;U K Ei
n

@E~0!#n L U
2

;ua0u22nu^a i
n&u2. ~44!

The estimate~44! is based on the assumption that the inter-
action of nonlinear dipoles oscillating at the frequency
vs5nv can be ignored. If this interaction is of importance,
the estimate~44! should be replaced by

GnHG;ua0~v!u22nua0~vs!u22u^a i
n~v!a i~vs!&u2. ~45!

The experimental observation of the enhanced~by 3 or-
ders of magnitude! second-harmonic generation was reported
in Ref. 29.

C. Enhanced Raman scattering

In this section we consider the enhancement of Raman
scattering,GRS, in particles aggregated into clusters. In our
previous work on this subject,22 the simulations of the en-
hancement were performed only for diluted cluster-cluster
aggregates, whereas below we calculateGRS for nondiluted
CCA’s and compare the results with experimental observa-
tions.

We assume that each monomer of a cluster, apart from the
linear polarizability,a0 , possesses also a Raman polarizabil-
ity, k. This means that the exciting field,E(0), applied to an
isolated monomer, induces a dipole moment,ds, oscillating
at the Stokes-shifted frequency,vs . To avoid unessential
complications, we supposek to be a scalar; this gives
ds5kE. The Raman polarizability may be either due to the
polarizability of a monomer itself or to an impurity bound to
the monomer.

We consider spontaneous Raman scattering, which is an
incoherent optical process. This means that the Raman polar-
izabilities, k i , of different monomers possess uncorrelated
random phases:

^k i* k j&5uku2d i j . ~46!

FIG. 3. The enhancement of the third-harmonic generation,
G THG , in CCA’s for negative~a! and positive~b! X. See also the
text.
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This feature constitutes the principal distinction betweenk
and the linear polarizability,a. It ensures that there exists no
interference of the Stokes waves generated by different
monomers.

As was pointed out above, the field acting upon ani th
monomer in a cluster is the local field,Ei , rather than the
external field,E(0). Also, the dipole interaction of monomers
at the Stokes-shifted frequency,vs , should be included. Tak-
ing these arguments into account, we write the following
system of equations:

dia
s 5k iEia1a0

s(
j

~ iauWu jb!djb
s , ~47!

wherea0
s is the linear polarizability of an isolated monomer

at the Stokes-shifted frequency,vs .
The total Stokes dipole moment,Ds, found by solving

~47!, is:22

Da
s5(

i
dia
s 5ZsZ(

j
k ja j ,ba

s a j ,bb8Eb8
~0! , ~48!

whereZs5(a0
s)21, a i

s[a i(Xs), anda i is defined in~3!.
The RS enhancement associated with particle clustering is

defined as22

GRS5
^uDsu2&

Nuku2uE~0!u2
. ~49!

The above formulas~47!–~49! are exact and valid for any
cluster of particles. If the Stokes shift is so large that the
Raman-scattered light is well out of the absorption band of
the cluster, the polarizabilitya i

s in ~48! and ~49! can be ap-
proximated asa i ,ab

s 'Zs
21dab , and the orientation-average

enhancement~49! acquires the following form:22

GRS5uZu2
1

3N K (
i

ua i ,abu2L 5d~11X2/d2!Ima. ~50!

Thus, if the Raman-scattered light does not interact with the
cluster, the Raman-scattering intensity is simply proportional
to the mean square of the local fields,GRS5G @cf. Eq.~5!#.22

However, in more interesting case, the Stokes shift is
small and the Stokes amplitudes are also enhanced. Then, the
general expression~49! is needed; after averaging over ori-
entations, this gives

GRS5
~X21d2!2

3
^Tr@â i

Tâ i â i
T* â i* #&. ~51!

@For the nonresonant case,uXu@uwnu, we havea i5a0 and,
therefore,GRS51 in Eq. ~51!.# According to ~51!, the en-
hancement of Raman scattering is determined by the en-
hanced local fields raised to the fourth power and averaged
over an ensemble of clusters,

GRS;^uEi /E
~0!u4&;ua0

21u4^ua i u4&. ~52!

Similar to the case of FWM@see ~26!–~30!#, we may
express the RS enhancement in the form

GRS5
~X21d2!2

3
^gRS~X!&, ~53!

with gRS(X) given by

gRS[Tr@â i
Tâ i â i

T* â i* #

5 (
nmlk

KnmlkLnLmL l*Lk* , ~54!

whereKnmlk is defined in~29!.
The functiongRS satisfies the following sum rule:22

E
2`

`

gRS~X!dX54p Im(
nmlk

KnmlkRnkRmlRnl . ~55!

Further, similar to~33!, the product of theL factors in Eq.
~54! can be rewritten as

LnLmL l*Lk*5RmlRnk$~LnLm1L l*Lk* !2Rnl~Ln2L l* !

2Rmk~Lm2Lk* !%. ~56!

We first findgRS
r (X) due to the ‘‘resonant’’ difference of

the eigenmodes only, such thatuwn2wmu!d in ~54!. In this
case, for the ensemble average, we obtain

^gRS
r ~X!&5

3

2d3
Ima~X!. ~57!

The sum rule for the ensemble-average resonant contribution
has the form

E
2`

`

^gRS
r ~X!&dX5

3p

2d3
. ~58!

It was shown in Ref. 22 that the resonant factor
^gRS

r (X)& gives the dominant contribution to the enhance-
ment for diluted clusters. We conjecture that^gRS

r (X)& de-
scribes the functional dependence of the enhancement onX
andd for nondiluted clusters as well:

GRS'CRS

~X21d2!2

d3
Ima~X!, ~59!

with CRS being an adjustable parameter.
In Fig. 4, we plot the results of our simulations ofGRS

defined in~51! for negative~a! and positive~b! values ofX.
The solid lines in Fig. 4 give the enhancement found from
~59!, with CRS obtained from the relation:GRSd

353 in the
maxima occurring atX'64. The dashed lines represent a
power-law fit for GRSd

3 in the interval 0.1<uXu<3, with
d50.05. The obtained power exponents (4.0760.70 for
X,0 and 4.0160.70 forX.0! are close to 4 for both posi-
tive and negative values ofX. Similar to the above-
considered cases@see the discussion following Eq.~36!#, the
dependenceX4 in ~59! dominates the weak spectral depen-
dence of Ima(X) in the band of cluster modes.

As seen in Fig. 4, the productGRSd
3, on average, does

not depend ond in the region close to the maxima, and its
value there is close to unity. Thus, the strong enhancement of
Raman scattering,GRS;d23, can be obtained due to aggre-
gation of particles into fractal clusters.

In Fig. 5, experimental RS enhancement data, obtained
for a silver colloid solution in Ref. 30, are compared with
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G RS calculated using~51!. @The values ofX andd for vari-
ousl were found using~21! and~22! of Ref. 20 and the data
of Ref. 26.# Only the spectral dependence ofG RS is infor-
mative in this figure since only relative values ofGRS are
reported in Ref. 30. The experimental data presented in Fig.
5 are normalized by settingGRS.33104 at 570 nm, which
is a reasonable value. Clearly, the present theory successfully
explains the giant enhancement accompanying particle ag-
gregation and the observed increase ofGRS towards the red
part of the spectrum.~The agreement is better than that ob-
tained with the use of the model of diluted clusters.22! The
strong enhancement towards the red occurs because the local
fields associated with collective dipolar modes in CCA’s be-
come significantly larger in the red part of the spectrum~see
Fig. 1!.

D. Nonlinear refraction and absorption

In this section we consider the enhancement of the optical
Kerr nonlinearity. The Kerr polarizability has, in general, the

form babgd
(3) (v;v,v,2v), and determines nonlinear correc-

tions (} the field intensity! to the refractive index and ab-
sorption. The Kerr-type nonlinearity can also result in degen-
erate four-wave mixing ~DFWM! considered above.
Composite materials with large values of the Kerr nonlinear-
ity can be used as nonlinear optical filters. Under certain
conditions, they also manifest optical bistability14 which can
be utilized to build an optical analog of the electric transistor.
Therefore, there is significant interest in developing materi-
als with a large Kerr nonlinearity.

We consider the enhancement of the Kerr susceptibility
due to the clustering of small particles embedded in a linear
host material. We assume that the volume fraction,p, filled
by particles is small, and they are initially randomly distrib-
uted in the host. Sincep is small, the interaction between
nonaggregated particles is negligible. The aggregation results
in many well-separated random clusters. The interactions be-
tween the dipoles induced by light on particles in a cluster
lead to the formation of collective eigenmodes; their reso-
nant excitation results in high local fields and the enhanced
Kerr susceptibility.

The Kerr nonlinear polarizability,b (3), has the same
structure@see Eq.~6!# as the one describing DFWM.~In the
present case, however, we assume that there is only one ap-
plied field,E(0).) Although in Sec. III A we considered only
one specific process, DFWM, the analysis presented there
was general and most of the obtained results are applicable
for other phenomena associated with the Kerr susceptibility.

For isotropic media, the Kerr polarizability can be written
in the form ~7!, with two independent constants,f s and f a ,
that are related to the constantsa andb in formulas~19! and
~20!. The polarization of a composite with aggregated par-
ticles can be presented as follows:

Pa
~3c!~v!53x̄abgd

~3c! ~2v;v,v,2v!Eb
~0!Eg

~0!Ed
~0!* ,

FIG. 4. The enhancement of Raman scattering in CCA’s,
G RS, for negative~a! and positive~b! X. For details, see the text.

FIG. 5. Theoretical and experimental enhancement factors,
G RS, for the silver colloid aggregates as a function of wavelength,
l.
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where the effective Kerr susceptibility,x̄ (3c), of the compos-
ite has the form@cf. ~13! and ~23!#

x̄abgd
~3c! 5pZ3Z* ^xa8b8g8d8

~3! &0^a j ,a8aa j ,b8ba j ,g8ga j ,d8d
* &,

~60!

and^xabgd
(3) &05v0

21^babgd
(3) &0 , with v0 being the volume of a

particle.
Proceeding similarly to the method that was used to ob-

tain ~16!–~18! from ~13!, we find

x̄abgd
~3c! 5GK,spfsDabgd

1 1GK,apfaDabgd
2 , ~61!

wherefs,a5v0
21f s,a ,

GK,s5
1

15
Z3Z* ^Tr~ â i

Tâ i !Tr~ â i
Tâ i* !12 Tr~ â i

Tâ i â i
Tâ i* !&,

~62!

and

GK,a5
1

6
Z3Z* ^Tr~ â i

Tâ i !Tr~ â i
Tâ i* !2Tr~ â i

Tâ i â i
Tâ i* !&.

~63!

The factorsGs andGa are identical toFs / f s and Fa / f a ,
respectively@see Eqs.~17! and ~18!#, and the enhancement
for the DFWM process can be expressed in terms ofGK,s as
GFWM5uGK,su2.

In general, according to~61!–~63!, there are two different
enhancement coefficients for totally symmetric (}Dabgd

1 )
and partially symmetric (}Dabgd

2 ) parts of the susceptibility
in an isotropic system.31 The fact that there are two different
independent constants for the Kerr response in an isotropic
medium results, in particular, in a rotation of the polarization
ellipse.28 If the field E(0) is polarized linearly or circularly,
the nonlinear polarization,P(3c), can be expressed in terms
of only one independent constant (Fs and @Fs1Fa# for lin-
ear and circular polarization, respectively!.28 Also, in the
low-frequency limit ~whereb (3) is due to the nonresonant
electron response!, the nonlinear susceptibility tensor must
be fully symmetrical, i.e.,Fa50, for an arbitrary light
polarization.28 Below, we calculate the enhancement associ-
ated withGK,s[GK . The enhancement factor is, in general,
complex:GK[GK8 1 iGK9 . If b (3) is real, the real part,GK8 ,
and the imaginary part,GK9 , determine the enhancement for
the nonlinear refraction and for the nonlinear correction to
absorption, respectively.

The enhancement for Kerr media can be also presented in
the form

GK5
~X21d2!~X1 id!2

15
^gK&, ~64!

wheregK[gFWM , andgFWM is defined in~26!–~29!. It was
conjectured in Sec. III A that̂g FWM& andGFWM can be ex-
pressed in terms of the absorption Ima(X) @see Eqs.~34!
and ~36!#. Accordingly, we assume thatGK8 is larger than
GK9 @so thatg FWM[gK can be approximately considered as a
real quantity, in agreement with~34!#; then for uXu@d, we
obtain

GK8 'CK

X4

d3
Ima~X!. ~65!

In Fig. 6, we present plots ofGK8 ~a! andGK9 ~b! for X,0
~the calculations forX.0 give similar results!. The solid
line in Fig. 6~a! represents the calculations based on Eq.~65!,
with the CK chosen so thatuGK8 d3u51 in its maxima at
X'24. From the figure, we can conclude that Eq.~65! ap-
proximates the exact results well. Also, as follows from the
figure, both real and imaginary parts of the enhancement are
approximately proportional to the third power of the quality
factor, q3(;d23), and the following estimates are valid in
the maxima:GK8 d3;1 andGK9 d3;1 ~actually,GK8 is several
times larger thanGK9 , in accordance with the above assump-
tion!. For metal particles, in particular, the decay parameter
varies fromd50.01 to d50.1 in the infrared and visible
parts of the spectrum; accordingly, the enhancement ranges
from uGKu;103 to uGKu;106 in this spectral range. Such a

FIG. 6. The enhancement of the Kerr optical susceptibility in
CCA’s: ~a! the real part,GK8 , and~b! the imaginary part,GK9 .
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giant enhancement indicates that optical materials based on
composites including small-particle clusters possess a high
potential for various applications.

It also follows from the figures that, in accordance with
~34! and ~64!, the real partGK8 is negative for most of the
resonant modes, anduGK8 u statistically dominatesuGK9 u. For
GK8 ,0, the nonlinear correction to the refractive index,
Dn, is negative, ifb (3c).0, and positive, ifb (3c),0 ~lead-
ing to self-defocusing and self-focusing of the light beam,
respectively!. Interestingly, the imaginary partGK9 , changes
its sign as a function ofX very rapidly. Thus, a nonlinear
correction to the absorption coefficient~given byGK9 for real
b (3c)) is a very strong function of the laser frequency and
can be both positive and negative. The fact that the nonlinear
contribution to the absorption can have a different sign is not
surprising: there are nonlinear optical processes~associated
with the Kerr-type nonlinearity! leading to both positive and
negative nonlinear contributions to absorption. In particular,
processes, such as the saturation effect or the Rayleigh reso-
nance, lead to negative corrections to absorption, whereas
two-photon absorption, for example, results in a positive
correction.28 Clearly, the light excites simultaneously many
resonant and quasiresonant modes in a cluster, leading to a
competition between the contributions associated with vari-
ous optical processes; this probably results in the strong de-
pendence ofGK9 on X.

IV. CONCLUDING REMARKS

As shown above, the clustering of small particles embed-
ded in a host material may result in a giant enhancement of
both linear~e.g., Raman scattering! and nonlinear~four-wave
mixing, harmonic generation, and nonlinear reflection and
absorption! optical effects. The enhancement occurs because
of strongly fluctuating local fields that can have very large
values in particle aggregates~see Fig. 1!. Nonlinearities em-
phasize these fluctuations leading to giant enhancements.

If particles aggregate into fractal clusters, fluctuations of
the local fields are especially large. This is because the dipole
interactions in fractals are not long range~as they are in
conventional three-dimensional media! and many of the col-
lective eigenmodes are strongly localized in different parts of
a cluster with various random structures. This ultimately
leads to strong spatial fluctuations of the fields. In contrast,
in compact three-dimensional clusters of particles, the long-
range dipolar interaction involves all particles into the exci-
tation, thereby suppressing fluctuations~see Fig. 1!.

Enhancements in small-particle clusters can be under-

stood and roughly estimated using the following simple ar-
guments. Consider the enhancement for an arbitrary nonlin-
ear optical process}En. According to Eqs.~2! and ~3!, for
the resonant dipolar eigenmodes, the local fields,Ei , exceed
the external field, E(0), by the factor ;ua0

21/du
5uX1 idu/d, i.e.,;uXu/d for uXu@d. However, the fraction
of the monomers involved in the resonant optical excitation
is small,;dIma(X).

For a nonlinear optical process,}uEun, one can estimate
the ensemble average of the enhancement,^uEi /E

(0)un&, as
the resonant value,uEi /E

(0)ures
n , multiplied by the fraction of

the resonant modes~in other words, the fraction of particles
involved in the resonant excitation!. This gives, for the en-
hancement the following estimate,

^uEi /E
~0!un&;uXund2n3d Ima~X!;uXund12nIma~X!,

~66!

which is@1 for n.1. Since this is only a rough estimation,
an adjustable constant,C, should be, in general, added as a
prefactor.

The nonlinear dipole amplitude can be enhanced along
with the linear local fields provided the generated frequency
lies within the spectral region of the cluster eigenmodes. For
enhancements of incoherent processes, such as Raman scat-
tering and nonlinear refraction and absorption in Kerr media,
we obtain from Eq.~66!: G;CX4d23Ima(X) @cf. ~59! and
~65!#. For coherent processes, the resultant enhancement
;u^uEi /E

(0)un&u2; accordingly, the enhancement factor
;CX6d24@ Ima(X)#2 for the third-harmonic generation@cf.
Eq. ~43!#, and ;CX8d26@ Ima(X)#2 for degenerate four-
wave mixing @cf. ~36!#. ~The latter enhancement is larger
because of the ‘‘additional’’ enhancement of the generated
nonlinear amplitudes oscillating at the same frequency as the
applied field.!

There are other optical phenomena~not considered here!
that can be also enhanced in small-particle composites. For
example, Rayleigh scattering is enhanced by the factor
GR;^uEi /E

(0)u2&}d21.21 Another example is fluorescence
from molecules adsorbed on a small-particle aggregate. The
fluorescence following two-photon absorption by the aggre-
gate is enhanced by the factorGF;^uEi /E

(0)u4&
;ua0u24^ua i u4&}d23.
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