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Small-particle composites. Il. Nonlinear optical properties
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Strong fluctuations of local fields may result in very large optical nonlinearities in small-particle composites.
Enhancement associated with particle clustering is found for a number of optical processes, including four-
wave mixing (FWM), third-harmonic generatioffHG), Raman scattering, and nonlinear refraction and ab-
sorption in Kerr media. Field fluctuations and optical nonlinear susceptibilities are especially large in fractal
clusters. The enhancement of optical processes is expressed in terms of the resonant linear absorption by
collective dipolar eigenmodes in a cluster, and quality factgrsf the modes ¢>1). It is shown that the
susceptibility of a composite material consisting of random small-particle clusters is proportioyaffido
Raman scattering and the Kerr optical nonlinearity, ang*tandq® for THG and FWM, respectively. For all
of these processes, a spectral dependence of the effective susceptibility is found. Broad-scale numerical simu-
lations of the optical response in small-particle composites are performed to complement the theory. The
simulations are in reasonable agreement with available experimental data.

[. INTRODUCTION who applied a multifractal analysis of the voltage distribu-
tion for a deterministic fractal cluster embedded in the hier-
Nonlinear electrical and optical properties of nanostruc-archical lattice'!
tured composites have attracted much attention in recent Strong enhancement of nonlinear susceptibilities at zero
years!1* Composite materials can have much larger nonlinfrequency near a percolation threshold was pointed out by
ear susceptibilities at zero and finite frequencies than thoséhang and Stroudf. Critical behavior of nonlinear compos-
of ordinary bulk materials. The enhancement of the nonlineaites near the percolation threshold was also analyzed by Hui
optical response in composites is due to strong fluctuationgnd by Yu with co-workers? Using the effective-medium
of the local fields; these fluctuations are especially large irapproximation (EMA) and the transfer-matrix numerical
composites with fractal morphology>*® Nanostructured simulations for random networks, Zhang and Stroud have
composite materials are potentially of great practical impor-obtained a strong enhancement of cubic nonlinear suscepti-
tance as media with an intensity-dependent dielectric funcbility in a metal-insulator composite near surface-plasmon
tion and, in particular, as nonlinear filters and optical bistablgesonance¥ Recently, Levy, Bergman, and Stroud showed
elements. A typical system under consideration is a compoghat an induced cubic nonlinearity can be generated in a
ite material in which a nonlinear material is embedded in acomposite, even though none of its components possess it
host medium which can be linear or nonlinear. The responsitrinsically
of a nonlinear composite can be tuned by controlling the The aggregation of particles often results in fractal clus-
volume fraction and morphology of constitutes. ters. The number of monomers in a fractal clusk&rscales
Stroud and Hut, and Flytzanis with co-workerSconsid- asN=(R./Ry)P, whereD is an index called the Hausdorff
ered the electromagnetic response of nonlinear particles ragimension,R; is the radius of gyration, anR, is a typical
domly embedded in a linear host in the dilute limit when theseparation between nearest neighbors. The pair-correlation
interaction between particles is small. Perturbation expantunction,g(r), in a fractal cluster also has a power-law de-
sions that allow one to determine small corrective terms fopendenceg(r)e«r®~9, whered is the dimension of the em-
nonlinear susceptibility were developed by Yu, Hui, Stroud,bedding space. A fractal is called nontrivialDf< 3.
and their co-workefs(some related problems, including the ~ Shalaev and his co-workérs studied nonlinear optical
case of spherical nonlinear inclusions, have also been studigmoperties of fractal aggregates and showed that the aggrega-
by Bergman with co-workefs These authors also consid- tion of initially isolated particles into fractal clusters results
ered the case where inclusions and host material may possessa huge enhancement of the nonlinear response within the
nonlinearities up to the fifth order. spectral range of collective dipolar resonangeg., surface-
Sipe and Boyd studied nonlinear susceptibility of com-plasmon resonanceshe eigenmodes were found by diago-
posites within the Maxwell-Garnett modeHui and Stroud nalizing the interaction operator of the dipoles induced by
have generalized the differential effective-medium approxidight on particles forming the cluster. Giant fluctuations of
mation, which they developed previously to model the effec-the local fields were studied by Stockman with co-worKérs.
tive linear response of a fractal cluster, to treat the effectiveMany of the dipolar eigenmodes are strongly localized in
nonlinear respons¥. Their analysis showed that the cluster- different parts of a cluster with random local structiré®
ing of particles can result in an appreciable enhancement dhowever, there are delocalized modes as yéllis leads
the nonlinear response per partidielative to the totally ultimately to strong fluctuations of local fields in fractals.
random caseonly when a host is a better conductor than the The prediction of a huge enhancement of optical nonlin-
nonlinear inclusion. A similar conclusion was obtained by Yuearities in fractal clustefs was then confirmed
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experimentally for the example of degenerate four-wave tions that significantly exceed the applied field. The local
mixing (DFWM). Aggregation of initially isolated silver par- field, E;, acting on theith particle(monomey in a cluster
ticles into fractal clusters in this experiment led to acan be found from the theory of the linear optical respdiise:
10°-fold enhancement of the efficiency of the nonlinear four- B
wave process. Ei.=aq
Numerical simulations of the nonlinear optical respons

Lai 5EY @)

i fractal clusters have b ous] ¢ 41 th%hereE(O) is the applied fieldg, is the polarizability of the
In Tractal clusters have been previously performed 1or 8, q; 4,31 monomer, and; .z is the local polarizability of a

spet_ciall case of diluttg? Cll.JSté nghitslr?]Od?I car;\ describel, in monomer in a cluster which is related to the local dipole
particular, nanoparticies in a Iractal host such as a po ymerr'nomentdm induced on theith particle via the formula
tree. In the central part of the diluted cluster spectrum, the 0 .
. . . di,= a; .sEQ [cf., Eq.(13) of the preceding pap&l. Note
nonlinear optical response scales as a function of the genefie, ~1af=5 vt . : S
alized frequency variabfewhereas, in the wing, the re- that since we restrict our consideration to the quasistatic ap-

. . . . i i 0) E _ i
sponse can be well described by the binary approxmgmon.pro’:c'_mlgt'On’(jb3(/1|_E I’ E ! and;]jl we ”_‘elan tr&e _amphtud_es ?f
In this paper we present large-scale numerical simulationd'© fi€lds and dipoles, i.e., the spatial- and time-varying fac-

for a number of nonlinear optical processes in composit%OrS are .omitted. By. solying the goupled—dipole equations
materials consisting of original nondiluted fractal clusters. In CDE’s) in the guasistatic approximation, we obtdisee

particular, the model of cluster-cluster aggregat€€A's) Eqs. (1), (7), and(12) of the preceding pap&f

with D~1.78, that provides a good description of metal col- (ia|n)(n|j B)
loid aggregates, is used in the simulations. The results of ai,aﬁzz WX—i5" 3
calculations are averaged over an ensemble of 500-particle (W= X) =l

CCAs. Particles in a cluster are assumed to interact via lightynere X= — Re agt],6=—Im[ag '], andw, and|n) are

induced dipolar fields resulting in the formation of collective ¢ eigennumbers and eigenvectors of the interaction opera-
eigenmodes. The simulations are based on exact formulag,,- (n|W|m)=w,,8,: accordingly, {«|n) are the compo-

describing the nonlinear optical responses in an arbitrary,anis of the vectoln) in the orthogonal basi§«) (see the
(fractal or nonfractal small-particle composite. These for- preceding papé).

mulas are expressed in terms of the ensemble-average prod- 4 light frequencyw enters in the basic equatior)
ucts of local fields(or local linear polarizabilitiesthat are and (3) implicity via the complex variable
found through the decomposition over the dipolar eigen"Z:agl(w)E—[X+i5] Material and geometrical proper-

[n?ggf Oif a Icluste:.fA;r::]or;parlson with available EXPENMENtias of monomers affect the problem only via the parameter
a a s aiso periormed. . The real partX=X(w), plays the role of a spectral vari-

the resuls of calculations of localfield ntensies m ftacta 22 MStead Ok, and the:imaginary pary>0, describes
dissipation in a monomer; in generdl,can also depend on

and nonfractal clusters. In Sec. lll we derive formulas that

. . : ; w, (Note thatay may describe not only the polarizability of
describe enhanced optical processes in composites and_. s
a simple monomer, such as a sphere, but also the polarizabil-

present the results of our numerical simulations. Speciﬁcallyrty of a composite monomer, such as a coated sph@te

we consider the following optical phenomena: four-wavede endences ok and & on o for some real systems are
mixing, harmonic generation, Raman scattering, and nonlin- P y

ear refraction and absorption in Kerr media. The obtaineéjISCusseOI in the preceding pager.

. . . . .~ The parameter characterizing enhancements of the local-
results are briefly summarized and discussed in concludlnﬁIed intensities can be defined as follows-
Sec. IV. :

G=(|Ei|>)/|E®?, 4

where the symbol---) denotes an average over an en-

semble of random clusters. As shown in Ref. 16, the en-
Similar to the preceding pap&twe consider a system of hancementG is related to the cluster absorption, Im

N polarizable particlegmonomer$ with the dipole-dipole  a(X)=(1/3)InX «; ,,), as follows:

interactions between them at the optical frequency. The 9

monomers are positioned at the pointgi=1, ... N) and G=06[1+X*/6°]Ima(X). ®)

assumed to be much smaller than the wavelengthof the  according to(5), the enhancement fact@~ (X2 ) Ima for

incident wave. For the sake of simplicity we restrict our CON-|x|> 5, i.e., it can be very large, if la(X) is not too small.

sideration to the quasistatic limite., assume thaR.<\).  Thys, we anticipate a huge enhancement for a system with a

Il. ENHANCED LOCAL FIELDS IN SMALL-PARTICLE
COMPOSITES

Then, the interaction operator has the form strong inhomogeneous broadening, whem () is rela-
(Dt =3 & tively large in a wide range ofX|, including |X|> 6.
[8ap—3Ny 'Ng I~ i#], (Clearly, in the far Lorentz wing, whefX|—c, the absorp-

- ; —
Wap=(ia|W|jB)= 0, i=j, @ tion is Ima~ /X2 andG~1.)

As shown in the preceding pap@f., Figs. 1, 2, and 3 of
where Greek indices stand for Cartesian componéts  Ref. 20, inhomogeneous broadening in fractal cluster-cluster
summation over repeated Greek indices is implied aggregatesCCAs) is significantly larger than in nonfractal
Np=ri—rj, andn(”)srij Irij. composites, such as a random gas of partidRGSP and a

The enhancement of optical processes in a small-particlelose-packed sphere of particl&SPSB. (For details on the
composite occurs because local fields exhibit strong fluctuamentioned models and on the corresponding numerical simu-
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long-wavelength part of the spectruisee also Fig. 5 and
Eq. (21) of the preceding pap®.

We next consider a more detailed comparison between
fractal small-particle composites and non-fractal inhomoge-
neous medidsee also the discussion in Sec. VI of Ref).20
The simulations were performed for RGP and CCA's having
the same volume fractiom, filled by metal. The value ob
in a fractal cluster is very smalin fact, p—0 atR.—®).
According to the Maxwell-Garnett theofythere is only one
resonant frequency in conventional=D) media with
p<1; the resonance is just slightly shifted from the reso-
nance of an isolated particle occurringXtw)=0. In con-
trast, in fractal media, despite the fact thmis asymptoti-
cally zero, there is a high probability;r®~¢, of finding a
number of particles in close proximity to any chosen one.
Thus, in fractals, there is always a strong interaction of a

FIG. 1. Enhancement factoiS, of local field intensities plotted  Particle with others distributed in its random neighborhood.
against\ for 500-particle aggregates: fractal cluster-cluster aggreAS & result, there exist localized eigenmodes with distinct

gates, CCAgsolid line), a random gas of particléRGP with the
same as for CCA's volume fraction of metahort-dashed lingand
a close-packed sphere of particles, CRBRg-dashed ling

lations, see Sec. lll of Ref. 20Accordingly, we expect a
significantly larger enhancement of the local field-intensitie
in fractal CCAs.

Note that, since in fractals the fluctuations are very large

so that(|E|?)>(|E|)?,>® we have(|AE|?)~(|E|?); there-

fore, in this caseG characterizes both the enhancement o
local fields and their fluctuations as well. In other words, the

larger fluctuations, the stronger enhancement.
Below we present the results of calculations ®ffor

various small-particle composites. All quantities are ex-

pressed in units such that the diameter of a partialeis

equal to one. Our simulations were performed for 500-

particle clusters and were averaged over an ensemble of
random cluster realizatiorf$-2°

In Fig. 1 we show the results of simulations for the en-

hancement factoiGz, in silver CCAs in vacuum compared
with that for nonfractal composites, RGP and CH&Pcon-
trast to calculations of the preceding paffethe material
constants of silver were taken here from Ref. 26 instead

Ref. 27; these two sources give slightly different values o
e(\). Further, no possible corrections associated with elec-

tron scattering are taken into accodnEor the quantities
X(\) and 8(\) in (5), we used formulag21)—(23) of the
preceding papé? (the factor X%/3 in the expression fob
was neglected The quantitya(X) was calculated by nu-
merically solving the CDE’s in the quasistatic limit; in this
limit, the interaction operatorG=—V, in Eq. (1) of the
preceding papéf is equal to thew defined above. To solve

Oj.

!

spatial orientations in different parts of a cluster, where the
location depends on the frequency and polarization charac-
teristics of the mode. As mentioned above, some of these
modes are significantly shifted to the long-wavelength part
of the spectrum where their quality factorg, are much
larger than that for a noninteracting particlesXqtw)=0.

S‘I’hus, the dipole-dipole interaction of constituent particles in

a fractal cluster “generates” a wide spectral range of reso-

hant modes with enhanced quality factors and with spatial

fIocations which are very sensitive to the frequency and po-

larization of the applied field. The localization of modes in
various random parts of a cluster also brings about giant
spatial fluctuations of the local fields, when one moves from
“hot” to “cold” zones corresponding to high and low field-
intensity areas, respectively.

In the case of a CPSP, the volume fractipnjs not small.
owever, since the dipole-dipole interaction for a three-
imensional CPSP is long range, one expects that eigen-

modes are delocalized over the whole sample, so that all
particles are involved in the excitation. Accordingly, fluctua-
tions (and enhancement®f local fields are much smaller
than in a fractal aggregate where the modes are localized.

As seen in Fig. 1, enhancements and fluctuations of local
ields in CPSP and RGP are significantly less than those in
the case of fractal CCA’s, in accordance with the above ar-
guments.

The enhanced local fields result in enhancements of opti-
cal processes considered below. Based on the simulations
presented above, we anticipate that in fractal composites,
where the fluctuations are especially strong, the enhance-
ments can be very large. Below, we analyze various en-
hanced optical phenomena in a composite material consisting
of fractal CCAs.

the CDE'’s, we used the method based on the diagonalization

of the interaction matridW (for details, see Sec. Il of the
preceding papet)

[ll. ENHANCED OPTICAL PROCESSES

As seen in Fig. 1, the enhancement of local-field intensi-

ties in fractal CCA's is significantly larger than in nonfractal

In this section we consider the intensity-dependent dielec-

RGP and CPSP clusters, as was anticipated. The enhandee function associated, in particular, with the Kerr optical

ment can reach very high values,10°, and increases with

nonlinearity and harmonic generation. Enhanced Raman

\. This occurs because both the localization of fractal eigenscattering is also analyzetNote that although spontaneous

modes and their mode quality factor q€1/6

Raman scattering is a linear optical process, its enhancement,

~|e—€n|?/3€"€,,) increase for the modes located in the as will be shown, is~(|E;/E(®|%), i.e., has a nonlinear de-
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pendence on the field and, therefore, we consider the ershould be included. Taking these arguments into account, we
hanced Raman scattering in this paper which is concernedrite the following system of equations for the light-induced
with nonlinear opticg.We derive formulas for enhancement nonlinear dipoles:
factors for various optical processes in a small-particle com-

osite and perform numerical simulations based on these for- NL_ o (3 ij JNL
e P At =38, i sEi,Ef 5+ a(ws); Wid's, (10

where the prefactor 3 represents the degeneracy factor that
gives the number of distinct permutations of the frequencies
Four-wave mixing(FWM) is determined by the nonlinear o, o, and—o.%
polarizability?® Hereafter, we assume that the corrections to the local field
E; associated with nonlinear dipole momenf$ are small
By —wsi 01,01, 0), (6)  and can be neglected. This allows us to fiidsee Eqs(2)
and(3)] by solving first the CDE'’s for linear dipoled , and,

wherews=2w; — w, is the generated frequency, and and  hen to substitute these fields to the CD&S) for nonlinear
w, are the frequencies of the applied waves. Coherent antbipmesd_NL
a

Stokes Raman scatteritGARS) is an example of FWM. In Using similar procedures that were used to solve the

one elementary CARS process, twQ photons are frans-  cpe's for linear dipolegsee Eqs(5)—(7) of the preceding
formed intow, and wg photons. Another example is degen- papef® and Egs.(2) and (3) of this papet, we obtain the
erate FWM(DFWM); this process is used in optical phase ¢\ tion of(10) in the form

conjugation(OPQ which results in complete removal of op-
tical aberrationg® In DFWM, all waves have the same fre- NL 3) ) . .
quency <= w,=w,) and differ only by their propagation AN =328 5,52 Anlialn)(nljB')E] 4E; ,E} ;.
directions and, in general, by polarizations. In a typical OPC " (11)
experiment, two oppositely directed pump beams, with field o i i
amplitudesE® andE’, and a probe beam, with amplitude S_ubstltutlng the expre_ssm@)_for the local fieldskg;, we
E® (and propagating at a small angle to the pump beamsf'nd for the mean nonlinear dipole moment
result in an OPC beam which propagates against the probe <dNL>:3<B(3c> )E“’)E(‘”E(O)* (12)
beam. Because of the interaction geometry, the wave vectors te apydl=p Ty To ¢
of the waves satisfy to the relatiok,+k;=k,+ks=0. Where
Clearly, for the two pairs of oppositely directed beams, that (36) \ 2395 / o(3) .
have the same frequenay, the phase-matching conditions (Bapys) =L Z* By gr oy 500K Q) ar a @ g g2 1y} 51 5)
are automatically fulfilled® 13
Below we consider DFWM process where the total ap-represents the effective nonlinear polarizability of a particle
plied field isE©@=EM+E'M+E@). The nonlinear polar- in a cluster. To obtaili13), we assumed that averaging over
izability, 3, that results in DFWM, also leads to nonlinear the orientations of a nonlinear particle and averaging over an
refraction and absorptiofto be considered in Sec. lll)kand  ensemble of clusters can be performed independently.
is associated with the Kerr optical nonlinearity. For coherent The substitution of(;g(a3[§75>0 from (7)—(9) into (13) re-
effects, including the ones discussed in this section, averagults in several products like the following
ing is performed over a generated field amplitudather
than intensity or, equally, over nonlinear polarizability. Note o' g8y 5[ @), a0 g 5,y 1@ 5 5] = (] @)) ap(@] &} ) 5
also that the nonlinear polarizabilitg®, can be associated (14
with either monomers or molecules adsorbed on them. T~ - T %
The orientation-average nonlinear polarizability in an iso_v_vhere @) ap= 0w aap A @a7)

— . , * . AT .
tropic medium can be expressed, in general, through two i v pre (the T symbol ina" denotes a transposition

independent scalar functiorig and f, a® of the matrix @). Averaging over the orientations ifl4)
a

A. Four-wave mixing

gives
(3) \ —f ATt - aTn aTn
<BaB‘y§>O_fSAaﬁyé+faAaByﬁ’ (7) <(0[}ra/j)a'3(0[}ra/}k),y§>o
AT =1{5 8,5+ 8055+ 80505, (8) —ia 8,42 Tr(al a)Tr(al &
apys=310upyst OuyBpst Basdpyh, = 1590yl 2 Trajay) Tr(aj ;)
_ 1 —Tr(&-T&-&-TEz*)]-I—i(& 85t 8asdsy)
apy6=310ap0yst 8uyOps™20a50pyr,  (9) - A A

AT AT % ATA ATA %
where the symbo{- - -), denotes an average over orienta- <[5 (@ @) Tr(ejaf) =Tr(ajajajaf)]. (15
tions. The termsf A* and f,A~ are totally and partially [Formula(15) can be proved by performing a contraction
symmetric parts of3®), respectively(over a8 and y5). over all pairs of indiceg.
When a cluster consists of monomers, the field acting Proceeding similarly with the other products of tlée
upon them is the local fiel&; rather than the applied field symbols|originating fromAfyﬁy(s in (7)—(9)] and polarizabil-
E©. Also, the dipolar interaction of nonlinear dipoles ities «; in (13), we obtain
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(BB N=F A, s+FA 5 5, (16) Since after the aggregation the medium remains isotropic,
apyol T STaByo T aTabys on average, the nonlinear polarizati®f3®, of a composite
where consisting of clusterized particles has similar(1®) form

1
1 AT aTn ATA ATA 3 — AEO)(E(), £(0 ZRE(O 0), g0
FSZ—Z3Z*fS<Tr(aiTai)Tr(aiTozi*)+2 Tr(aiTaiaiTai* P (w)=AEO(ED - EO*)+ ZBE( *(EQ-E)

15 (22

),
17
whereA andB, are given by

F =}Z3Z*f (Tr(af ap)Tr(af o) —Tr(a] aaf & )). (18) 2 2
Tt T M TR R A=3(Fs+Fapug", B=3(Fs—2Fa)pug ', (22
According to(16), the symmetry of the nonlinear polariz- with Fg; andF, defined in(17) and (18), respectively. Note
ability of an isolated monomdisee(7)—(9)], is reproduced that expressiori21) contains terms<(EX.E'W)E@* that
in the mean polarizability of a cluster. The totally symmetriclead to a OPC signal in DWFM; it also contains the terms
part of the monomer’s nonlinear polarizability “generates” a leading to the Kerr nonlinear refractidsee Sec. Il D.
totally symmetric part of the cluster polarizabilitfF {<f): The nonlinear _SUSCGptib"_itWSE)yg, of a composite ma-
the same is valid for the partially symmetrical pars,( terial is defined via the relation
*fa). (3¢)(,,y=20(30) (. _ (0 E(0)(0)*
If the laser frequency lies far outside a band of the reso- P“_ (0)=3Xapys( —0i0,0,~0)EgE,TEST
nant modes of a cluster, i.6X(w)| is much larger than all where ng)ya can be expressed in terms of the ensemble-
|wp| in (3), then, aj=~ay for all i (recall thatZ=a51). In  average nonlinear poIarizabiIityB(Cy?’gZy&), as follows:
this case, the interaction between particles in a cluster is not _ ;.

) (. N —17p3C) . _
important, and, as follows fronil7) and (18), F=f and Xapysl~ ©0,0,~0)=pvy (Bapys( — 0j0,0,~ 0)).
F.=f,, i.e., the nonlinear polarizability of a particle in a (23
composite is equal to that of an isolated particle. In particular, if 3®) is due to nonresonant electronic re-

We now consider the enhancement of DFWM that accomsponse of adsorbate moleculgbe aggregate modes, how-
panies the aggregation of particles into clusters. Let particlegver, can be in resonance with the exciting fiette follow-
be first randomly embedded and well separated in a lineaing relation is valida=b,? i.e., f,=0 [see Eqs(20)], and,
host medium. We assume that the volume fractipnthat  using(17), (18), (20), and(22), we obtain
the particles occupy is small and one can neglect their inter-
action. Then, let particles aggregate in many random clusters é - E — E
that are relatively far from each othére., the inter-cluster a b fg’
interaction is still negligible Thus, after the aggregation, we The efficiency of four-wave mixing is proportional to the

obtain a mixture of many clustefgach cluster may consist generated amplitude squared, and the enhancement due to
of thousands of particlesThe average volume fraction filled particle clustering is given by

by particles remains, obviously, the same. However, particles
within one cluster now strongly interact via light-induced Grwm=|Fs/f4?
dipolar fields. (X24 82)4

The described scenario of aggregation occurs, for ex- =
ample, in a silver colloid solution. In that case one first pro- 225
duces a silver salnonaggregated particles in solutjoe.g., ATA ATA% ATA ATAg 1|2
by reducing silver nitrate with sodium borohydritfeAddi- X[(Tr(ay @) Tr(e af ) +2 Tr(ag aiai of )|
tion of an adsorbenfiike phthalizing promotes aggregation, (29
forming fractal colloid clusters with fractal dimension
D~1.78(see also the preceding paffer

Before the aggregation, the nonlinear polarizatiBf?),
of particles in a spherically isotropic medium can be pre-GF\,\,,\,|=|FS/fs|2
sented & X+ 52

225

XM & (0 &i(0) T &l (01)af (wy)]

(24)

We can easily generaliZ@5) for the case of a nondegenerate
FWM, such as CARS:

p(3)(w) - aE(O)(E(O) .E(O)* )+ EbE(O)* ( E©). E(O))
2 1

19

S (o) T (o) el (o) a* 2
where the coefficienta andb are related td s andf, intro- T2 T a(ws) @@ ai(@)ar (@) DI

duced in(7) as follows: For a nonresonant excitation, wheéX(w)|>|w,| and
thereforea;~ ay, we see from25) thatG=1, i.e., there is
no enhancement in this case.

We consider now the expressig®5) in more detail and
introduce the quantitggyy defined as

2 -1 2 -1
a=z(fotfapugt, b=z (fs—2f)pue' (20

with vy being the volume of one particlgfor a sphere, . . AT ATn
vo=(4m3)RE]. rwn=Tr(a a) Tr(af &) +2 Tr(aq aa] a).  (26)
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Using (3), this expression can be transformed to

— Gemedp=1.2x10_3(X*+0%)*(Ima)*

= M +2K A AN AL, 2
IFrwm n%k[ nmlk nmlk] nfAmid 4k (7) _____ Gm5 =1.4x10" |X|831

whereA ,=[(w,—X)—i6] 71, 10

Momi= 2 (ialn)(n]jB)(ia/m)(mlj’B) 10~

[T
X(ia'[DA]j"B" ) (ia'[K)(K[]"B"), (28 10
and 10

Komi= 2> (ie|n)(n]jB)(ia|m)(mlj’'g") 107

rinim

i
X@ig' "B B"K)(K|j"B). (29)

According to (25 and (26), the enhancement factor, 10 ™+ . — T . ——
Gewm, has the form

ssaas §=0.05
coooo §=0.01

(X24 §2)* 1 4G w6’
GFWM:TKQ Fm( X)) 2. (30 ke ;
—Gmé =4.3x10" ()g +5%) (Ima)® 3
03 Gry6°=2.7x10" ook
Performing the integration if27), we find the following 1 4

sum rule for functionggywm :
10~

JlochWM(X)dX: 27 n§m:lk [Mnmikt 2Knmidd RakRmiRik »

10
(31)
where 10"
1 ' g (X>0)
Rim=mEee————. 2 10 e
nm 2|5+(Wn_wm) (3 ) 10 o aasasa 620.05
g 4 osooo §=0.01
The product of the\ factors in Eq.(27) can be rewritten 1023 °
as T X
. > . T ; —
AnAnA A= RidAnAmA 1= RmiA nA
+RoRm( A=A} (33 FIG. 2. The enhancement of degenerate or nearly degenerate

four-wave mixing,Gpwy, in CCA's for negative(a) and positive

It is instructive to find firstgf,, which is due to the (b) yalues of the spectral variabl¥, See the text for further expla-
“resonant” difference of the eigenmodes (@7), i.e., to cal-  nations.
culate the contribution of only those modes for which
|W,—wg|< 6. In this case, th® factors become very large. expressio{gryu(X)) also describes properly the functional
Then, retaining in33) only the term with the highest power dependence orX and §. Then, the enhancement factor,
of R and using(3), we obtain from(27)—(29) the following  Grwm, Can be presented as
ensemble-average expression:

(X2+6%)* )
, 15 GFWM*CFWM—ée [Ima(X)]*, (36)
(Irwm(X)) = s Ima(X). (34
where the prefactoCryy, should be considered as an ad-
The quantity(gryw(X)) satisfies the sum rule justable parameter.

In Fig. 2, we show the results of numerical calculations of

o (G (X))dX= @ (35 the enhancement factoGgyy, in CCAs for X<0 (a) and
Grwm 45 X>0 (b). The simulations were performed using formulas

(25) and(3). The solid lines in Fig. 2 describe the results of
For diluted clusters, it was shown that the enhancemergtalculations based on formu(&6), with Cryy found from
factor is closely approximated by the resonant contribution.the relation Ggyyd°=1 in its maxima, occurring at
Our conjecture is that for the case of nondiluted clusters thX~ *4. The dashed lines represent a power-law fit for the
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range 0.%x|X|<3 (6=0.05). The computed exponents spectrum. According to formuld®1) and(23) of the preced-
(8.31+1.00 forX<0 and 8.06-1.00 forX>0) are close to ing paper: for the Drude model§\ in the infrared part of

8 for both positive and negative valuesXf This value for the spectrum; thusy®® strongly increases towards the
the exponent is not surprising, since, within the intervallonger wavelengthsx\2.

|X|=<3, the dependence of kmon X (see Fig. 1 of the pre-

ceding papé?) in (36) is relatively weak in comparison with B. Enhanced harmonic generation

that which is dpe to the factox® in (,25) and (3@' This X , We consider now harmonic generation and begin with
dependence differs from that obtained for diluted CCAS, iy harmonic generatioffHG). We assume that the phase-
where the absorption has a scaling dependence, Ifatching condition is fulfilled. The THG process is due to a
a~|X[%™%, with dy~0.3+0.1, and Grwum|X|*"*%, in " third-order nonlinearity. The corresponding nonlinear dipole

accordance witf{36).* moment is
As seen in Fig. 2, the enhancement strongly increases
toward larger values ofX|. This occurs because the local do= B4, sEi gEi ,Ei s- (37)

fields become stronger for larger values| ¥f (according to , i i i , i
Fig. 1, the local-field intensities increase in the Iong— For isotropic media, the orientation-average nonlinear polar-

wavelength part of the spectrum which corresponds to large?@Pility_ may be expressed in terms of one independent
0

|X| with X<0). constal
It also follows from Fig. 2 that the produ@ gy é° re- (3) ] At
mains, on average, the same for the two very different values (Bapys —30;0,0,0))0=FAp5. (38)

of 5, 0.01 and 0.05. This indicates that, in accordance withye first assume that the generated signa+ 3w lies out-
(36), the enhancement is proportional to the sixth power okjge the cluster band of resonant modes and, therefore, ne-
the resonance quality factoGewn>q” (9~6"7) and  glect the interaction of nonlinear dipoles oscillating at the
reaches huge values in the maxima occurringat+ 4. frequencyws [cf., Egs.(10) and (37)].

In the end of this section, we mention that a millionfold  gjmjjarly as done to obtaifil3) from (10), we substitute
enhancement of DFWM due to the clustering of initially is0- () for the local fields in(37) and factorize the average over
lated silver particles in a colloidal solution was experimen-ine orientations and over an ensemble of random clusters.

tally obtained in Ref. 3. For spherical particles of radiusThjs gives the following expression for the nonlinear polar-
Rm, the value ofX and 6 can be obtained from formulas jzapility of a particle in a cluster:

(21) and(22) of the preceding papéf.Using the data of Ref.
26 for the material constants in silver, we find that for (3¢) \_ 73/ (3) . 4 .
A=532 nm (used in the experimentX~—2.55 and (Basyo) =2 B gy o) ol @y 521.070) - (39
6~0.05. The coefficienR* in Egs.(21) and(22) of Ref.  Further, similarly to the method used to obtdit6)—(18)
20, measured in units oh=1, was chosen to be as from (13), we find
R;3E(a/Rm)3=477/3 (for details, see Sec. V of the preced- 3 .
ing papef?). <18(aﬁc')y§>: FA gys (40)
As seen in Fig. @), for X=-2.55 and§=0.05, the
value ofGgyy is Grym=~ 10°, in agreement with the experi-
mental observations of Ref. 3. 1
The obtained value in Ref. 3 for the nonlinear susceptibil- F=—_Z%(Tr(a)Tr(af &) +2 T &&l a;)).  (41)
ity in silver fractal composites ig¢®*9~px107° esu at 15

A =532 nm. Even for a very small metal fraction used in theyie that the cluster polarizabilit{(ﬁaﬁw), is totally sym-

i ~10°5 ic Qi 1(3¢) 1010 . . - .
experiment of Ref. 3p(3)1_0 , this gvesx 10" esu  metric as well as the polarizability of an isolated monomer,
(cf., a typical value o™ in crystals is~ 10 "esy). More-  g3) - either is characterized by a single amplitude.
over, p is a variable quantity and can be, of course, in-\" 499

_ — : Enhancement of the third-harmonic generation process is

creased. We can assigned the value®@su to the nonlinear . _ 2. e : .
. ) " given by Gyyg=|(F/f)|%; using(41), this results in
susceptibility, Y39, of silver fractal clusters; the quantity
x®9 is related to the nonlinear susceptibility!®), of the (X2+ 62)°
composite (silver aggregates in watervia the relation Grie=—s5—Tr(a)Tr(ay &) +2 Tr(a ] &) )| 2.
XE9=px 3. The huge nonlinearityy®9~10"° esu, 225 (42)
with a time of the nonlinear response30 ps® makes metal
fractal aggregates very interesting for potential applicationsFor the excitation outside the cluster band of resonant
In the long-wavelength range of the spectrux» 1000 modes,aj~ ay andGryg=1 in (42).

nm, the quantityX is almost constantX(\)~X,, where In Fig. 3, we present a log-log plot &¢ as a function
a’Xo=—4m/3 (i.e., Xo=—4m/3 ina=1 unit9. The excita-  of X for three very different values of. Despite the strong
tion in this spectral region, whex(\)~X, for all A, can be fluctuations, we can conclude from Fig. 3 that, on average,
described in terms of the single mode, called “zero mode’the produciGrg6* does not depend of. Thus, in contrast
(see Sec. V the preceding paper, Refl. 20 this case, all the to the binary theorg,that predicts a small enhancement for
spectral dependence @y is due to an dependence of the highest-order harmonic generation, the present calcula-
the factor 6% in (36). Since Gpyy~|xC%,/8%)%, we tions demonstrate a possibility of a very strong enhancement:
conclude thaty®®« 63 in the long-wavelength part of the G qyg*d *.

where

(30)
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maxima. This is probably due to the fact that the product of

Gmc54 . the a; in (41) has poleqas a function ofw,) lying in the
L Gm;(sjz1.9x10::(X24%5;)3(1ma)2 o same complex semiplane; therefore, the average enhance-
_______ Graed =2.8x107" [X|™ b ment, which can be estimated by integrating ovey, is

smaller. [In contrast, there is a complex conjugate term,
4 @] , in the product of they; in expression25) that defines
the enhancement for FWM. Note that the presenceyof

10*

10 °
s =Ef in the nonlinear response indicates that an elementary
10 ) quantum mechanical process includes “subtraction” of a
photon] Despite the indicated difference, the enhancement,
B Grhg, IS very large and can reach giant values for small
10 values of .
) (X<0) The dashed lines in Fig. 3. show a power-law fit for
107 g ri. 62010 0.1<|X|<3 (6=0.05). The computed exponents are
' sasas 6=0.05 6.08+1.00 for X>0 and 6.5-1.0 for X<0. However, the
10 4 o000 §=0.01 fluctuations are so strong that based on the simulations we
cannot claim that there is a pronounced power-law depen-
10 43 e . _|XI dence.
0.1 1 In general, enhancement nth-harmonic generation may
be estimated by
lo™ GTHG64

2
~lao| 2" a)|2. (44)

— Gruedt=6.8x10_3(X’+6%)*(Ima)? o,
..... Gmed*=2.8x107%X S odas

+5

=
Ghhe™ [EOT"

The estimatd44) is based on the assumption that the inter-
action of nonlinear dipoles oscillating at the frequency
ws=Nw can be ignored. If this interaction is of importance,
the estimatd44) should be replaced by

10
10 ~°

10 73
Ghhe™ | aO(w)|_2n| aO(ws)|_2|<ain(w)ai(ws)>|2- (45)

10 ™
The experimental observation of the enhandeyg 3 or-

1 tvees 6=0.10 ders of magnitudesecond-harmonic generation was reported
10 P - asaaa 6=0.05 |n Ref 29
. coooo §=0.01
X
f T — T . — C. Enhanced Raman scattering
0.1 1

In this section we consider the enhancement of Raman

FIG. 3. The enhancement of the third-harmonic generation,scatterinvaRSa in particles aggregated into clusters. In our

G 1ue, in CCAS for negative(a) and positive(b) X. See also the Previous work on this subjeét, the simu_lations of the en-
text. hancement were performed only for diluted cluster-cluster

aggregates, whereas below we calculatg for nondiluted
Based on the results of our simulations, we suggest th€CAs and compare the results with experimental observa-
following expression for the enhancement factor within ations.
band of the eigenmodes: We assume that each monomer of a cluster, apart from the
linear polarizability,ay, possesses also a Raman polarizabil-
ity, k. This means that the exciting fiel(?), applied to an
isolated monomer, induces a dipole momaeti, oscillating

. . at the Stokes-shifted frequency. To avoid unessential
where the prefactolCryg, is an adjustable parameter. For- complications, we suppose to be a scalar: this gives

mula (43) reflects, in particular, the indicated dependence s—E. The Raman polarizability may be either due to the

G rhe*d 2. A ; . .
T_lt'ﬁe solid lines in Fig. 3 represent the results of Calcula_poIarlzab|I|ty of a monomer itself or to an impurity bound to

. X ) . . the monomer.
tions ug_ng(43) with CT'.*G found from the thfgrent re!aﬂons We consider spontaneous Raman scattering, which is an
for positive and negativiX: Grygd*=0.1 in its maximum

: L : incoherent optical process. This means that the Raman polar-
(at X~ —4) for negativeX, andGr,g6*=0.01 in its maxi- . _ .. :
i izabilities, ;, of different monomers possess uncorrelated
mum (at X~4) for positive X. Recall that for FWM the i P

: ) random phases:
value of Cyy was chosen so th&@gyys°=1 in both of its P
maxima atX~ +4. Thus, in order to fit the simulations, we . )
have to take the smaller values for the prod@gh,gd* in its (ki k) =x|?8; - (46)

(X?+6%)° )
GTHG”CTHGT[lma(X)] , (43
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This feature constitutes the principal distinction betwaen (X2+ 8%)?

and the linear polarizabilityy. It ensures that there exists no GRS:T<QRS(X)>! (53
interference of the Stokes waves generated by different

monomers. with grg(X) given by

As was pointed out above, the field acting uponitn
monomer in a cluster is the local fiel&;, rather than the
external field E(©. Also, the dipole interaction of monomers

Ors=Tr & & &f]

at the Stokes-shifted frequenay,, should be included. Tak- = En( KnmiAnAmAT AL, (54
ing these arguments into account, we write the following _ _"m _
system of equations: whereK,,m ik is defined in(29).

The functionggs satisfies the following sum ruf&:

S _ . E. S H H S [
BBt b2 (alWip)d, (47 |7 ge0ax=471m S, KRoReiRor (55

s . - .
whereag is the linear polarizability of an isolated monomer Further, similar to(33), the product of the\ factors in Eq.

at the Stokes-shifted frequenay,. (54) can be rewritten as
The total Stokes dipole momenrD?®, found by solving
(47), is:?? AnAmAI*A::RmIRnk{(AnAm+ArA:)_RnI(An_AI*)
_Rmk(Am_A:)}- (56)
_ _ (0)
Dz—Z dfa—zsz; ki oo gl (48)

We first find grg(X) due to the “resonant” difference of
the eigenmodes only, such tHat,—w|< & in (54). In this

whereZs=(ag) ™, aj=ai(Xy), anda; is defined in(3).  ca5e for the ensemble average, we obtain

The ngzenhancement associated with particle clustering is
defined a 3

(GRe(X)) = 553 IMa(X). (57
2
GRSZ%- (490  The sum rule for the ensemble-average resonant contribution
N |?[E)
has the form

The above formula§t7)—(49) are exact and valid for any < X0V X= 37 58
cluster of particles. If the Stokes shift is so large that the 7w<gRS( )ydX= 25% (58)
Raman-scattered light is well out of the absorption band of _
the cluster, the polarizability} in (48) and (49) can be ap- It was shown in Ref. 22 that the resonant factor
proximated asx,z~Z; 8,4, and the orientation-average (Jrs(X)) gives the dominant contribution to the enhance-
enhancement49) acquires the following form?® ment for diluted clusters. We conjecture tiatg(X)) de-

scribes the functional dependence of the enhancemeit on

1 and & for nondiluted clusters as well:
Grs=1ZI% 2 ( 2 | @i apl?) = 8(1+ X2 6%)Ima. (50)
3N\ 5 (X2+ 52)2
GRS%CRS—53 Ima(X), (59)

Thus, if the Raman-scattered light does not interact with the
cluster, the Raman-scattering intensity is simply proportionaivith Crg being an adjustable parameter.
to the mean square of the local fiel@xs= G [cf. Eq.(5)].? In Fig. 4, we plot the results of our simulations Gfs
However, in more interesting case, the Stokes shift isjefined in(51) for negative(a) and positive(b) values ofX.
small and the Stokes amplitudes are also enhanced. Then, tife solid lines in Fig. 4 give the enhancement found from
general expressio#9) is needed; after averaging over ori- (59), with Crg obtained from the relationGrs6®=3 in the
entations, this gives maxima occurring aX~ +4. The dashed lines represent a
power-law fit for Gggd® in the interval 0.%|X|<3, with
6=0.05. The obtained power exponents (4-@70 for
X<0 and 4.030.70 forX>0) are close to 4 for both posi-
tive and negative values oK. Similar to the above-
[For the nonresonant cagé|>|w,|, we havea;=aq and,  considered casdsee the discussion following E6B6)], the
therefore,Grs=1 in Eq. (51).] According to(51), the en-  dependence&* in (59) dominates the weak spectral depen-
hancement of Raman scattering is determined by the ertence of Ina(X) in the band of cluster modes.
hanced local fields raised to the fourth power and averaged As seen in Fig. 4, the produ@gsd°, on average, does

2 2\ 2
GRS:@W[&T&@?* &t ). (51)

over an ensemble of clusters, not depend ors in the region close to the maxima, and its
value there is close to unity. Thus, the strong enhancement of
Grs~(|Ei[EQ| )~ |ag 4] ;] %). (52)  Raman scatteringGgrs~ 6~ °, can be obtained due to aggre-
gation of particles into fractal clusters.
Similar to the case of FWMsee (26)—(30)], we may In Fig. 5, experimental RS enhancement data, obtained

express the RS enhancement in the form for a silver colloid solution in Ref. 30, are compared with
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3
GR55 GRS ©
10 -2 2 2,2 . 50000
Gps03=3.3x10 2 (X*+4%)* Ima
______ Grs6°=2.4x1072 X | * N
L M o — theory
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10 FIG. 5. Theoretical and experimental enhancement factors,

Grs02=6.3x1073(X*+6%)’Ima , , ,
2ot G grs, for the silver colloid aggregates as a function of wavelength,

Gps6°=3.4x107%X*

107 form {3 s(w;w,®,— ), and determines nonlinear correc-

tions (c«« the field intensity to the refractive index and ab-
sorption. The Kerr-type nonlinearity can also result in degen-
erate four-wave mixing (DFWM) considered above.
Composite materials with large values of the Kerr nonlinear-
ity can be used as nonlinear optical filters. Under certain
conditions, they also manifest optical bistabilftyvhich can

10 ~*

10 ~®

10 (X>0) be utilized to build an optical analog of the electric transistor.
Therefore, there is significant interest in developing materi-
10 seses 228'8? als with a large Kerr nonlinearity.
) We consider the enhancement of the Kerr susceptibility
X due to the clustering of small particles embedded in a linear
10 ';'1 ' T ' — host material. We assume that the volume fractjpnfilled

by particles is small, and they are initially randomly distrib-
N ,_uted in the host. Since is small, the interaction between
FIG. 4. Th.e enhanceme_m of Raman scattering  in CCAS’nonaggregated particles is negligible. The aggregation results
G rs, for negative(a) and positive(b) X. For details, see the text. . . .
in many well-separated random clusters. The interactions be-
G gs calculated using51). [The values ofX and & for vari-  tween the dipoles induced by light on particles in a cluster
ous\ were found using21) and(22) of Ref. 20 and the data lead to the formation of collective eigenmodes; their reso-
of Ref. 26] Only the spectral dependence Gfxg is infor- nant excitation results in high local fields and the enhanced
mative in this figure since only relative values Gkg are  Kerr susceptibility.
reported in Ref. 30. The experimental data presented in Fig. The Kerr nonlinear polarizability3®, has the same
5 are normalized by settinGrs=3x 10* at 570 nm, which  structure[see Eq(6)] as the one describing DFWMIn the
is a reasonable value. Clearly, the present theory successfulfyesent case, however, we assume that there is only one ap-
explains the giant enhancement accompanying particle agflied field, E(%).) Although in Sec. Ill A we considered only
gregation and the observed increaseCefs towards the red one specific process, DFWM, the analysis presented there
part of the spectrum(The agreement is better than that ob-was general and most of the obtained results are applicable

tained with the use of the model of diluted clust&)sThe  for other phenomena associated with the Kerr susceptibility.
strong enhancement towards the red occurs because the localror jsotropic media, the Kerr polarizability can be written
fields associated with collective dipolar modes in CCAs be-, the form (7), with two independent constant, and f ,

come)significantly larger in the red part of the spectrs®e .+ are related to the constaatsndb in formulas(19) and
Fig. 1.

(20). The polarization of a composite with aggregated par-

D. Nonlinear refraction and absorption ticles can be presented as follows:

In this section we consider the enhancement of the optical (30 —30) (0)(0)=(0)%
Kerr nonlinearity. The Kerr polarizability has, in general, the Po (0)=3Xapys( — @0 0,0, —0)E5ETEST,
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where the effective Kerr susceptibility®®, of the compos-

ite has the fornicf. (13) and (23)] Gkl 8°

' 3 —2y4
e ) — G 8°=1.1 10X Ima
X(a,bgzyé_ngz*()(a,ﬁr7:5r>0<“j,a’aaj,ﬂ’ﬁaj,y’yai5'5>’
(60)

and(x'%,s0=v0 (B2, 500, With v being the volume of a (X<0)

particle.
Proceeding similarly to the method that was used to ob-
tain (16)—(18) from (13), we find

10

3 B 10+
X'5ys= Gk, sPbsA gy 57 Gk aPbal npyss (61)

where ¢g .=vg *fsa,

" sasaa 5=0.05(G(0
10 aasaa §=0.05(G)0
1 3 . . ATA ATn ooooco §5=0.01(G(0
GK,S:EZ Z*(Tr(a; a)Tr(a; af ) +2 Tr(a; aja; @), sesee 5=0.01(G)0
(62 -X
10 T T T T T T ™
and 0.1 1
1 N N Gl 6° o
GK‘a=gz3z* (Tr(a; ) Tr(a; af ) = Tr(a; aja; af)). . .
(63) ‘o
(b) 2a
1 1 » &‘3}9 4
The factorsGg and G, are identical toF¢/fg and F,/f,, (X<0) ‘g-.%ffh ats
respectively[see Egs(17) and (18)], and the enhancement 10+ -gﬁff’ . .
for the DFWM process can be expressed in term&gpt as ;" © o 4
GFWM:|GK,S|2- ) Lt AAAA:c%o 3 -
In general, according t(61)—(63), there are two different ..Ao-;"é *
enhancement coefficients for totally symmetri@A(;ﬁyﬁ) 10 O:AA . . ¢
and partially symmetric€A ,;.5) parts of the susceptibility .t L2 .
in an isotropic syster The fact that there are two different s g %0 s .
independent constants for the Kerr response in an isotropic Lo 520.05 (G(0 <
medium results, in particular, in a rotation of the polarization 10 . aasss 52005 G)0
ellipse? If the field E©® is polarized linearly or circularly, go000 9=0.01480
the nonlinear polarizatior?®9), can be expressed in terms )
of only one independent constari{and[F¢+F,] for lin- 10 ] — . . _.X.
ear and circular polarization, respectivef§ Also, in the 0.1

low-frequency limit (where 8 is due to the nonresonant

electron respongethe nonlinear susceptibility tensor must  FIG. 6. The enhancement of the Kerr optical susceptibility in
be fully symmetrical, i.e.,F,=0, for an arbitrary light CCAs: (a) the real partGy , and(b) the imaginary partGy .
polarization?® Below, we calculate the enhancement associ-

ated withGy ;=G . The enhancement factor is, in general, , x4

complex:Gc=G+iG}. If B is real, the real parGy, Gk~Ck 5z Ima(X). (65)
and the imaginary parGy , determine the enhancement for

the nonlinear refraction and for the nonlinear correction to In Fig. 6, we present plots dby (a) andGy (b) for X<0

absorption, respectively. (the calculations forX>0 give similar results The solid
The enhancement for Kerr media can be also presented iine in Fig. 6a) represents the calculations based on(B6),
the form with the Cy chosen so thatGy %=1 in its maxima at
X~ —4. From the figure, we can conclude that E85) ap-
(X?+ 8%)(X+i6)? proximates the exact results well. Also, as follows from the
K= 15 (9K (64) figure, both real and imaginary parts of the enhancement are

approximately proportional to the third power of the quality
wheregx=9grwm, andgrwy is defined in(26)—(29). It was  factor, g3(~ 6~ 3), and the following estimates are valid in
conjectured in Sec. Il A thafg pwy) andGryy can be ex-  the maximaGy 6°~1 andGy 6°~ 1 (actually,Gy is several
pressed in terms of the absorption dfX) [see Eqs(34)  times larger thaGy , in accordance with the above assump-
and (36)]. Accordingly, we assume thdby is larger than tion). For metal particles, in particular, the decay parameter
Gk [so thatg ryww=0k can be approximately considered as avaries from §=0.01 to §=0.1 in the infrared and visible
real quantity, in agreement wit{84)]; then for|X|> &, we  parts of the spectrum; accordingly, the enhancement ranges
obtain from |G|~ 10® to |G|~ 1P in this spectral range. Such a
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giant enhancement indicates that optical materials based @tood and roughly estimated using the following simple ar-
composites including small-particle clusters possess a highguments. Consider the enhancement for an arbitrary nonlin-
potential for various applications. ear optical processE". According to Egs(2) and(3), for

It also follows from the figures that, in accordance with the resonant dipolar eigenmodes, the local fielfjs,exceed
(34) and (64), the real parGy is negative for most of the the external field, E©©, by the factor ~|a51/5|
resonant modes, arlGy| statistically dominate$Gg|. For  =|X+id|/ 6, i.e.,~|X|/ S for |X|> 5. However, the fraction
Gk<0, the nonlinear correction to the refractive index, of the monomers involved in the resonant optical excitation
An, is negative, if3(39>0, and positive, if339<0 (lead-  is small, ~ sima(X).
ing to self-defocusing and self-focusing of the light beam, For a nonlinear optical process|E|", one can estimate
respectively. Interestingly, the imaginary pa@/,, changes the ensemble average of the enhancemgt,/E(*)|"), as
its sign as a function oK very rapidly. Thus, a nonlinear the resonant valugg; /E(?|7¢, multiplied by the fraction of
correction to the absorption coefficiefgiven byGy for real  the resonant modein other words, the fraction of particles
5G9 is a very strong function of the laser frequency andinvolved in the resonant exc;ltatmnThls gives, for the en-
can be both positive and negative. The fact that the nonlinedtancement the following estimate,
contribution to the absorption can have a different sign is not
surprising: there are nonlinear optical proces@esociated  (|Ei/E‘@|")~[X|"8™"x & Ima(X)~|X|"s* "Ima(X),
with the Kerr-type nonlinearityleading to both positive and (66)
negative nonlinear contributions to absorption. In particular, . . . . . S
processes, such as the saturation effect or the Rayleigh res‘efh'Ch_Is>1 for n>1. Since this is Only a rough estimation,
nance, lead to negative corrections to absorption, where regjéijosrtable constar@, should be, in general, added as a

two-photon absorption, for example, results in a positive® . . .
P P P P The nonlinear dipole amplitude can be enhanced along

correction?® Clearly, the light excites simultaneously many . ) . .
resonant and quasiresonant modes in a cluster, leading tov.\é{th thellmear local fields prowded the generated frequency
competition between the contributions associated with varil'es within the spe(_:tral region of the cluster eigenmodes. For
ous optical processes; this probably results in the strong d nhancements of incoherent processes, such as Raman scat-
pendence o6/, on X. tering ar)d nonlinear refraction anq absorption in Kerr media,
K we obtain from Eq(66): G~CX*6 3Ima(X) [cf. (59) and

(65)]. For coherent processes, the resultant enhancement
~K|E;{/E©|™)|2; accordingly, the enhancement factor

As shown above, the clustering of small particles embed=-CX®6~*[Ima(X)]? for the third-harmonic generatidif.
ded in a host material may result in a giant enhancement dfd. (43)], and ~CX85~[Ima(X)]? for degenerate four-
both linear(e.g., Raman scatteringnd nonlineatfour-wave ~ wave mixing[cf. (36)]. (The latter enhancement is larger
mixing, harmonic generation, and nonlinear reflection andecause of the “additional” enhancement of the generated
absorption optical effects. The enhancement occurs becaus@onlinear amplitudes oscillating at the same frequency as the
of strongly fluctuating local fields that can have very largeapplied field)
values in particle aggregatésee Fig. 1L Nonlinearities em- There are other optical phenomefmet considered heye
phasize these fluctuations leading to giant enhancements. that can be also enhanced in small-particle composites. For

If particles aggregate into fractal clusters, fluctuations ofeéxample, Rayleigh scattering is enhanced by the factor
the local fields are especially large. This is because the dipolér~(|Ei /E(©|?)= 5 1.2 Another example is fluorescence
interactions in fractals are not long rangas they are in from molecules adsorbed on a small-particle aggregate. The
conventional three-dimensional medand many of the col- fluorescence following two-photon absorption by the aggre-
lective eigenmodes are strongly localized in different parts opate is enhanced by the factoiGg~/(|E; JE@)%)
a cluster with various random structures. This ultimately~]|ao| ~*(|a;|*)o= 3.
leads to strong spatial fluctuations of the fields. In contrast,
in compact three-dimensional clusters of particles, the long-
range dipolar interaction involves all particles into the exci-
tation, thereby suppressing fluctuatidisse Fig. L This research was supported by NSF under Grant No.

Enhancements in small-particle clusters can be unde®MR-9500258 and by NATO under Grant No. CRG 950097.
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