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Absorption and extinction spectra of fractal and nonfractal small-particle composites are studied. General
solutions of the coupled-dipole equations with the exact operator for the dipole inter@ctiuding the near-,
intermediate-, and far-zone terpare found and compared with those in the quasistatic approximation. Broad-
scale numerical simulations of optical spectra for clusters containing a large number of paipdies0 000
are performed. A significant fraction of dipolar eigenmodes in fractal aggregates is shown to be strongly
localized. The eigenmodes cover a wide spectral region providing resonant enhancement in the visible and
infrared parts of the spectrum. In contrast to previous predictions, the absorption spectrum is shown to be
significantly different from the spectral distribution of the density of dipole eigenmodes. It clearly indicates the
importance of symmetry properties of the modes and corresponding selection rules for the absorption by
different modes in random fractal composites. Our experimental data obtained for extinction spectra of silver
colloid fractal aggregates are in good agreement with the results of numerical simulations.

I. INTRODUCTION holds in most cases for microscopically disordered media
that are, on average, homogeneous. Dipolar modes, in this
Electromagnetic phenomena in inhomogeneous metakase, are typically delocalized over large areas, and all
insulator compositegthin films, cermets, colloidal aggre- monomers absorb light energy, with approximately equal
gates, etg. have been intensively studied for the last tworate, in regions that significantly exceed the wavelength. In
decades. Such nanostructured composites possess fascinatontrast, fractal composites have eigenstates that are often
ing electromagnetic properties, which differ greatly fromlocalized in subwavelength regions. Absorption by mono-
those of ordinary bulk material, and they are likely to be-mers in these “hot zones” is much higher than by other
come ever more important with the miniaturization of elec-monomers in a fractal composite. This is a consequence of
tronic components. the already mentioned fact that fractals do not posses trans-
Fractal structures are prevalent in composites. The emetational symmetry; instead, they are symmetrical with re-
gence of fractal geometry was a significant breakthrough irspect to scale transformation.
the description of irregularity.Fractal objectdfractaly do The localization of optical eigenmodes, and associated
not possess translational invariance and, therefore, cannstrong field fluctuations can lead to a dramatic enhancement
transmit ordinary wave$® Accordingly, dynamical excita- of many optical effects in fractafs.” The theory of optical
tions such as vibrational modégactons tend to be local- excitations in fractal clusters and percolation systems has
ized in fractals® Formally, this is a consequence of the fact been under development during the last decade, in particular,
that plane running waves are not eigenfunctions of the opby Berry? Stroud® Bergmant® Fuchs and Clard! Devaty*?
erator of dilation symmetry characterizing fractals. The effi-Brouers'® Niklasson** and by Markel, Stockman, Shalaev
ciency of fractal structures in damping running waves isand their co-workers="'°-26Strong localization of dipolar
probably the key to a “self-stabilization” of many of the eigenmodes in regions smaller than the wavelength was pre-
fractals found in naturé. dicted in Ref. 15, demonstrated by numerical simulations in
Dipolar eigenmodes in fractal composites are substanRef. 18 and experimentally observed in Ref. 25; indepen-
tially different from those in other media. For example, theredently, localization of optical modes was also studied in
is only one dipolar eigenstate that can be excited by a homdrefs. 9 and 13, using a resistor-inductor-capacitor network
geneous field in a dielectric sphéetéhe total dipole moment model. (Note that along with localized modes in fractals,
of all other eigenstates is zero and, therefore, they can bimere are delocalized ones as wdllocalized modes produce
excited only by inhomogeneous field. In contrast, fractal aghigh-local-field (*hot” ) zones resulting in strong enhance-
gregates possess a variety of dipolar eigenmodes, distributedent of optical phenomena, such as RayléigRRaman®
over a wide spectral range, which can be excited by a homaand, especially, nonlinear light scatteritfg?* In fractal ag-
geneous field. In the case of continuous media, dipolar eigergregates composed of metal nanoparticles and in rough self-
stategpolaritons are running plane waves that are eigenfuc-affine films, these modes are associated with localized sur-
tions of the operator of translational symmetry. This alsoface plasmor(LSP) oscillations.
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Strong localization of eigenmodes leads to a patchwork- Il. COUPLED-DIPOLE EQUATIONS AND OPTICAL
like distribution of local fields associated with “hot” and CROSS SECTIONS
“cold” zones in fractals. This brings about large spatial fluc-
tuations of local fields in fractal composites and huge en

hancement of various optical effects. , _ticles (monomers located at points,, . .. ,ry. The mono-

An important property of the interaction of light with \orq are assumed to be spherical with diameter much less
fractals is the strong frequency and polarization dependenGgan the wavelength of light. The particles are polarizable,
of the spatial location of light-induced dipole moded?®> \ ith light-induced dipoles given by = a,E; , whereE; is
Such frequency-spatial and polarization-spatial selectivittne |ocal field acting on théth particle of isotropic polariz-
may lead, in particular, to persistent holes induced by lasegpility a,. The local field at any point is a superposition of
radiation in the spectra of fractal$such behavior could find the incident wave and all secondary waves scattered by the
applications in the recording and processing of optical infordipoles. Thus, dipole moments interact with each other and
mation. This selectivity arises because fractal morphologyvith the incident field, and obey the coupled-dipole equa-
results in localization of optical modes on different parts oftions (CDE’s):
an object with random local structure.

General understanding of the properties briefly outlined N
above has been achieved during the past few years. However,  dj,=ao| EXexpik-r)+ > Guu(rjdiz|, (1
most of these properties have been verified only for the bi- i=1
nary model®!® and for the model of diluted aggregates where the time-dependent term, expét). is omitted,

; ; ; ~19,24,26 p|_
with a relatively small number of pa_\rtu_:lég. . .AI rij=r;—rj, and=’ denotes the sum over all values of index
though these two models allow qualitative predictions of.

We consider the interaction of a plane electromagnetic
wave E(r,t) =E@exp(k-r—iwt) with a cluster ofN par-

most of the basic properties of fractals, as a rule, they canndt exceptj =i. The interaction tensoB, is defined as
guantitatively describe optical excitations of real self- Mol g

supporting aggregates that often consist of many thousands Gop(r)=K3| A(Kr) 8,5+ B(Kkr) "z | (2
of particles. In addition, all previous consideratidiexcept

Ref. 17 were restricted to the quasistatic approximation. AX)=[x"1+ix"2—x"3]exp(ix), 3
Broad-scale numerical simulations presented in a recent

paper’® although including simulations for nondiluted clus- B(x)=[ —x~1—3ix "2+ 3x " 3Jexpix), 4

ters, were S.t'” I!m|ted to _clusfcers of only 100-300 partICIeSwherea (should not be confused with the polarizabilii)
in the quasistatic approximation.

. L . _.and B8 denote Cartesian components. Summation over re-
In this paper we go beyond these limitations. We find B b

eated Greek indices is implied.
general solutions of the coupled-dipole equations with thé) P

) ! - ) Following Refs. 15 and 16, we introduce aN-3
exact operator for the dipole interactiéncluding the near-, dimensional complex vector spa@™ and an orthonormal

;ntermgdla}te_—, anfd farl—zone tennalso, W1?| report reiults tbasis|ia). Vectors|d) and|E) e C3N, and their components
rom simulations for clusters consisting of large numbers of ™ ic” " pagis are i@|d)=d;, and (a|E)=F ,

particles, from 500 to 10 000. This allows us to check the_ E(Qo)eprk'ri). Similarly, we introduce a Bx 3N opera-

basic predictions of previously developed theories and to dis- S . . PR
cover new properties of fractal aggregates. We show, in partfr V, which in the|ia) ba3|§, has.componentSa(IV“,B)
ticular, that the spectral dependence of absorption by fractaE _Gaﬂ(rii)_ where G,4(rj) is def!ned |n(_2)—.(4). Then,
significantly differs from that of the density of dipolar eigen- Ed- (1) acquires the form of a matrix equation:

modes; in contrast to previous predictidns®2® This indi- (Z+9)|d)=|E) ®)
cates the importance of symmetry properties of dipole modes ;

in absorption by random fractals. Our numerical simulationsvhereZ= 1/a,. Note that, generallyy is symmetric but not
also demonstrate a significant difference in absorption spe¢ermitian (see also Ref. 28

tra of fractal and nonfractal composites. As shown in the Appendix the solution 8) has the form
In Sec. Il we present the basic equations describing dipole _

excitations of a small-particle aggregate and discuss some of n)(nlg) 1

their general properties. Section Ill describes the numerical |d):§n: (nn)  Z+v,’ 6)

methods and models used in our simulations. Within the qua- R ~

sistatic approximation, the results of numerical simulationsvherev,, are eigenvalues of, defined byv|n)=v,|n), and
for absorption, spectral density, and eigenstate localizatiothe “bar” denotes complex conjugation of all components of
length are presented in Sec. Ve consider here optical a vector. Thus, ifn) is a column vector,f| is a row vector
properties of various fractal clusters and compare them withwith the same entries as). Although the|n) basis is not, in
those for nonfractal aggregatesn Sec. V we present nu- general, orthogonal it can be shown that|§)=0 for m
merical calculations of extinction spectra of silver colloid #n (see the Appendijx

fractal aggregates, obtained within both the quasistatic ap- In the |i«) basis, the solutiori6) obviously acquires the
proximation and the\-dependent dipole interactiofwhere  form

\ is the wavelength and compare these simulations with . .

experimental aggregate spectra. Sec. VI summarizes and dis- 4 .= ('alrf)(mJﬁ)Ei,B 1 _ @
cusses our resullts. b ST [Zi(nlite)(i'a'[n)] Z+v,
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Formulas(6) and (7) generalize solutions of the CDE'’s
previously obtained in the quasi-static limisee, for ex-
ample, Refs. 15 and 160 the case of tha-dependent di-
polar interaction. According t66)—(7), for an arbitrary col-
lection of N interacting particles, there areN3eigenmodes
with resonant eigenfrequencies defined by Refv,=0.
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Then, it is easy to show that
1 (¢oln)(n|¢y)
= => 0. 14
(qsa W+Z¢a) 2 o, (14)

The basic formula$7)—(14) presented in this section will be

The weight with which a mode contributes to the resultantapplied later to numerical simulations of optical properties of

optical response depends on the scalar prodofE)( and,
thus, on symmetry properties of the eigenvectois

Once the CDE'Y1) are solved for dipole moments,
extinction, absorption, and scattering cross sectioms, (
o,, andog, respectively can be obtained from the optical
theorem®*°

N
oce=47k|E®|72ImY, d; E®*exp(—ik-r;)
=

=47k|E|2Im(d|E), (8)

N
aa=4wklE<°)|-Zya§1 |di|2=4mk|E©|"2y,(d|d), (9)

where

y.=—1m(Z)—2k%/3 (10)

is a non-negative constant characterizing the absorptio
strength. (The scattering cross sectiom, is defined by
o= 0.~ 0,.) Note that each term in the suf®) character-
izes absorption by a single monomer, however, individual
terms in the sun{8) have no independent physical signifi-
cance, since scatteringnd, therefore, extinctigns, in gen-
eral, a collective phenomenon.

If clusters are much smaller than the wavelength of th
incident wave and/,>2k%/3,! one can use the quasistatic
limit for the dipole interaction matrix. This means that one
can omit terms X, 1% and expi) in (3), (4) and put
exp(xik-rj)=1 in formulas(l) and (8). We use below the
notations,W andw,, for the quasistatic limits of the inter-

action operator and its eigenvalues. After averaging over thB

orientations of a cluster, the extinction cross section is ex
pressed as

oe=4mkN Ima, (12)
where
a=(UN) X Tlafpl=(UN) X afl, (12
andal}), is related tod;,, via
di,= a%E(BO) : (13

Thed;, are to be found from the solution ¢f). Thus, with
the trivial prefactor 4rkN, the extinction cross section is
proportional to Inav.

We also define three normalized vectors, one for each

direction a=x,y,z as follows:

1

N>

lia).

| o) =

e

fractal composites.

IIl. NUMERICAL SIMULATIONS FOR SMALL-PARTICLE
AGGREGATES

The CDE’s(1) are general in the sense that they place no
restrictions on the geometry of the aggregates. In particular,
the system of equationd) can be used to find the optical
response of a fractal particle aggregate. In this case the num-
ber of monomersN and the radius of gyration of a cluster
R. are related by the well-known expression
N=(R./Ry)P, whereR, is a length constant characterizing
the separation between nearest neighborsiaimithe fractal
(Hausdorf§ dimension. Note that, for fractals, the volume
fraction occupied by particlep~N*"3P which —0 with
increasingN. The density-density correlation function in
fractals has a power-law dependenggr)«=r®~9 D<d,
whered is the dimension of the embedding spacde=@3 in

ur casg andr is the distance between two points in a clus-
er. This function increases with decreasingrhus, in frac-
tals, despite the asymptotically zero mean density, there are
falways particles in close proximity-R,, to a given one,
I.e., the interaction between particles is anticipated to be
strong.

We have conducted numerical simulations of both fractal
and nonfractal aggregates. Below we will briefly describe the
computer models used to generate these small-particle aggre-
gates.

Cluster-cluster aggregat€¢€CA) were built on a cubic
lattice with periodic boundary conditions using a well-known
numerical algorithm(see, for example, Ref. 33The fractal
dimension of CCA embedded in three-dimensional space is
~1.78, and the length constaRy~a/3, wherea is the
Tattice period(equal to the particle diamejeM/e generated
various assemblies of CCA's consisting of different numbers
of particles,N=500, 1000, and 10 000. Note that the CCA
model provides excellent simulation of empirically observed
metal particles aggregates in solut®nin this model, en-
counters of randomly walking particles result in their stick-
ing together, first to form small groups, which then aggregate
into larger formations, and so on.

We also simulated other types of fractals, namely, Witten-
Sander aggregate8VSAs) and random-walk aggregates
(RWA's). WSA's result from diffusion-limited cluster-particle
aggregation and have fractal dimensibr=2.5 (for details
see, for example, Ref. 35RWA's were generated based on
the model of self-avoiding random walks; the fractal dimen-
sion in this case i©~1.7. WSAs were built on a simple
cubic lattice while RWAs were off lattice.

To compare fractal and nonfractal composites we also
simulated a random gas of particléRGP and a close-
packed sphere of particld€PSB. In both caseD=d=3

and the correlation functiog(r) is constant. Particles were
assumed to be hard spheres. To provide better comparison
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with CCA, the RGP was generated in a spherical volume thapeing the minimun(maximun) eigenvalue ofl. These ex-
would be occupied by a CCA with the same number of partremum eigenvalues are easily determined by diagonalizing
ticles. This means that particles in CCA and RGP fill thethe L XL symmetric tridiagonal matrix made up of thgs
same volume fraction,p (p was small, p~0.05 for on the diagonal and thg’s on the first off diagonal.
N=500). In RGP, distances between particles were random. The computationally intensive part of this calculation is
The CPSP was simulated in a spherical volume by ranthe matrix vector multiplication, i.e., the evaluation of the
domly placing monomeréone by onginside the volume. If -~ 3Nx 3N matrix W operating on a vectdu) of length 3.
placing a new monomer resulted in geometrical intersectiofe find that approximately 100 levels are sufficient to con-
with other particles, the trial was rejected. The process Wagerge the diagonal elements of the polarizability tensor. Con-
stopped when a large number of trials were rejected. Thigequently, calculations with = 10 000 may be performed on

algorithm allows one to achieve a fairly dense packing ofy workstation whereas diagonalization of a 30 8G® 000
spherical particles. For examplél=500 particles can be matrix is clearly not feasible.

packed in a spherical volum& =600 with the radius

R.=5.2 (the diameter of a hard sphereds-1). This means

that p~0.44 (cf., for close-packed spheres on a cubic lattice V- OPTICAL PROPERTIES OF SMALL-PARTICLE
p~0.52; it can be smaller than 0.44 for some other types of COMPOSITES IN THE QUASISTATIC APPROXIMATION

lattice). General properties of the solutions(dj in the quasistatic

To solve(1) for the aggregates described above, we usedyy oyimation were reported in Refs. 15 and 16. Here we

three different numerical methods. Thg first is based on dipresent some formulas that are relevant to subsequent nu-
agonalization of the interaction matrix!’ This method can merical calculations.

be applied in the quasistatic approximation when all terms of the quasistatic approximation the interaction teri&br
the interaction matrixV, in (2)—(4) are real, and do not y,es not depend ok=w/c, and the only source of depen-
depend ork=w/c (this requirement is, of course, fulfilled yonce of the cluster absorption (4 on  is through the
when R.<\). Provided eigenvectors and eigenvalues are, s izapility a, of an individual monomer. Following Refs.

calculated, solutions can be obtained using this method, fo) 6, and 15, we introduce real, and imaginarys, parts of

any value ofag. ' . '  Z=1/a s0 that
The second algorithm used in our numerical calculations

was the conjugate-gradient methddt is not restricted to
the quasi-static approximation, and allows use of the exact
formulas (2)—(4) for the interaction matrix in numerical
simulations. The main difficulty of this method arises from  Note that solutions of the CDE®l) can be expressed in
the need to repeat a numerically intensive part of calculatioerms of X and § for an arbitrary form of the polarizability
for each new value of,. However, beyond the quasistatic «g. Alternatively, definingay, one can always specify the
approximation, this difficulty cannot be avoided by any com-frequency dependence of the spectral variabland decay
putational method. parameters. Thus, solutions of the CDE's, expressed in
The last method used in numerical simulations with theterms ofX and 5, have universal character, while their spe-
interactionW in the quasistatic limit was based on the Lanc-cific frequency(or wavelengthdependence is determined by
zos algorithn® The diagonal Green’s function element in the corresponding frequency dependence agf= ao(w)
(14) can be written as a continued fraction that formally ter-(which, in general, depends on the specific particles aggre-
minates after 8l levels®’ However, in practice it converges gated into a cluster For example, in the vicinity of an iso-
in much fewer levels, i.e., ih levels withL<3N (for large lated resonance, the polarizability can be represented as
N):

Z="1ag=—(X+i9). (15)

R3 o
1 —__mm 16
(d)“ W+z‘¢“) " foome) T .
1 wherew, is the resonance frequency of an individual mono-
~ > . mer,T" is the resonance half-width, ans},,R,, are the char-
NowtZ— [B1.] , acteristic excitation frequency and effective size of a particle
“ [B2.] (in particular, in a two-level modeR3 w,,=|d;,?/%, where

TatZ= e 10t Z—[BL.a)?90(2) dy, is the dipole moment of the transitipn Then,

X=R,}(w—wy)/ oy and 6=R. 3T/w,) [the quantity

(ané)*l is a quality factor of the resonanicen Sec. V we

will also specifyX and § for the important case where the
A . =W= 7 Y=35. lu particles are dielectric spheres.

/31+1,a|UJ+1,a) (W 7]],&]|uj,a) ,31'“|u'_1’a)' As follows from (10) and (15), the decay constant is
where Bo,=0, [Uga)=|#,), [U-14)=0, Bj+1, are chosen related toy, by s=y,+2k3/3. Since we assume strong ab-
s0 that (U 14|Uj+14)=1, 7j..=(Uj .|W/u; ,), andge(Z)  sorption, i.e., R3/3<y,, the approximations=y, is valid
is a terminator that we take as the Green’s function for awithin the precision of the quasistatic approximation. As was
constant chain:gy(Z)=(2b%) {a+Z— \/(a+Z)7—4bz], shown in Ref. 15, an exact property of the CDE’s solutions
where a—2b=w,;, and a+2b=w,5,, With Wi, (W20 in the quasistatic approximation is

The 5’s and B8’s are determined by the basic Lanczos recur-
sion relatior®
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FIG. 1. Absorption spectra, la(X), for cluster-cluster aggre- FIG. 2. Absorption spectra, lar(X), for various fractals con-
gates (CCAs) containing different number of particles, sisting of N=500 particles: cluster-cluster aggregat@CAsS),
N=500, N=1 000, andN =10 000. random-walk aggregateRWAs) and Witten-Sander aggregates
(WSA’s).
-1 2_ 2 . . .
N Z |di|*=[Eo|*Imal 6. 17 pronounced maxima significantly shifted fro¥ 0, and the

symmetry is broken. These differences in the spectra of di-

Taking into account8)—(13), (15), and(17) one obtains the luted and original clusters arise from the fact that the process
result that, in the quasistatic approximation, the extinctionof dilution does not conserve the local structure of clusters
and the absorption cross sections are equal; equivalently, tHalthough, the global fractal morphology is conseved
scattering cross section is zero. Thus, in order to obtain a Note that the exact properties for the first two moments of
nonzero scattering cross section, the first nontrivial correcthe quasistatic solutiofs
tion to the quasistatic solution must be determined, which
turns out to be of the ordekd/y,) 0.

In general, the decay parame@depends onw. In this f Ima(X) =, f X Ima(X)dX=0
section, however, we present our results as functions of
X=X(w) assuming thab= const(this is the case, in particu- hold for the functions shown in Fig. 1. The higher odd mo-
lar, for a two-level system As was mentioned above, in ments of Inw(X), however, are nonzero.
terms of X, the spectra exhibit a universal behavior since The three-maxima structure holds for various types of
they are determined only by aggregate morphol@yd the fractal clusters, as can be seen from Fig. 2 whera(X) is
interaction operatgr and do not depend on material proper- plotted for different 500 particle CCA's, WSA's, and RWA's
ties. Material properties of monomers and the correspondinfractal clusters. However, there are shifts in positions of the
\ dependence for aggregates of metal particles will be conmaxima for different types of clustefgspecially, for posi-
sidered in Sec. V. tive X). For all fractals considered, there is a large inhomo-

All quantities below are expressed in units such that thegeneous broadening; the absorption is reduced only for
diameter of a particldequivalent to the lattice period for |X|>5 (while the homogeneous half-wid# is very small,
lattice clustersis equal to onea=1. (Note that in Refs. 15, §=0.1).
17 and 26, different units, witRy=1, were used; for CCASs, The spectral dependence of &fX) for trivial clusters
in particular, one haRy~a/3.) In the calculations presented (D=d=3) is very much different from those for fractals. In
in this section the decay constaf#=0.1 for all clusters ex- Fig. 3, we plot Inw(X) for RGP and CPSP with the same
cept those consisting of 10 000 particles, for which we setiumber of particlesN=500. Both spectra are nearly sym-
6=0.2. The results of simulations were averaged over 10netrical and narrowthe half-width is~ 5 & for both RGP
random cluster realizations for all clusters, except the 10 00@nd CPSPR Thus, in contrast to fractal aggregates, such clus-
particle CCA's, where the averaging was performed over 4ers do not show large inhomogeneous broaderimgfact,

random realizations. for a—0 andN—« one anticipates that the spectra in both
We now consider the results of our numerical simulationscases will be similar to those of isolated spherical partigles.
In Fig. 1, we plot Imx as a function ofX for CCAs with Thus, dipole-dipole interactions in fractals, in contrast to

different numbers of particled\=500, 1000 and 10 000. nonfractal composite¢sparse, like RGP, or compact, like
The absorption Im(X) exhibits little variation withN; how- ~ CPSB, result in a significantly larger inhomogeneous broad-
ever, the shape of the function is much more complicateening.(In terms of the optical wavelength, the eigenmodes of
than for diluted CCA's(compare with corresponding figures silver CCA’s, for example, span the visible and infrared parts
from Refs. 15 and 17 The absorption Im(X) in the diluted  of the spectrum, while modes in nonfractal silver CPSP and
CCA (DCCA) has one maximum neat=0 and is nearly RGP are confined to a narrow range between approximately
symmetrical. For CCAs there are at least three well-350 nm and 450 nm.This results from the fact that, for
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0.8 -
0.2
0.4 4 0.1 -
0.0
-6 6 0.0 1
FIG. 3. Absorption spectra for nonfractal 500-particle aggre- =0
gates: a close-packed sphere of parti¢@BSP and a random gas
of particles(RGP. 1.6

fractals, the dipole-dipole interaction is not long range, and
therefore eigenmodes are localized in small areas of the frac- 1-% 7
tal aggregate; these areas have very different local structures
and, accordingly, they resonate at different frequencies. In 4 |
contrast, in compact nonfractal aggregategh D=d=3),
dipolar modes are delocalized over the whole sample, and
their eigenfrequencies lie in a narrow spectral interval. We 0.4 -
return to discuss this point in Sec. VI.

We next consider scaling properties ofdinThe scaling

theory developed in Ref. 15 asserts that, for a fractal cluster, 0.0 & 44 o6 T 5 T 4 7 8
Ima(X) must, for small|X|, exhibit a power-law depen- X

dence of the formx|%~1: d, is the optical spectral dimen-

sion, which must lie in the interval ©d,<1. The same FIG. 4. Spectral dependence of the absorptiony(X), and the

spectral behavior was predicted for the density of eigenstategensity of dipolar eigenmodesy(X), for 500-particle CCAs(a)
v(X) [i.e., Ima(X)~=v(X)]. The numerical results obtained and CPSRb).

in Refs. 15 and 17 showed that these predictions are correct

for diluted fractal clusters(Note, however, that because of pe deduced for small regions neés 0, it must be noted that
the strong statistical noise in the Slmulatlc}ﬁ:%? the Scaling these regions occupy a very small part of the whole spectrum
of absorption for DCCA was disputed recently in Ref.)26. (~15% in terms ofX). (Therefore, we conclude that con-

As follows from our simulationgsee below, these scaling  vincing evidence of scaling was not observed in our simula-
results fail for nondiluted clusters. tions)

We now give a more detailed discussion of the functional Next we discuss the density of dipolar eigenstates,

dependence of la(X), for 10 000-particle CCAgsolid line  ,(X)=(=/3N)dn/dX, wheredn is the number of eigenval-
in Fig. 1) for small values oflX|. The pointX=0 can be yes in the intervadX. The coefficientz/3 was chosen so

considered as a special point in the spectral contour. In thghat »(X) has the same normalization asdiiX):
range— 1.4<X=<—0.7, the function Ina increases with in-

creasingX, approximately following the power-law depen-

dence, Inac|X| S, with s=0.34+0.01. In the region near f v(X)dX= .

X=0, the rate of increase becomes significantly smaller. The

absorption again increases in the rangesO¥<1.3 as a Figures 4a) and 4b) show the density of eigenstate$X)

power-law function, InxocX!, with t=0.11+0.01. Qualita- and Imx(X) for 500 particle CCA's and CPSP, respectively.

tively similar behavior for smallX was also obtained for It is apparent from Fig. @) that the distribution of eigen-

RWA and WSA clusters; see Fig. 2. We note that such bemodes in CCAs is not symmetrical and differs significantly

havior resembles the dependence of conductivity orfrom Ima(X). This implies that selection rules are of impor-

(p—p.) in the vicinity of the percolation thresholg, (see tance and the density of eigenstates itself does not determine

Ref. 10, wherep is the metal volume fraction. Ima(X). Thus, the conclusion of Refs. 15, 16, and 26 that
The power-law dependence of the absorption near théma(X)~v(X) is, in general, not correct and different

“critical” point X=0 might be due to scale invariance, simi- modes of CCAs contribute to Im(X) with different

lar to the metal-insulator transition in a percolation systemweights, in contrast to DCCA. The greatest difference in

However, despite the fact that power-law dependences cdma and v is near the poiniX=—1. Whereasy(X) has a
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maximum near this point, lm has, by way of contrast, a 15
minimum. [It is worth noting that a pair of monomers sepa- L(X)
rated by unit distance has an eigenstate with —1 which

is antisymmetric(total dipole moment zepowith polariza-

tion orthogonal to the line connecting the monom&ts.

As follows from Fig. 4b) the difference between Im
a(X) and v(X) is especially large for random CPSP. This
result was anticipated for the following reason. For a con-
tinuous dielectric sphere, there is only one dipole eigenstate
with nonzero total dipole momefite., the selection rules are 51
of great importance since the CPSP can be considered as a
discrete model for such a sphere, we conclude that selection
rules are important in CPSP. Thus, despite the fact that our
calculations demonstrate the significance of selection rules

for CCAs, their role there is not as important as for the case -6 -4 -2 0 K 4 6

of trivial aggregates, such as CPSP. In particular, as follows X

from Fig. 4a), almost all eigenmodes within the interval

|X|<5 contribute significantly to the absorption. FIG. 5. The localization length,(X), of dipole eigenmodes vs

We finally consider the localization length(w,)=L,, their eigenvalueX for 500-particle CCAs. The dependentéX)
characterizing a quasistatic eigensthig. The 3N projec- averaged over an interval dfX=0.6 for 10 random cluster real-
tions of the|n) vector on the orthonormal bagisx) deter-  izations is shown by the solid line.
mine its spatial behavior. The weight with which tinh ) i o . .
eigenstate is localized on thgh monomer is given by An expression for the dipole polarizability of a dielectric
ma(r)=m,(i)==[(ia|n)]% they are normalized by the sphere of radiu®,,,, which takes into account the radiation
condition 3;m,(i)=1. In terms of these weights, the local- réaction correction, has the forfh:
ization lengthL , of the nth eigenmode is defined a3 e

3 ~ €h
Rme+25h—i(2/3)(kRm)3(e— €n)’

N (20

N 2
|—nE|-(Wn)=Z1 mn(i)fiz—(El mn(i)ri) . (18

apg=

wheree=¢€'+i€" is the dielectric function of the particle

This formula is actually a discrete function of its argumentmaterial(silver., in our .cas)eand €y IS the dielectric consta_nt

w, . One can obtain a smooth localization functiofX) by of a host medium, whlph we assume to be water. The dielec-

averagingL (w,) over a given interva X for an ensemble tric constant of .Water_ is assumed to be réaé neglect the

of clusters small absorption in water and nearly constant,
e,=¢€,=1.78, in the spectral range under consideration
(from 200 to 1000 nm

L(X)=<[K(X.AX)]_12 L(Wn)>. (19 The radiation correction introduced above results in the

expression fory, satisfying the optical theorem and the en-

where the summation is taken over alkatisfying the con-  ergy conservation law. Froit10), (15), and(20) one obtains

dition [X—wy,|<AX, andK(X,A) is the number of terms in for 5= —Imag? and X=—Reay * the following expres-

this sum. The symbq(- - -) denotes an average over an en-gjgns:

semble of random clusters.

In Fig. 5 we present the results of our simulations for _3 3ene” 5 5 3ene”

L(X) for 500-particle CCA's AX~0.6). The points indicate =Ry, m+2k 3, Ya=Rn Te—e? O

values of the original functioh (w,) for one particular clus- h n (22)

ter while the solid line shows the result of averaging over 10

random cluster realizations. and

From Fig. 5, we see that(X) exhibits large fluctuations, ,

especially near the central poi¥t=0. There are modes that K= Rs( 14 3en(e’ — Eh)) 22)

are strongly localized and those that are delocalized. The m |e—6h|2

mode localization increases, on average, toward large values

of |X|, so that for the most localized modb$)() reduces to The dielectric function in a metal is well-described by the

a dimension comparable to the size of a monoraer, Drude formula

2
V. WAVELENGTH-DEPENDENT DIPOLE INTERACTION €= e P (23)

IN SILVER COMPOSITES: NUMERICAL w(o+iy)’
SIMULATIONS AND EXPERIMENTAL DATA

(O]

where ¢q includes the contribution to the dielectric constant
In this section, we specify the dependemgg\) and also  associated with interband transitions in bulk materig, is
calculate the optical cross-section as a function of the wavethe plasma frequency andis the relaxation constant. In our
length for silver colloid aggregates. The results of our simu-<calculations, we used the optical constants of bulk silver
lations will be compared with experimental data. tabulated as a function of in Ref. 38. The data were modi-
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fied to take into account finite size effects in small metallicto correctly describe the interaction between the spheres re-
spheres(wall scattering. The radius-dependent dielectric maining within the dipolar approximation, the distance be-

function, e(R,,), was obtained from the relatioa(R,) tween the dipoles must be taken less thdR,2 This is

= €pt wg/[w(er iv.)]— wﬁ/[w(er iv(Rm)], Whereeg, equiyalent to repIacjng the original touching spheres by over-
are the tabulated dafafor the dielectric constant in the lapping spheres with the dipole moments located at their
bulk silver, 7., is the bulk relaxation constant, and the CENters.

=y,+vp/Ry, With ve the Fermi velocity. For silver We first consider cases for whi@iRy, is known exactly. As

Np=27Clw,=136.1 nm, v./w,=0.0019, and vg/c shown in Refs. 29, 44, and 45, the correct description of the
=0.0047. optical response of a small object of arbitrary shape was

To simulate the silver colloid aggregates studied in oufobtained by considering dipolar interactions of a set of
experiment, we used the CCA model described in Sec. [ispherical monomers _placed ona 5|mple_ cubic lattice inside
CCA have fractal dimension, structure, and aggregation pathe volume of the object; the lattice perioal, was chosen
tern very similar to those observed in the experiment. Thi$uch thata®=(4m/3)R;,. This relation which provides
model contains two adjustable parameters, the lattice perio@quality of the total volume of the spheres and the original
a, which defines the relative distances;, between par- oObject under consideration, gives the ratia/Ry,
ticles, and the radius of a monome,. Clearly, solutions of = (47/3)*~1.612. In Ref. 46 it was shown that, within the
the CDE's are very sensitive to the raioR,,, because this dipole approximation, correct depolarization coefficients for
parameter determines the interaction strength. The model & linear array of spherical monomers are obtained provided

i ; : i 13 — -3y
geometrically touching spheres, which seems to be the mo§/Rm is chosen to be (&) °~1.688 (3=Zk™°), ie.,
natural, implies thag/R,,=2. However, as was shown in close to the above-mentioned value. We usatR
Ref. 39, this model fails to describe the long-wavelength=(47/3)*in our calculations.
resonances observed in a group of particles; it also fails to We also required that the radius of gyration and the total
describe the long-wavelength tail observed in the absorptiomass of clusters used in simulations must be the same as in
spectra of colloid aggregatésee, for example, Refs. 23 and the experiment. This condition, combined with/Ry,

30). =(47/3)3, can be satisfied for fractalsDE3) if one
The physical reason for the failure of this model is thatchoosesRy,= Ry /6)P'133~ D) whereRg, is the radius
the dipole approximation is not strictly applicable for touch-of monomers used in experiments. In our experiments de-
ing spheres®~*3Indeed, the dipole field produced by one of scribed below, the radius of silver particles forming colloidal

the touching monomers is highly inhomogeneous (°) aggregates waRRg,,~7 nm, so thatR,~5 nm for D
within the volume of the other one. This inhomogeneous=1.78.

field should result in high-order multipole moments, coupled For a light beam propagating in a system, which contains
both to each other and to the incident field. The high-orderandomly distributed clusters far away from each ottser
moments, when they are taken into account, effectively inthat the clusters do not interacthe intensity dependence is
crease depolarization factors, and lead to the low-frequencgiven by the expressiol(z) =1(0)expt(— o¢pz); the cluster
resonances observed in experimetitslowever, incorporat-  density, p=p/[(477/3)Rgxpt<N>], where p is the volume
ing these high-order moments into the calculation results idraction filled by spherical particles. Introducing the extinc-
an essentially intractable problem for the large fractal clustion efficiencyQ, by the known relation

ters considered here.

As suggested by Purcell and Pennypaéfeand devel- (o) 4k Ima
oped by Drainé? a description of the optical response of an Qe:(N)wRZ TTRL
arbitrary shaped object can be obtained, remaining within the owt ot
dipole approximation(lt is worth noting that the macro- the intensity dependend€z) acquires the form
scopic Maxwell equations also contain only dipolar terms,

i.e., polarization). Below we generalize these ideas for fractal 3
aggrzgates_ rb g I (Z) =1 (O)GX4 - Zer(ZlRexpt)) . (25)

To account for multipolar effects in the CDE's, following
Refs. 7 and 32, real touching spheres may be replaced bfs follows from (25), the extinction efficiencR. is a quan-
effective spheres which geometrically intersect. Formallyfity that is measured in experiments on light transmission
this requires the rati@/R,, to be taken less than 2. The (rather thano,).
physical reason underlying this procedure can be understood In Fig. 6@ and @b) we plot the frequency variabké and
from the following arguments. Consider a pair of touchingrelaxation parametef defined in(21) and(22) against wave-
spheres and ascribe to the first sphere a dipole momient length (for a3/R‘:’1=477/3 andR,,=5 nm). For values ofe
located at its center. Since we would like to remain within=e€(\) in (21) and (22), we usede(R,,) found from the
the dipole approximation, the second sphere should also bexperimental data of Ref. 38, which were modified to take
replaced by a point dipole located at a certain distance fronmto account finite-size effectésee above The structures
the first sphere. Clearly, because the field associated with treeen in Fig. 6, for wavelengths below 300 nm, are basically
first sphere decreases nonlinearyd/r3, the second dipole due to interband transitions. The dependence oKX and &
should be placed somewhere closer th&y,2rom the center near 400 nm, and toward longer wavelengths, are associated
of the first sphergotherwise, the interaction between the with surface plasmon resonances. As seen in Fg), &
spheres would be underestimatebh other words, in order changes significantly from 400 nm to 800 nm; hence, differ-

(24)
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Qe’QS - — — Q, Quasi-static solution (N=500
4- QUOOO Q,, Exact solution (N=1,000)
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16 (b) FIG. 7. Extinction efficiencyQ. and scattering efficienc® vs

wavelength.Q, is calculated in the quasistatic approximation for
1 500-particle CCA's and on the basis of the exact dipolar interaction
104 U """"" vacuum for 1000 particle and 10 000-particle CCA®, is calculated for

——— water

1000-particle CCA's with the exact dipole interaction.

ter. For nonaggregated, well-separated patrticles, the absorp-
tion spectrum is centered in the narrow region near the center
X(Ng)=0 (e.g.,A\g=~400 nm for silver particles in watgr
therefore, there are no resonances in the long-wavelength
part of the spectrum, wherg(\)=~X,, and, therefore, the
absorption is small. Thus, the zero-mode formation, which
accompanies particle clustering, results in the enhanced far-
0 200 400 600 800 1000 1200 1400 mfrgred.dabdsotrrﬁ)tlocrj\. dences=X(\) and 5= 5(1)
rovide e dependences= and 6= are
Wavelength (nm) specified, one can express the solutions of the CD&s

pressed in terms oK and &; see Eqs(6)—(15)] as explicit
FIG. 6. The spectral variablé (a) and decay constardt (b) vs  functions of wavelength.

wavelength for fractal aggregates of 7 nm radius silver particles in | Fig. 7, we plot the extinction efficienc®, as a func-
vacuum and water. tion of \, calculated on the basis of the exact and quasistatic
dipolar interaction. The solution in the quasistatic limit was
ent dipole eigenmodes of a cluster can be excited by an apbtained by the Jacobi diagonalization method for 500 par-
plied field at differenth. In the long-wavelength region, ticle clusters. The solution of the CDE's with the exact dipo-
from 800 nm toward longer wavelengths,is almost con- lar interaction(2)—(4) was obtained by the conjugate gradi-
stant (X~X,=-—a°/R3=—4=/3). This means that a ent method for 1 000 particle clusteffer a control we also
change in\ in this region does not change the resonant di-calculatedQ, at two different wavelengths for 10 000 par-
pole mode, which can be referred to as the “zero-frequencyicle cluster$. As seen in the figure, these solutions are in
mode,” or more simply as the “zero-mode(Note, however, good agreement. It was shown in Ref. 17, that the quasistatic
that, whereasX~const forA>800 nm, the relaxation con- approximation is, under certain conditions, a good approxi-
stant § significantly decreases from 800 nm towards themation for the description of dipolar excitations on fractals.
longer wavelengths, leading to increased resonance qualitihis occurs because most eigenmodes are localized in areas
factor) Since, in the long-wavelength region, the valuexof smaller than the wavelength, and, accordingly, the contri-
(and, therefore, the mode excijedoes not change with, butions to the local field of dipoles located at distances that
the corresponding local field distribution in a cluster is alsoare comparable with or larger thanare of no importance.
independent of the wavelength. In Fig. 7, we also present the scattering efficiency
The enhanced far-infrared absorption, generally attribute@<= (as)/[(N>wRepr where the scattering cross section
to clustering, can be related to the excitation of the zeras, is given byos=0.— 0, [0, and o, are defined by8)
mode of a cluster. Interactions between particles aggregateahd(9)]. As follows from the figure, the scattering is small so
into a cluster lead to the formation of eigenmodes, includinghat in this caser.~ o, .
the zero mode. The latter mode occurs in the long- We also performed experiments to study extinction in sil-
wavelength part of the spectrum, wheXé\)~X, for all  ver colloid aggregates. Fractal aggregates of silver colloid
\. When the cluster is excited by a low-frequency appliedparticles were produced from a silver sol generated by reduc-
field, so thatX(w)~X,, absorption is primarily due to zero- ing silver nitrate with sodium borohydridé.The color of
mode excitation and is large because of its resonant chararesh (nonaggregatedcolloidal solution is opague yellow;

0.1 =
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15 Experimental extinction spectra were compared with nu-
Q (a) merical simulations in Fig. @). The calculations were per-
© /| Monomers formed for 500-particle CCA¢solid line with a large winy
| and for 10 000-particle CCAscircles. For comparison, the
! —— Calculation (N=1;N=500) experimental spectra and numerical results for non-
1.0 A ! - — — Experiment . .
| 00000 Calculation (N=10,000) aggregated monomers are also presented in the figure.

Clearly, the aggregation results in a large tail in the red and
infrared part of the spectrum, which is well described by the
simulations. The discrepancy in the central part of the spec-
trum probably occurs because, in the experiments, a number
of particles remained nonaggregated and led to additional
(not related to fractal aggregatebsorption near 400 nm.
However, we cannot rule out the possibility that the discrep-
0.0 ‘ : ! ancy would be eliminated if one took all higher multipole
200 400 600 800 1000 moments into accouri.e., exactly, as opposed to introduc-
Wavelength (nm) ing intersecting sphergs

0.5 A
Aggregates

VI. CONCLUDING DISCUSSION

Below we briefly summarize our results and offer some
concluding remarks.

We first discuss dipolar excitations in the quasistatic limit.
As is well known, there is only one dipolar mode that can be
excited by a homogeneous field in a spherical particiea
spheroid there are three dipole mode$or a three-
dimensional collection of small particles, such as the random
close-packed sphere of particlg@PSP and the random gas
of particles (RGP, the absorption spectra are still peaked
near the relatively narrow surface plasmon resonance of the
individual particles, i.e., all eigenmodes of the collection of
particles are located in a small spectral interfsgle Fig. 3.

In contrast to conventional three-dimensional systems, the
dipolar interaction in low-dimensional fractals is not long
range, which results in localization of the corresponding
eigenmodegsee Fig. % at various random locations in the
. o cluster. These modes form the optical spectrum of fractal

_ FIG. 8._(a) Ex?erlmental ano_l calculated extinction spectra of aggregates which is characterized by strong inhomogeneous
S|Iver colloid CCA's. The_theoretlc,al spectra are presented for 500broadening. It is important to note that, despite the asymp-
par.t'dle f"’lmd 10"093'pamde CCAgb) Electron micrograph of @ yqiica|ly zero density of particles in a fractal cluster, there is
typical silver colloid aggregate. always a high probability €r°~3) of finding a number of
the corresponding extinction spectrufeee Fig. 8)] is particles in close proximity to any given one. Therefore,
peaked at 400 nm with the half-width about 40 nm. Additionthere are strong interactions between neighboring particles,
of adsorbentfumaric acig promotes aggregation and fractal which lead to the formation of eigenmodes covering a broad
colloid clusters formed. When adding the fumaric a@dlL  spectral rang€i.e., the large variety of different local con-
cm? of 0.5M aqueous solutigrinto the colloids(2.0 cn®),  figurations in a fractal cluster leads to the wide spectral in-
the color of colloids changes through dark orange and violeterval covered by the eigenmode$Ve emphasize that this
to dark grey over 10 h. A broad wing in the long-wavelengthbehavior is different from nonfractal RGP and CPSP, where
part of the extinction spectrum appears after aggregation, atipolar modes occupy a narrow spectral interval.
seen in Fig. 8). The spectra were taken using a Hewlett Thus, fractality provides a strong inhomogeneous broad-
Packard 8452A diode array spectrometer. ening (and, hence, resonant modes covering a wide spectral

An electron micrograph of a typical silver colloid aggre- range in a collection of particles interacting via dipolar
gate is shown in Fig. ®). The process of formation of such forces. Neither RGP nor CPSP provide such broadening
an aggregate can be summarized as follggee also Sec. (compare Figs. 1 and 2 with Fig.,).3For example, eigen-
[11). A large number of initially isolated silver nanoparticles modes of silver RGP and CPSP lie in the small region be-
execute random walks in the solution. Encounters with othetween approximately 350 nm and 450 nm, whereas modes in
nanoparticles result in their sticking together, first to formsilver fractal colloid aggregates cover a large spectral inter-
small groups, which then aggregate into larger formationsyal including the visible and infrared parts of the spectrum.
and so on. Such cluster-cluster aggregatioreadily simu-  (Note that for anyA in the long-wavelength part of the spec-
lated by a computer, results in clusters with fractal dimensiortrum, a single “zero mode” is in resonance with the applied
D~1.78, corroborated by measurementdofor silver col-  field.) It is also important that modes located towards the red
loid aggregates such as that shown in Figd)8 and infrared part of the spectrum possess larger quality-
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factor « 8 [see Egs.(21) and (23)] and therefore local APPENDIX
fields associated with their excitation are especially large.
Our experimental studies of light extinction in silver col-

loid fractal aggregates are in good agreement with the resulf@>® \;vhe'gu ;S the number ?rl:é)tgrt|cl€,;sr(\;|th compiex foTh-'
of numerical simulations, except for the central pgake ponents. FIrst we assume IS not degenerate. in tis
Fig. 8a)]. case its eigenvectots) (n=1,...q) form a(normalized

basis inCY space'’ We also introduce a basis of unit vectors

dimensional objects dipolar excitations are typically runnin &) (i=1,... ) which are vectors with unit entry in tti¢h
) P ypicaly g[:A)osition and zeros in all other positions. The symmetry of

plane wavesépglantons) Whlch are eigenmodes of the opera- V means that&|V|e;) = (e[ V|e,) for anyi and].

tor of translational invariance. In contrast, fractals do not The ei N ! ¢ ! | i o

possess translational invarian¢iey are scale invariant € eigenvectors of a complex Symmetric ma X(in
contrast to a Hermitian matrixare not, in general, orthogo-

and the dipolar eigenmodes are localizsde Fig. 5. Be- . - . g
cause of the fact that localization occurs in areas that arlc%alt'h;'sega(gngf dmn- The “orthogonality rule is replaced

smaller than the wavelength, optical spectra of fractal clus-

ters that are larger than the wavelength look similar to those (mn)=0 (m#n), (A2)

for clusters that are smaller than the waveler(gte Fig. 7.
The theory of Ref. 15 predicted a scaling behavior for

absorption spectra of fractals. While the predicted scalin mn vector, then{| is a row vector with the same entries as

was previously obtained for diluted clusters, the optical prop1n _ ’

grtles _of original, no'ndlluted, c[usters do not show convinc- To prove(Al), we consider ﬁ|\A/|m)1

ing evidence of scaling. A possible reason for the absence of

strong scaling may be related to the fact that for all values of

X there are modes that are sufficiently localizede Fig. %

that only a few particles are involved in the excitation, and _ _ -

scale invariance does not manifest itself distinctively forNoting that @le;)=(ei|n),(gj|m)=(mle;), and @&|V|e))

such small distances. Another possible reason is due to synt(ej|V|€;), we obtain

metry properties of the eigenmodes. As our simulations

show, eigenmodes are strongly asymmetric in contrast to the  (n|V|m)= >, (rﬁ|ej)(ej|\A/|ei)(ei|n)=(rﬁ|\7|n). (A3)

assumption of Ref. 15 of the spherical, on average, symme- i

try of modes. Scaling in this case might occur individually o the other hand, we haven|{/|m)=uv,(n|m) and

f_or modes With_ a cert_ain degree of asymmespme effec- (rﬁIVIn)=vn(rﬁ|n), wherev , andu, are the eigenvalues of
tive “aspect ratio” while the overall spectrum, formed from Since v, #v,, the equality (A3) can hold only if
n m:

modes of different symmetries, may exhibit multifractal scal—(ﬁ'| m) = (m|n)=0; this proves(Al).
Ing. . . Representation of the unit matrix in the introduced basis
As follows from Fig. 4a), absorption does not really fol- is 122[@ IRIGE

low the spectral density of eigenstates, as was stated in Refs. Now we derive formula6) for the solution of Eq.(5).

15, 16, and 26i.e., different modes contribute to the spec- Since the eigenvectors o form a complete basis i69, we
trum with different weights This result is probably related can decomposk) over |n) '
to the above-mentioned asymmetry of dipolar eigenmodes in

fractals and to corresponding selection rules for the absorp-

tion. However, we note that the difference between the ab- |d):§n: Cal1),

sorption and the density of states for random fractals is not as . o ) )
large as for the case of non-fractal aggregates, such as CP#fh coefficientsc, . Substituting/A4) into (5) and multiply-

Consider a symmetric matri of orderq (g=3N in our

In extended (larger than the wavelength three-

where|n) is obtained fronjn) by complex conjugation of all
componentgbut without transposition Thus, if|n) is a col-

(ﬁ|\7|m>=;(ﬁleo(eil\?lej)(e,-lm). (A2)

(A4)

[see Fig. 4b)]. ing both sides of the equation byn{, we obtain
(nle) 1
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