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Radiative transport for two-photon light
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We consider the propagation of two-photon light in a random medium. We show that the Wigner transform
of the two-photon amplitude obeys an equation that is analogous to the radiative transport equation for classical
light. Using this result, we investigate the propagation of an entangled photon pair.
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I. INTRODUCTION

The propagation of light in disordered media, including
clouds, colloidal suspensions, and biological tissues, is gener-
ally considered within the framework of classical optics [1].
However, recent experiments have demonstrated the existence
of novel effects in multiple light scattering, in which the
quantized nature of the electromagnetic field is manifest.
These include (i) the transport of quantum noise through
random media [2], (ii) the observation of spatial correlations
in multiply scattered squeezed light [3,4], (iii) the measure-
ment of two-photon speckle patterns and the observation of
nonexponential statistics for two-photon correlations [5,6],
and (iv) the finding that interference survives averaging over
disorder, as evidenced by photon correlations exhibiting both
antibunching and anyonic symmetry [7,8]. Thus there is an
interplay between quantum interference and interference due
to multiple scattering that is of fundamental interest [9–15]
and considerable applied importance. Indeed, applications to
spectroscopy [16], two-photon imaging [17–26], and quantum
communication [27–29] have been reported.

In the multiple-scattering regime, the radiative transport
equation (RTE) governs the propagation of light in random
media [1]. The RTE is a conservation law that accounts for
gains and losses of electromagnetic energy due to scattering
and absorption. The physical quantity of interest is the specific
intensity I (r,k̂), defined as the intensity at the position r in the
direction k̂. The specific intensity obeys the RTE

k̂ · ∇rI (r,k̂) + (μa + μs)I (r,k̂)

= μs

∫
d2k′[p(k̂′,k̂)I (r,k̂′) − p(k̂,k̂′)I (r,k̂)], (1)

which we have written in its stationary form. Here μa and μs

are the absorption and scattering coefficients of the medium
and p is the phase function. We note that although the RTE
is often viewed as phenomenological, it is derivable from
the scattering theory of electromagnetic waves in a random
medium [1,30,31].

The propagation of two-photon light is generally considered
either in free space or, in some cases, with account of
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diffraction [32,33]. However, understanding the interaction of
light with matter is central to applications in both imaging
and quantum information. In this paper, we consider the
propagation of two-photon light in a random medium. We
show that the averaged Wigner transform of the two-photon
amplitude obeys an equation that is analogous to the RTE for
classical light. Using this result, we investigate the propagation
of an entangled photon pair in a random medium. In this sense,
our work builds on the well-known duality between partially
coherent and partially entangled light [33].

The remainder of this paper is organized as follows. In
Sec. II we recall some important facts about the propagation
of two-photon light. We also introduce the Wigner transform
of the two-photon amplitude and derive the Liouville equation
obeyed by the Wigner transform. In Sec. III we use this result
to obtain the RTE for two-photon light, which is then applied
to study the propagation of an entangled pair in Sec. IV. Our
conclusions are formulated in Sec. V.

II. TWO-PHOTON LIGHT

Let |ψ〉 denote a two-photon state. We define the second-
order coherence function as the normally ordered expectation
of field operators:

�(2)(r1,t1; r2,t2) = 〈ψ |Ê−(r1,t2)Ê−(r2,t2)

×Ê+(r2,t2)Ê+(r1,t1)|ψ〉, (2)

where Ê− and Ê+ are the negative- and positive-frequency
components of the electric-field operator with Ê− = [Ê+]†.
In a material medium with dielectric permittivity ε, the field
operator Ê+ obeys the wave equation [34,35]

∇2Ê+ − ε(r)

c2

∂2Ê+

∂t2
= 0 . (3)

Here the medium is taken to be nonabsorbing, so that ε is
purely real, positive, and frequency independent.

The quantity �(2) is proportional to the probability of
detecting one photon at r1 at time t1 and a second photon
at r2 at time t2. It can be measured in a Hanbury Brown–Twiss
interferometer [36]. For the two-photon state |ψ〉, it can be
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seen that �(2) factorizes [37] as follows:

�(2)(r1,t1; r2,t2) =
∑

n

〈ψ |Ê−(r1,t1)Ê−(r2,t2)|n〉

× 〈n|Ê+(r2,t2)Ê+(r1,t1)|ψ〉
= 〈ψ | Ê−(r1,t1)Ê−(r2,t2) |0〉

× 〈0| Ê+(r2,t2)Ê+(r1,t1) |ψ〉
= |�(r1,t1; r2,t2)|2 . (4)

Here {|n〉} denotes a complete set of Fock states, |0〉 is the
vacuum state, and the two-photon amplitude � is defined by

�(r1,t1; r2,t2) = 〈0| Ê+(r1,t1)Ê+(r2,t2) |ψ〉 . (5)

Evidently, � satisfies the pair of wave equations

∇2
rj

� − ε(rj )

c2

∂2�

∂t2
j

= 0 , j = 1,2 , (6)

which follows from the fact that Ê+ obeys the wave
equation (3). We note that (6) is the analog of the Wolf
equations for two-photon light [38]. We will find it convenient
to introduce the Fourier transform of the amplitude �, which
is given by

�̃(r1,ω1; r2,ω2) =
∫

dt1dt2e
i(ω1t1+ω2t2)�(r1,t1; r2,t2) . (7)

Equation (6) then becomes

∇2
rj

�̃ + k2
j ε(rj )�̃ = 0, j = 1,2 , (8)

where kj = ωj/c. It is important to note that if �̃ factorizes
into a product of two functions which depend upon r1 and r2

separately, then the two-photon state |ψ〉 is not entangled.
In contrast, a fully entangled state is not separable and
corresponds to �̃(r1,r2) ∝ δ(r1 − r2).

We now consider the Wigner transform of �̃, which is
defined by

W (r,k) =
∫

d3r ′eik·r′
�̃(r − r′/2,ω1; r + r′/2,ω2) . (9)

We will see that the Wigner transform plays a role that is
analogous to the specific intensity in radiative transport theory.
To derive the equation obeyed by W , we subtract the pair of
equations (8) and change variables according to

r1 = r − r′/2 , r2 = r + r′/2 . (10)

We find that

k · ∇rW + i

2

∫
d3p

(2π )3
e−ip·rε̃(p)

[
k2

1W (r,k + p/2)

− k2
2W (r,k − p/2)

] = 0 , (11)

where

ε̃(p) =
∫

d3reip·rε(r) (12)

is the Fourier transform of ε. We note that (11) is an exact
result.

III. TWO-PHOTON RTE

We now proceed to derive the RTE for two-photon light.
To this end, we consider a statistically homogeneous random
medium and assume that the susceptibility η is a Gaussian
random field with correlations

〈η(r)〉 = 0 , (13)

〈η(r)η(r′)〉 = C(|r − r′|) . (14)

Here η is related to the dielectric permittivity by ε = 1 + 4πη,
C is the two-point correlation function, and 〈· · · 〉 denotes
statistical averaging. Let L denote the distance over which the
field propagates and ξ the correlation length over which C

decays at large distances. We introduce a small parameter
ε = 1/(k0L) � 1, where k0 is the spatial bandwidth, and
suppose that the fluctuations in η are sufficiently weak
that C,ξ/L = O(ε). We then rescale the spatial vari-
ables according to r1 → r1/ε, r2 → r2/ε and define the
scaled two-photon probability amplitude �ε(r1,ω1; r2,ω2) =
�̃(r1/ε,ω1; r2/ε,ω2), so that (8) becomes

ε2∇2
rj

�ε + k2
j�ε = −4πk2

j

√
εη(rj /ε)�ε, j = 1,2 , (15)

where we have introduced a rescaling of η to be consistent
with the assumption that the fluctuations are of size O(ε). If we
denote by Wε the Wigner transform of �ε , defined according
to (9), then (11) becomes

k · ∇rWε + i

2ε

(
k2

1 − k2
2

)
Wε + 1√

ε
L Wε = 0 , (16)

where

L Wε = 2πi

∫
d3p

(2π )3
e−ip·r/ε η̃(p)

[
k2

1Wε(r,k + p/2)

− k2
2Wε(r,k − p/2)

]
. (17)

We now consider the asymptotics of the Wigner transform
in the homogenization limit ε → 0. This corresponds to the
regime of weak fluctuations. Following standard procedures
[30], we introduce a two-scale expansion for Wε of the form

Wε(r,R,k)

= W0(r,R,k) + √
εW1(r,R,k) + εW2(r,R,k) + · · · , (18)

where R = r/ε is a fast variable. Next we suppose that
γ = (k2

1 − k2
2)/(2kε) = O(1), which corresponds to working

in the high-frequency regime. By averaging over the fluctu-
ations on the fast scale, it can be seen that 〈W0〉, which we
denote by I, obeys the equation

k̂ · ∇rI(r,k̂) + (σa + σs)I(r,k̂) = σs

∫
d2k′f (k̂,k̂′)I(r,k̂′) .

(19)

Here the coefficients σa , σs and the scattering kernel f are
defined by

σa = iγ, (20a)

σs = k2
1k

2
2

∫
C̃(k(k̂ − k̂′))d2k′, (20b)

f (k̂,k̂′) = C̃(k(k̂ − k̂′))∫
d2k′C̃(k(k̂ − k̂′))

, (20c)
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where f (k̂,k̂′) is normalized so that
∫

f (k̂,k̂′)d2k′ = 1 for all
k̂. We note that this normalization is consistent with the sta-
tistical homogeneity of the random medium, since C̃(k − k′)
depends only upon the quantity k · k′. We will refer to (19)
as the two-photon RTE and the quantity I as the two-photon
specific intensity.

Some remarks on (19) are now called for. Evidently, (19)
bears some resemblance to the classical RTE (1). However, it
differs from the latter both mathematically and in its physical
interpretation. In particular, the quantity I, in contrast to the
specific intensity, is not real valued and is not directly measur-
able. Nevertheless, by inversion of the Fourier transform (9),
we find that I is related to the two-photon amplitude by means
of the formula

〈�̃(r1,r2)〉 =
∫

d3k

(2π )3
eik·(r1−r2)I

(
r1 + r2

2
,k̂

)
, (21)

where the dependence on the frequencies ω1 and ω2 has not
been indicated. We note that �, in turn, is related to a physically
measurable quantity, namely, the counting rate in a Hanbury
Brown–Twiss experiment [36]. In addition, the coefficient σa

is complex valued and does not lead to absorption of energy,
as is the case for the absorption coefficient μa in the RTE.
Indeed, as previously indicated, we assume that the medium
is nonabsorbing. This assumption, along with the approxima-
tions of weak scattering, statistical homogeneity, and weak
disorder are standard in the theory of radiative transport [1].

IV. PROPAGATION OF AN ENTANGLED
TWO-PHOTON STATE

We now explore some physical consequences of the two-
photon RTE. In particular, we examine the propagation of
an entangled photon pair. We begin with the case of a
deterministic medium in which the permittivity ε is constant.
We consider the half-space z � 0 and assume that the two-
photon Wigner transform I0 is specified on the disk of radius
a in the plane z = 0 in the direction k̂ · ẑ > 0, as illustrated in
Fig. 1. That is,

I0(r,k̂) =
{
Aδ(k − k0) if k̂ · ẑ > 0 and |ρ| � a ,

0 otherwise ,

(22)

where A is a constant and ρ is the transverse coordinate in the
z = 0 plane. Making use of (21), it is readily seen that

�̃(ρ1,0; ρ2,0) =
{

2πk2
0A

sin(k0|ρ1−ρ2|)
k0|ρ1−ρ2| if |ρ1,2| � a ,

0 otherwise ,

(23)

which corresponds to a transversely entangled two-photon
state. To propagate I into the z > 0 half-space, we make use
of the formula

I(r,k̂) =
∫

d2k′
∫

z′=0
d2r ′ ẑ · k̂′G(r,k̂; r′,k̂′)I0(r′,k̂′). (24)

Here G is the Green’s function for the two-photon RTE (11),
which is given by

G(r,k̂; r′,k̂′) = 1

|r − r′|2 δ(k̂ − k̂′)δ
(

k̂ − r − r′

|r − r′|
)

. (25)

FIG. 1. Illustrating the geometry. A circular aperture of radius a

is located in the z = 0 plane.

We can now compute the two-photon probability amplitude �̃.
For simplicity, we assume that k1 = k2 = k0 and that the points
of observation r1 and r2 are on axis, with r1 = r2 = (0,z).
Carrying out the integrations in (24) and making use of (21),
we find that

�̃(0,z; 0,z) = A

(
k0

2π

)2

tan−1

(
a

2z

)
. (26)

In Fig. 2 we plot the z dependence of �̃, which illustrates
the propagation of an entangled photon pair. We note that,
in principle, the the above result can be obtained directly
from the wave equation, thus bypassing the RTE. This is not
surprising, in view of the results of [32,33] which are also
obtained under conditions of free-space propagation. Finally,
we observe that the diagonal part of the coherence function
�(2)(r,r) = |�̃(r,r)|2 is proportional to the probability of

FIG. 2. (Color online) Dependence of the two-photon amplitude
�̃ on the distance of propagation z in free space, where k0a = 1, with
a the radius of the aperture.
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two-photon absorption at the point r, which is a physically
observable quantity.

Next we consider the case of a random medium. In this
situation, the full machinery of radiative transport is required,
which allows for the description of the intertwined effects
of quantum interference and interference due to multiple
scattering. For simplicity, we make use of the diffusion
approximation (DA) to the RTE, which is widely utilized in
applications. The DA neglects the angular dependence of the
Green’s function for the RTE [39]. It holds in the limit of strong
scattering and at large distances from the source [1]. Within
the accuracy of the DA, the Green’s function for the RTE is
given by

G(r,r′) = e−κ|r−r′ |

4πD|r − r′| , (27)

where the diffuse wave number κ = √
3σa�∗ and the diffu-

sion constant D = 1/3c�∗. The transport length �∗ and the
scattering anisotropy g are defined by

�∗ = 1/[σa + (1 − g)σs)], g =
∫

k̂ · k̂′f (k̂,k̂′)d2k′. (28)

Carrying out the integrations in (21) and (24), we find that the
average two-photon probability amplitude is given by

〈�̃(r1,r2)〉 = aAk0

2D(2π )2

sin (k0|r1 − r2|)
|r1 − r2|

×
∫ ∞

0

dq√
q2 + κ2

J1(qa)

× J0(q|ρ1 + ρ2|/2)e−
√

q2+κ2(z1+z2)/2 , (29)

where r = (ρ,z). In the on-axis configuration, we find that

〈�̃(0,z; 0,z)〉 = Ak0

2D(2π )2
[
√

z2 + a2 − z] . (30)

To illustrate the propagation of the amplitude of an
entangled photon pair, we show in Fig. 3 the z dependence
of 〈�̃(r,r)〉, for various values of the off-axis distance ρ. We

FIG. 3. (Color online) Dependence of the two-photon amplitude
〈�̃〉 on the distance of propagation z for different off-axis distances ρ,
with k0ρ = 0,1,2,5 (top to bottom). The diffuse wave number κ = 0
and k0a = 1, with a the radius of the aperture.

caution that the interpretation of this result requires some care.
In particular, the decay of 〈�̃(r,r)〉 should not be interpreted
as the “loss of entanglement” of the photon pair. Rather, the
two-photon RTE can be considered as a conservation law
for the two-photon specific intensity I. On a related note,
various measures of entanglement, including the Schmidt
number and the entropy, can be constructed from the singular
values σn of �̃, defined by �̃∗�̃un = σ 2

n un, where un are
the corresponding eigenfunctions [40,41]. Here the Schmidt
number K = 1/

∑
n σ 2

n and the entropy S = −∑
n σn log σn.

We plan to explore the propagation of entanglement, as
measured by K and S, in future work.

V. DISCUSSION

We close with a few remarks. It is possible to derive the
analog of the RTE for single photons. Not surprisingly, this
equation has the form of the classical RTE (1), a result whose
derivation will be presented elsewhere.

The derivation of the two-photon RTE makes use of a two-
scale asymptotic expansion. Alternatively, it may be possible
to obtain this result from diagrammatic perturbation theory,
as is the case for the classical RTE [1] and related transport
equations for electronic systems [42,43]. This is a potentially
interesting topic for future research.

The theory we have developed cannot be used to describe
Anderson localization for two-photon light [44–47]. This is
not unexpected, since for classical light, localization is not
described by radiative transport theory [1].

Although in our model the electromagnetic field is quan-
tized, the interaction of the field with the scattering medium is
treated classically. It would be of interest to extend our results
to the case in which the medium consists of a collection of two-
or three-level atoms. In this manner, it should (in principle) be
possible to understand the transfer of entanglement from the
field to the medium [48]. Evidently, the calculations that we
have presented do not account for this effect, since we have
taken a macroscopic approach to the quantization of the field
[34,35].

Finally, applications to imaging and communication theory
may be envisioned. In the former case, there has been extensive
use of the classical RTE for imaging in random media. It may
be anticipated that experiments with two-photon light may
enjoy some advantages, as has been suggested for the case of
quantum optical coherence tomography [49,50]. In the latter
case, there has been considerable interest in the use of quantum
states of light for communication [27,29,51]. It would be of
interest to understand the effect of a complex medium, such
as the atmosphere, on the capacity of quantum information
systems [28].
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