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We consider nonlinear photoprocesses in a bichromophore, that is, in a molecule consisting of
two chromophoric groups (monomers). The phenomena considered include stepwise excitation
and collective processes (summation of the excitation energy of two monomers in one of them
and nonlinear quenching), as well as energy transfer between the monomers. A system of kinetic
(balance) equations describing the evolution of level populations in a bichromophore is obtained.
Unlike the equations used previously, which are quadratic in the populations, the equations
obtained by us are linear. Nonetheless, these equations account exactly for the correlation
between level populations of two monomers in a bichromophore, which is induced by energy
transfer. Stationary level populations of a chromophore have been found. It is shown that the
collective phenomena always deplete population of the first singlet but can either enhance or
suppress excitation of the higher (second) singlet.

(Abstract translated from Russian by V.A.Markel)
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ar photoprocesses in bichromophores. . Two-photon and cooperative

Nonlinear photoprocesses in a bichromophore—a molecule consisting of two chromophore
oroups (monomers)—are examined, including stepped excitation and cooperative processes
(summation of the excitation of two monomers in one bichromophore and nonlinear excitation

quench

ing) as well as energy exchange between the monomers. A system of kinetic (balance)

equations describing the evolution of the level populations of the bichro‘mophore 18 Obt:.iined. This
system is linear, unlike the previously used population-quadratic equations. The equation system
takes exact account of the correlation between the populations of two monomers induced by
energy transfer between them. The stationary level populations of the chromophores are found. It
ic demonstrated that the cooperative processes that always deplete the populations of the first
excited states of the monomers will both enhance and attenuate excitation to the higher-order

singlets.

INTRODUCTION

There is an extensive variety of optical phenomena, in-
cluding nonlinear phenomena, in chromophore molecules
(set, for example, Ref. 1-4), and they are of great interest. A
study of these processes is also important from the applied
viewpoint, since chromophores (dye molecules) are used as
probes and markers,> for modifying macromolecules,” in
active laser media,” etc.

This study is devoted to a theoretical description of
nonlinear photoprocesses in bichromophores: molecules
containing two chromophore groups. Thereare various such
groups, henceforth called monomers, in the quantum me-
chanics sense (their electron shells only slightly overlap),
although they can experience nonradiative electronic excita-
tion-energy exchange in both the first and in higher excited
states. Bichromophores are widely encountered objects.
They include the dimers of dye molecules formed in solu-
tions in ordinary concentrations. Such dimers limit the las-
ing power of dye lasers.” Bichromophores also occur in dye-
micromolecule compounds due to the positive cooperative-
ness of this process.'® Moreover, many organic molecules
are bichromophores (see, for example, Refs. 11 and 12).

The nonlinear phenomena specific to bichromophores
are caused by excitation-energy exchange between mon-
omers. Specifically such exchange will cause 2 summation of
the energies (cooperative excitation); the other aspect to
iiis problem is nonlinear quenching—the loss of excitation
energy by the monomerdonor. These processes have a sub-
stantiz] influence on the nonlinear excitation kinetics of the
bichromophore.

This study obtains a system of kinetic balance equations
describing the nonlinear excitation kinetics of a bichromo-
phore 1aking into account these processes. The stationary
level populations of the bichromophore are determined. It is
demonstrated that cooperative processes will always cause
depopulation of the lower-lying excited singlets of the mon-
omers, although they can lead to both enhancement and sup-
pression of stepped excitation to the higher-order singlet
states. Such excitation may be accompanied by a nonradia-

~ live excitation-energy transfer to the surrounding mole-
cules, '™ The latter process is of significant interest since it
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-occurs, specifically, in high-power dye lasers (energy trans-

fer to the dye),'? in modification of macromolecules,™'” etc. -

A description of the correlated fluctuations in the level )

populations of a bichromophore and in the flux intensity of
fluorescence photons is also of significant interest; this was
the subject to Ref. 17.

FORMULATION OF THE MODEL AND FUNDAMENTAL
EQUATIONS

We will formulate the following bichromophore model.
As we know (see, for example, Ref. 18-21) at low (hydro-
gen) temperatures the dephasing time in the electronic excit-
ed states is measured in picoseconds and diminishes rapidly
with increasing temperature in complex molecules that are
impurities in the condensed phase. Hence at room tempera-
ture the dephasing rate substantially exceeds the rates of the
other relaxation processes whose characteristic times are of
the order of nanoseconds or picoseconds. We can therefore
conclude, taking account of the quantum mechanical distin-
guishability of the monomers, that the latter can be consid-
ered to be in definite (pure) states. We will find the popula-
tions of these states from the balance equations, which will
be obtained below.

We will designate the electronic states of the monomers
S1,S" where i is the energy level number; the superscript
identifies the monomer in the bichromophore. We will ex-
amine the following processes. We will take into account
radiative transitions with cross sections g; in the individual
MONOmErs

Sy4hu 3 5, (1)

where (1) describes radiative excitation for /> j, while in-
duced emission is described when / <J.

We will consider the relaxation rates over the vibration-
al sublevels I'!”’ (in the electronic state S, ) to significantly
exceed the relaxation rates I; of the electronic-state popula-
tions in accordance with the observed values. It is therefore
possible to consider the decays of the latter to occur from
their ground vibrational sublevels = -

i) -

S8y WLh : o (2)
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i ¢partialrates, I, = 3, [;;. Due to the condi-

tion I'{”> T, the upper states will be excited through the

ground vibrational sublevels of lower cascade processes of

the type (1) $,—S,—5;; two-photon (not stepped) pro-
cesses have a probability that is small in the parameter L,/

- I'". Here.and henceforth we assume that the photon energy
is not so substantial that the upper levels are populated, by-
passing the cascade, ie,ina one-quantum process.

In complex chromophore molecules the lifetime I',~ ' of
the first singlet state may reach tens of nanoseconds at the
same time that the upper electronic excited states decay over
times of the order of a picosecond (see, for example, Refs, 22
and 23). It is therefore possible to require that the excitation
intensity I will not be so substantial that jt populates the
upper singlet states (and the vibrational sublevels), al-
though it will be sufficient to populate S,

I €Ty rge. (3)

By virtue of Eq. (3) wecan limit our analysis to state S;
fori=0 (the ground state), I, 2; we can ignore the popula-
tion of the upper levels,

The cooperative excitation (of one of the monormers)
and the nonlinear quenching (of the other monomer) are
described by the rate constant 5, by the formula

IiSolgr i 2),

8,2

—_— FI 1T ol = 11
SIf Sy %t 1T, Wy =gy, (4)
1
—_—— 5;’ + Sg], “’E’l = m{g,

Bz

which also indicates the energy conditions (for the frequen-

cies of the 0-0 transitions @y

verse to Eq. (4). Resonance energy exchange is also possible
between the monomers '
a. .
TL ST o | (S S
.s‘_+.sj 15?.%—}-.5“, Pt (5)
The direct and reverse exchange constants satisfy the
detailed-balance equation S, /B, = exp[(o]; — wl! W]
where T, is temperature - If the bichromophore is asymmet-
ric (the monomers are not identical), this relation can be
. other than unity. We will ignore-the difference of the other
rate constants (1), (2), (4) for these two monomers.

populations (the diagonal elements of the density matrix).
A system of equations was developed previously?*2S for
describing summation of excitation in activated crystals for
the average populations n, (thestates S, ) ofindividual chro-
mophores. For example the equation for n, takes the form2’

(6)

where the last Population-quadratic term describes cooper-
ative excitation (nonlinear quenching). The form of the
nonlinear term in Ref, 25 is determined by the fact that the

h=—Tn T swlng — Zuni,

for two monomers. Such a factorization is valid, hawever,
only when there is no correlation between the leve] popula-
tions, which occurs when there is a low rate of the cooperat-
ive processes, i.e., with small £,,. Otherwise the energy mi-
gration processes induce such a correlation which in turp
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influences the populations and, consequently, migration.
Specifically cooperative quenching (4) will cbvious reduce
the joint probability of both chromophores being-in Sia .
 _We will write a system of balance equations for a com.
pound particle—a bichromophore—to take exact account of
the correlation between the populations of both monomers,
The state of the bichromophore is characterized by two in-
dices 4, j. The population M Tepresents the probability that
the first monomer is in state § i» while the second represents
the probability that it is simultaneously in S (j.e., n, is the
simultaneous correlator).
Based on a transition balance we obtain a linear system

of kinetic equations in processes (1), (2), (4), and (5)

fog = — 21,01 gy - (Ty + aul) r}y + Luandy, (73
Hyy= ——2[1"1 + f=u:+"u”+‘%l‘__,ﬂu + Cidnly 4 Tiant;, (8)
Hep =—3Turgs - sufnf, (?)
Ay = —[T', 4 {901 =919 4 0gy) L 4 Bot] gy 4 (TCr+ooil) myy - uzfizy

“+ Tigrgy + 910l Ao + 8,9, (10)
Ae=—[T 4T, 4 (Zor + 02y ) F + 1] nye

+ o270y, Pizngy + S1almy, + Baing,, (11)
Rgp = —(Ty Tod - Fga) e T+ Ty a0 d) Rz + Toanzy 4 o2 f g,

+l}:!l"ll+ﬁzu"m. (12)

which employs a convention for the Symmetrized popula-
tions n7* = (ny +n;)/(1 +38;). There are three addi-

* tional equations for ny, 7] that are required for system clo-

sure and are obtained from Egs. (10)-(12) by the
permutation of indices iesj on n;and §,.
The populations My are normalized by conservation of

particle number

< Rpp=1,
b

f. J=0

(13)

The sum on the left side of Eq. (13) is the integral of
system (7)-(12). The level_populations of the individual
monomers n',n" and the population n, averaged over the

i 2

monomers are expressed through Ny, as .

z 2
=2 W=D e 4
F=0 J=0
1

System (7)-(12) is linear, unlike the approximate (ig-
noring correlation) equations? > for the individual chro-
mophore populations [compare to Eq. (6)]. However as
will be clear from the results of the present study in the weak
migration limit (B,,<I")) cooperative effects (excitation
and quenching) are small, although, since ni=n,,, they are
correctly described within the framework of theory.**

It is possible to obtain a closed system of equations for
the symmetrized populationg ng . It is sufficient to sum
equations pairwise for n; and n; for this purpose, The sys-
tem obtained here differs from Egs. (7 )=(12) by the absence
of terms proportional to the exchange probabilties (5) 4, .
i%#j. Therefore the populations averaged over the monomers
are generally independent of the latter. However exchange
processes (5) are very Important in either describing tran-
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sient processes {evo]utions with given initial conditions) or
ip analyzing fluctuations."’

EchTATION KINETICS

Within the framework of this model system (7)-(12)
exactly describes nonlinear photoprocesses in a bichromo-
hore although it is difficult to solve analytically. However
condition (3) allows elimination of the rapidly relaxing vari-
ables np and ny, and it is then possible to obtain a reduced
system for n; (i,j=0,1) that is soluble in its displayed
form.

We will consider the kinetics at times 7 significantly ex-
ceeding T';'; we will also consider the excitation radiation
1o be slowly varying: d In(I1)/dt €T .. In this case the rapidly
relaxing populations (n; for i or jequal to 2) instantaneous-
ly trace variations of I(z) and the slow variables n,;
(G, j="0,1). Itis then valid to setd /dr = 0in Eqs. (9), {li)
and (12). The solution of these algebraic equations subject
10 conditions (3) take the form

=l
n,,:"xz—‘n;-,. ) : (15) -

= Pt + zﬁ:l 521}I =
=~ Ttlath & " (16)

r,'+zs“ Bu <r=+sm1nm+awma§g am
:I‘:‘E'Bu:"i'ﬁauzr:_ 1 Ty + Bos + Bao __I‘t'

Expressions for n,, and n,, are obtained from Eqgs. (16)
and (17) by the substitution i<»jin n; and 8. Although the
populations of Eqs. (16) and (17) are in fact small (propor-
tional to 'y 'y we cannot neglect these in the fundamental
equations. It is necessary to take account of these quantities
in order to describe the population processes of levels S, and
S, after excitation to S, (radiative or cooperative). This
property is formally expressed as compensation of one pow-
er by substitution of solutions (16) and (17) into Egs. (7),
(8),and (10).

Carrying out this substitution we obtain the desired re-
duced system of equations

thgy = —23yol go = [Ty + &l ) nfy + 1350y, (18)

321) I+ ﬁm] Rgy

Ty = — [I\ -+ (51u --& + "J-T‘;_,t__g::.lr_T

Buz rnén

#[r (il

( + 7 T i‘:"_i.‘!*: :,,)!]n“
+[;

Swt+nyvTm 17— I's+ﬁu"~i-" azlf]”rn-.’-hu-"ﬂoo. (19)

‘11

ip= _Z(I‘:ﬁ"é]f—."ig_)ﬂu-f"iwfﬂ?m (20)

which introduces conventions for the branching ratios

th=TuTs, n=TpTy,=r+n=I1 (21)

and for the depopulation cross section of the level
) = go1 =} Foosy, (22)

In organic chromophores the upper singlets will experi-
ence nonradiative spontaneous decay. to the first singlet
(compare to, for example, Ref.26). This means that 7, =0

& inlerms of branching ratios (21). However, as demonstrat- .

ed in Ref. 14, nonradiative excitation-energy transfer from
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the upper combining singlet S, of the chromophore to the
solvent will cause a renormalization of the relaxation con-
stants. As a result I, and r, are nonzero. In terms of its
physical meaning r, represents the energy transfer probabili-
ty from S, to the solvent.

As before, the deficient equation for n,, is obtained
from Eq. (19) by permutation of indices. Summing it with
Eg. (19) we obtain

iy = —II 4 s+ 510 1) n‘fu—f—g(ll—.r. 9

(23)

Equation (23) in conjunction with Egs. (18) and (20)
forms a closed, reduced system ofequations for the symme-
trized populations n; (by definition, n;' = n,). This sys-
tem does not contain, as anticipated (see above), the excita-
tion exchange probabilities (5).

We will consider the (quasi) stationary exciting radi-
ation whose intensity I(?) varies over times greater than
I’ '. Itis then possible to ignore the time derivatives in Eqgs.

- (18), (20), and (23). The solution of these algebraic equa-

tions is expressed through the instantaneous intensity I as~

,lwz-:;.-v[{rx £ &,J}(I‘l—l—alf 4+ %)+ ru%m!]: (24)

i =-;- (sl 1 (25)

where
,,;-D=%:NJ(I‘,+5J -]-?24 ) (26)
Z=(zw+ 0l (24 200) + rl(rt'i'%“") Q1)

with a characteristic saturating radiation intensity
4o
I,= {I‘lfﬁw + &)+ 5 Bulsw {24+ ro) 4 511} (310 4 €1)72 (28)

Equations (24)—(26) yield the desired solution to the
problem of bichromophore excitation kinetics. Hence we
will find the first level population averaged over the mon-
omers in accordance with Eq. (14)

1 8,
=531l [I‘l-}-( B .1;..:4—2—] (29)

and the population of the second level by means of Egs.

(15)-(17)
:=%%‘r[( st &) 4T+ (11' I")]- (30)

It is clear from Eq. (29) that quenching of 5, will al-
ways occur due to cooperative processes (1, diminishes with
increasing /7, ,). A fundamentally different situation follows
from Eq. (30) for S,. Cooperative processes will suppress
nonlinear excitation (will diminish #,) at intensities
I>I. =T /(0: —0,—0y) if oy, >0, + 0, When the
last condition is not satisfied or at low intensities (/ <. ), n,
increases with /3, ,.

The behavior of the level populations with random sat-
uration levels can be observed by employing results from
numerical calculations (Figs. 1-3) in which r, =0, 3, = 0.
These assumptions are made only for simplicity and have no

_influence on the qualitative conclusions. The condition
19 = 0 infers neglecting energy transfer from S; tothe sol- .

vent [compare to the discussion following Eq. (22)]. The
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FIG. 1. First-level population n, plotted as a function of the relative radi-
ation intensity I /I,. The normalized constant Iy =T /g Theratiog,,/
Iy =01, 10, 100, 1000, and 10,000 for curves/-6, respectively.

validity of the equality |&, = 0 also assumes smallness of gy,
which is satisfied if excitation takes place outside the fluores-
cence band of the monomers.

Figure 1 plots the first level populations as a function of
radiation intensity. Cooperative nonlinear quenching of .S,
occurs in accordance with this discussion (7, diminishes
with increasing £, , and is strongest at the final saturations).
At the upper limit saturation levels n, - 1. An intermediate
asymptotic range is also visible (see curves 5 and 6): The
population n,=1/2 for ', €0/ <f,,, i.e., only a single
monomer from the pair is excited and simultaneous excita-
tion of both monomers is rapidly quenched. Plots of the pop-
ulation of the upper state S, as a function of the exciting
radiation intensity for the case o, >0, are given in Fig. 2
and for the opposite case in Fig. 3. A comparison of these
figures [also compare to the discussion following Eq. (30)]
clearly indicates that at low intensities cooperative processes
will always enhance excitation to.S,; under saturation condi-
tions they can both enhance n, (Fig. 2) and diminish it (Fig.
3).

DISCUSSION

We will briefly summarize the primary principles and

 results of the present study. Nonlinear (stepped) excitation.

and cooperative processes (summation of excitation of two
monomers in one of them and-the accompanying excitation
damping) are examined for a chromophore dimer (a bichro-
mophore) together with the energy exchange between mon-
omers. With reasonable assumptions regarding the relaxa-

20}az % i 2 ¢
-3 a1
=
N AR D
o
a 1 1
0 20
"

FIG. 2. The normalized second-level population L.n./1, as a function of
relative intensity plotted for 04/05, = 2.0. The inset shows the initia}
curve sections. The normalized constant I, = I'y/ayy. The ratio 8,,/
[, =0, 10, 10,000 for curves 7-3, respectively,
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FIG. 3. Same notation as Fig. 2, but calculations employ o,,/a., = 0.3.

tion rates a system of balance equations (7)-(12) is
obtained that is a linear system, unlike previous population-
quadratic equations.”*** System (7)-(12) takes exact ac-
count of the population correlation of the two monomers,
induced by the energy exchange between them and which in
turn influences (in a self-consistent manner) this energy
transfer.

Stationary populations (15)—(17), (24)-(30), see also
Figs. 1-3, were obtained; these are important characteris-
tics. Specifically the fluorescence intensity is proportional n,
[Eq. (29)]. The photochemical transformation rates which
occur from the upper-excited states (for example reactions
caused by two-quantum excitation energy transfer'*'*) are
proportional to n, [Eq. (30)]. n,, [Eq. (25) ] describes the
simultaneous population correlation of the monomers dis-
cussed previously. These solutions are substantially depen-
dent on the rate constant of the cooperative processes £,

" [Eq. (4)]. Nonlinear quenching (diminishing n, with in-

creasing /3,,) is one of the dissipation channels limiting dye
laser power (laser dyes in solutions are noticeably dimer-
ized®).

Cooperative processes can both enhance and Suppress
excitation to S,. The physical cause for the suppression is
clear: Cooperative excitation, unlike radiative excitation,
not anly causes population of the S, level but also will cause
depopulation of §, and will hence inhibit subsequent popula-
tion of S;. Summation of excitations will enhance an increase
in 7, only when the relaxation excitation channel to S, is not
effective (with low saturation or a small radiative excitation
cross section, i.e., when o,, <,y + 0,,). We note that to the
best of our knowledge cooperative suppression of nonlinear
excitation has not been identified previously (compare to
Refs. 24 and 25).

The authors are grateful to S. G. Rautian for useful
discussion.
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‘Mechanism of vibrational relaxation of chlorine state in the presence of buffer

gases -

V.A. Alekseev, N.K. Bibinov,and|.P. Vinogradov-

' (Received 18 November 1987)
- Opt. Spektrosk. 65, 1238-1241 (December 1988)

Energy degradation processes have been studied upon photoexcitation of a mixture of Cl, with
buffer gases. Anomalous vibrational excitation of the D ' state of Cl, in the presence of argon is
detected. A small quenching efficiency of the D ' state as well as a dependence of the quenching
rate constant on the temperature of the mixture are associated with this. The indicated
experimental facts agree with the conclusions of a model for the quenching of the D state of the
chlorine molecule by argon, the primary stage of which is the formation and dissociation of the

+

ioniccomplex Cl; * - Ar

INTRODUCTION

In Ref. 1, which is devoted to the study of processes of
electronic—vibrational relaxation in the Cl, molecule
(D—D'—A")inthe presence of buffer gases (He, CF,, Ar) a
difference of the quenching efficiency for the I ' state by the
argon atom upon use of He and CF, as a buffer gas is detect-
ed. A quenching mechanism of the D’ state was proposed,
the primary stage of which is the formation and dissociation
of the ionic complex Ar™---Cl; . Quenching of the D’ state
proceeds owing to a decrease of the probability for dissocia-
tion of the complex along the Cl,(D') + Ar channel upon
decrease of the vibrational excitation energy of the complex
beiow the dissociation threshold of Cl,(D '), _ o + Ar. Thus
the presence of a store of the vibrational excitation for the
Ci,(D ') molecule (inthe case with He) leads to a decrease of
the quenching efficiency of the D' state by argon.

In the present paper we have continued the investiga-
tion of electronic—vibrational relaxation in the Cl, molecule
under the action of buffer gases with the goal of checking the
model proposed in the preceding report.

The setup and method of the experiment were thor-
oughly described in Ref. 2. It should be mentioned in the
present paper that the determination of the quenching effi-

- ciency-ofithe D’ state of Cl, by the argon atom was done in
terms of the slope of thefunction @51 ,. (P4, )—the magni-
tude of the inverse quantum yield of the D' —~4 ' lumines-
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cence as a function of the argon pressure. The luminescence
spectra of Cl,.D ' — 4 "under various conditions of photoexci-
tation were recorded with a resolution of A4 = 2.2 A. The
pressure of the chlorine was maintained at 0.6 Torr.

EXPERIMENTAL RESULTS AND DISCUSSION

If we assume that the vibrational relaxation of the Cl,
molecule in the presence of a buffer gas proceeds according
to a mechanism of elastic collisions, then Ar and CF, are
similar relaxers in terms of efficiency because the masses of
these particles differ from the mass of Cl, by factors of 1.3
{for CF,) and 1.75 (for Ar). Then in the limits of the model
proposed previously for the quenching of the D" state of a
chlorine molecule, the following behavior is expected for the
dependence of the magnitude of the inverse quantum yield of
luminescence D'—A ' (®5! , ) as a function of the argon
pressure (upon photoexcitation of the Cl,-Ar mixture). At
small pressures of the buffer gas when the vibrational relaxa-
tion is far from completion, the quenching efficiency of the
D 'stateislow and the quantity ®5.' .. (P, ) = const. Then
in proportion to the completion of the assumed relaxation
(in terms of the mechanism of elastic collisions), the rate
constant of the quenching process grows and attains at com-
pletion a vibrational relaxation of the magnitude obtained

*_earlier when a'small amount of argon was added to t_hemix? _
ture of C1,—~CF, (P, = 760 Torr). A Boltzmann distribu--

© 19889 The Oplical Society of America 731

= TR TR AT R PRED SRR [ g e Y T TAT

e

gt i

o

we s,

TR Ry



REFERENCES

[1] J. B. Birks, Photophysics of Aromatic Molecules (Wiley, N.Y ., 1970).
[2] J. B. Birks, Ed., Organic Molecular Photophysics, Vol. 1 (Wiley, London, 1973).
[3] J. B. Haroche, Ed., Laser Spectroscopy Il (Springer, N.Y ., 1975).
[4] F. H. Zewalil, Ed., Advancesin Laser Chemistry (Springer, N.Y ., 1978).
[5] O. F. Borisova, A. N. Surovaya, in Achievements of Science and Technology, Molecular
Biology, Vol. 1 (Moscow, 1973), p. 150.
[6] P. Fromherz, Chem. Phys. Lett. 109, 407 (1984).
[7] E. Sahar, S. Latt, Proc. Natl. Acad. Sci. USA 75, 5650, (1978).
[8] L. Z. Benimetskaya, N. V. Bulychev, A. L. Kozionov, A. V. Lebedev, Yu. E. Nesterikhin,
S. Yu. Novozhilov, S. G. Rautian, M. |. Stockman, FEBS Lett. 163, 144 (1983).
[9] K. H. Drexhage, in Dye Lasers, F. P. Schafer, Ed. (Springer, N.Y ., 1977; Moscow, 1976).
[10] O. F. Borisova, L. A. Tumerman, Biofizika 10, 32 (1965).
[11] J. Mugnier, B. Vaeur, E. Gratton, Chem. Phys. Lett. 119, 217 (1985).
[12] T. Ebata, Y. Suzuki, N. Nikami, T. Miyashi, M. Ito, Chem. Phys. Lett. 110, 597 (1984).
[13] M. |. Stockman, Phys. Lett. A 76, 191 (1980).
[14] M. |. Stockman, Zh. Eksp. Teor. Fiz. 87, 84 (1984) [Sov. Phys. JETP 60, 49 (1984)].
[15] V. L. Ermolaev, A. A. Krashennikov, A. V. Shablya, Dokl. Akad. Nauk SSSR 248, 389
(1979).
[16] M. I. Stockman, A. |. Parkhomenko, in Papers of the 6™ Vavilov Conference on Nonlinear
Optics, Vol.2 (Novosibirsk, 1979), pp. 85-90.
[17] V. A. Markel, M. I. Stockman, Opt. Spektrosk. 65, 1258 (1988) [Opt. Spectrosc. 65, 743
(1988)].
[18] R. M. Hochstrasser, in Advancesin Laser Chemistry (Springer, N.Y ., 1978), pp. 98-108.
[19] S. de Silvestry, A. M. Weiner, J. G. Fujimoto, E. P. Ippen, Chem. Phys. Lett. 112, 195
(1984).
[20] L. W. Molenkama, D. A. Wiersma, J. Chem. Phys. 83, 1 (1985).
[21] C. A. Walsh, M. Berg, L. R. Naramsimhan, M. D. Fayer, Chem. Phys. Lett. 130, 6 (1986).
[22] E. Sahar, |. Wieder, Chem. Phys. Lett. 23, 518 (1973).
[23] N. Boens, M. van den Zegel, F. C. de Schryver, Chem. Phys. Lett. 111, 340, 1984.
[24] V. V. Ovsyankin, P. P. Feofilov, in Nonlinear Optics (Novosibirsk, 1968), p. 293.
[25] V. V. Ovsyankin, Opt. Spektosk. 28, 206 (1970) [Opt. Spectrosc. 28, 112 (1970)].
[26] E. Sahar, D. Treves, IEEE J. Quant. Electron. QE-13, 962 (1977).



	OS_1988_1_EN_Header
	OS_1988_1_EN_Scan
	OS_1988_1_EN_References

