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We derive a reciprocity relation for the 3D vector radiative
transport equation that describes propagation of polarized
light in multiple-scattering media. We then show how this
result, together with translational invariance of a plane-
parallel sample, can be used to efficiently compute the sen-
sitivity kernel of diffuse optical tomography by Monte Carlo
simulations. Numerical examples of polarization-selective
sensitivity kernels are given. ©2017Optical Society of America

OCIS codes: (110.6960) Tomography; (290.5855) Scattering, polari-

zation; (110.5405) Polarimetric imaging.
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Diffuse optical tomography (DOT) employs near-infrared light
to probe the macroscopic optical properties of multiple scatter-
ing media such as biological soft tissues [1,2]. The typical quan-
tities of interest are the absorption and the scattering
coefficients. The inverse problem of DOT is known to be
severely ill-posed; therefore, any additional degrees of freedom
in the measurements that can alleviate the ill-posedness are of
interest. One such degree of freedom is polarization. While the
majority of DOT setups employ unpolarized illumination
and polarization-insensitive measurements, interest in using
polarization has existed since the advent of DOT [3–5]. In par-
ticular, it has been demonstrated experimentally that depth sen-
sitivity of the DOT measurements can be improved by using
polarization-sensitive measurements [6,7]. Of course, it is
understood that strong multiple scattering causes depolariza-
tion. Yet, polarization-sensitive measurements can be useful
in the mesoscopic scattering regime, that is, on the scale of
one or few transport mean free paths l�. In biomedical imaging
of soft tissues, this translates to physical scales of one to a few
millimeters. Typically, sufficiently small source-detector separa-
tions and sufficiently short photon trajectories that are still
compatible with polarization selectivity are achieved in the
backscattering geometry, and we will consider this case below.

To perform DOT reconstructions with polarized light, one
needs a suitable forward model. In the mesoscopic scattering
regime, the commonly accepted mathematical description is

based on the vector radiative transport equation (vRTE)
[8,9]. One can use the vRTE to construct the sensitivity kernel
for DOT. This kernel quantifies the variations of the measured
signal due to medium heterogeneities. The linearized inverse
problem of DOT can be solved by standard methods once
the sensitivity kernel has been computed.

The sensitivity kernel for the diffusion equation can be easily
computed analytically. However, the generalization of this re-
sult to the scalar (unpolarized) transport equation has been ob-
tained only recently [10], and is of considerable mathematical
complexity. A similar analytical result for the vRTE is presently
not available. Instead, the contemporary mainstream approach
to solving the vRTE is to use Monte Carlo (MC) simulations
[11,12]. However, MC simulations can be so time-consuming
that this approach is rendered impractical.

In this Letter, we derive a reciprocity relation for the three-
dimensional vRTE Green’s function (a generalization of the
known reciprocity relation for the scalar RTE) and show that
it can be used to reduce the computational load dramatically.
We note that the reciprocity relation for one-dimensional
vRTE is known [13], and the three-dimensional generalization
of this result follows in a straightforward manner from the sym-
metry relations for the phase matrix [14,15]. However, to the
best of our knowledge, the reciprocity relation for the three-
dimensional vRTE has not been stated explicitly in the literature.
This is probably so because the main interest in the atmospheric
optics (which is the subject of [13–15]) is in one-dimensional
propagation of a wide front of radiation incident normally onto
a plane-parallel atmosphere, or line-of-sight propagation. In bio-
medical optics, one is often interested in propagation from a
point source to a point detector. The latter problem is essentially
three-dimensional and may not possess any obvious symmetries.

We start with a description of the typical DOT setup in the
backscattering geometry (Fig. 1). A single continuous-wave and
collimated laser beam is incident at some location ra and in the
direction of the unit vector ŝa on the planar surface of a
multiple-scattering medium. A detector measures the intensity
of light exiting on the same side of the medium at a different
point rb and in the direction ŝb. Inside the medium, the specific
intensity I�r; s� obeys the vRTE [8,9]
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�ŝ ·∇�μt�I�r; ŝ��μs

Z
Z �ŝ; ŝ 0�I�r; ŝ 0�d2s 0�S�r; ŝ�: (1)

Here I � �I ; Q; U ; V � is a vector of the four Stokes compo-
nents, S is the source term, Z is the 4 × 4 phase matrix, and μt
and μs are the total extinction and the scattering coefficients of
the medium, which are assumed to be independent of polari-
zation and therefore scalar. In what follows, calligraphic sym-
bols will be used to denote four-component vectors of Stokes
components. Note that the Stokes components of I are defined
using the meridian plane formalism, which specifies a local
reference frame for each direction of propagation ŝ.

We assume that the medium heterogeneities are purely ab-
sorbing, that is μs�r� � μ̄s and μt�r� � μ̄s � μ̄a � δμa�r�.
Here μ̄s and μ̄a are the constant background values of the re-
spective coefficients.

An incident collimated laser beam is described mathematically
by the source function S�r; ŝ� � Sinδ�r − ra�δ�ŝ − ŝa�, where
Sin is the Stokes vector for the incident beam. The solution in
a homogeneous medium (that is, in a medium with δμa�r� � 0),
I0�r; ŝ�, can be written in the form I0�r; ŝ� � G�r; ŝ; ra; ŝa�Sin,
where the Green’s function G�r; ŝ; ra; ŝa� is a 4 × 4 matrix.
Within the validity of the first Born approximation, the solution
in a heterogeneous medium, evaluated at the location and in the
collimation direction of the detector, can be written as

I�rb;ŝb��I0�rb;ŝb�

−

Z
G�rb;ŝb;r;ŝ�δμa�r�G�r;ŝ;ra;ŝa�Sind

2sd 3r: (2)

This equation shows that the presence of absorptive hetero-
geneities will result in a variation of all Stokes components of
the measured specific intensity. We define the data function as
the shadow created by the heterogeneities projected onto a given
polarization state Sout, viz.,

Φ�rb; ŝb; ra; ŝa�
� Sout · �I0�rb; ŝb� − I�rb; ŝb��jS�r;ŝ��S inδ�r−ra�δ�ŝ−ŝa�: (3)

Here the dot product of two Stokes vectors is evaluated according
to the usual rules; that is, I1 · I2 � I 1I 2 � Q1Q2�
U 1U 2 � V 1V 2. Experimentally, projection onto the polarization
state Sout is achieved by using an appropriate polarization filter in
front of the detector andmay involve a subtraction of two different
measurements. Note also that the acquisition of the data function
Φ requires either a differential measurement involving the hetero-
geneous and a reference (homogeneous) medium or an analytical
expression for G. Assuming that Φ has been measured, we can

relate it to the medium heterogeneities through the linear integral
equation of the form

Φ�rb; ŝb;ra; ŝa��
Z

�Sout ·K �rb; ŝb;ra; ŝa;r�Sin�δμa�r�d3r; (4)

where

K �rb; ŝb; ra; ŝa; r� �
Z

G�rb; ŝb; r; ŝ�G�r; ŝ; ra; ŝa�d2s: (5)

The 4 × 4 matrix K is the sensitivity kernel for the vRTE. It is a
generalization of the similar kernel for scalar RTE [10]. The ad-
ditional degrees of freedom in K are associated with using differ-
ent linearly independent polarization filters in front of the source
and the detector. It is worth noting that, in the scalar case, the
sensitivity function can only be positive, as the addition of an
absorber at some location can only reduce the measured inten-
sity. While the same is true for the matrix element K 11 of the
sensitivity kernel (5), other elements are not restricted to be pos-
itive due to the fact that the Stokes components Q , U , V can
change sign. In addition, the element K 11 is expected to be close,
but not identical, to the sensitivity kernel of the scalar RTE,
which was considered, for example, in [10].

Just as in the scalar case, the definition (5) involves an an-
gular integral of two Green’s functions. One of these functions
gives the specific intensity in the reference medium due to the
source and is represented in Fig. 1 by the solid line leaving the
source and arriving at r. The other function can be interpreted
as the specific intensity due to an internal source and is repre-
sented by the solid line leaving the volume element at r and
arriving at the detector.

We are interested in computing K by MC simulations.
However, the direct application of Eq. (5) requires computing
a new Green’s function for every interior point of the medium,
e.g., for each voxel, if the problem is discretized. Of course, if
the medium is an infinite slab, we can use translational invari-
ance to reduce the number of required computations dramati-
cally. In what follows, we utilize this approach, as well as certain
reciprocity relations, for the phase matrix Z to show that only a
few MC simulations are required to compute the kernel K .

We now proceed with deriving the reciprocity relation. In
macroscopically isotropic and non-chiral media, the phase ma-
trix satisfies (in the majority of practical cases) the reciprocity
relation [14,15]

Z �−ŝ 0; −ŝ� � PZT �ŝ; ŝ 0�P; (6)

where P � diag�1; 1; −1; 1�. Note that Eq. (6) is a generalization
of the relation A�−ŝ 0; −ŝ� � A�ŝ; ŝ 0� for the phase function A of
the scalar RTE. Now, consider the scattering-order expansion of
the Green’s function G�rout; ŝout; rin; ŝin�, where r in and rout are
two generic points inside the medium or on its boundary. The
expansion can be written as a sum over n from 0 to ∞ of terms
involving n scattering events, and each of these terms is an in-
tegral over a set of “internal” positions and directions. This set of
internal variables defines a “photon path”—a piece-wise linear
trajectory connecting rin to rout. Since ballistic propagation be-
tween two scattering vertices does not change the state of polari-
zation, the Mueller matrix of a photon that has traveled along a
given path involving n vertices (n � 1; 2;…) is of the form

M forward � Z �ŝout; ŝn�Z �ŝn; ŝn−1�…Z �ŝ1; ŝin�: (7)

The above expression contains a product of n� 1 phase matri-
ces. Note that not every set of vertices r in, r1, r2;…; rout and

Fig. 1. Backscattering imaging geometry and illustration of various
geometrical objects that are relevant to the reciprocity principle that is
considered in this Letter.
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directions ŝin, ŝ1;…; ŝout defines a path. However, if a path can
be defined, it is unique. We will restrict attention to the set of
variables that define a path. Only such sets of vertices and direc-
tions contribute to the scattering order expansion of the Green’s
function. Note also that the vertex positions are needed to define
a path, but do not enter the expression (7). What is important for
us is that, for each direct path, there also exists a reverse path
whose Mueller matrix is

M backward � Z �−ŝin; −ŝ1�Z �−ŝ1; −ŝ2�…Z �−ŝn; −ŝout�: (8)

It can be seen that, if Eq. (6) holds, then M backward �
PMT

forwardP. Since the Green’s function G�rout; ŝout; r in; ŝin� is
a linear superposition of various terms of the form (7), while
G�r in; −ŝin; rout; −ŝout� is a superposition of the terms (8) with
exactly the same weights, we have the reciprocity relation

G�r in; −ŝin; rout; −ŝout� � PGT �rout; ŝout; r in; ŝin�P: (9)

This is the main theoretical result of this Letter.
Now, we show how the reciprocity relation can be used to

simplify the computation of the sensitivity kernel K . Namely,
we set r in � r, ŝin � ŝ and rout � rb, ŝout � ŝb in Eq. (9) (see
Fig. 1 for an illustration of the relevant geometry) and obtain

G�rb; ŝb; r; ŝ� � PGT �r; −ŝ; rb; −ŝb�P: (10)

The resultant simplification is especially significant if ŝb � −ŝa,
as is shown in the figure. We then use the translational invari-
ance of the Green’s function to write

G�rb; ŝb;r; ŝ��PGT �r� rab;−ŝ;ra; ŝa�P; if ŝb � −ŝa; (11)

where rab � ra − rb. Thus, the sensitivity kernel K (for a fixed
ŝa and ŝb � −ŝa) can now be expressed as

K �rb; ŝb;ra; ŝa;r��
Z

PGT �r� rab;−ŝ;ra; ŝa�P

×G�r; ŝ;ra; ŝa�d2s; if ŝb � −ŝa: (12)

The important point here is that the above expression involves
only one Green’s function of the generic form G�r; ŝ; ra; ŝa�.
This function can be computed by only four independent
MC simulations (see below), with a starting point ra and
the initial collimation direction ŝa. This Green’s function relates
an incident arbitrarily polarized collimated beam to the vector
specific intensity for each position r inside the sample and for
each direction ŝ. Computing this function numerically requires
keeping track not only of the voxels visited by a photon (and its
polarization state arriving at the voxel), but also of its incoming
direction. It is not very typical for MC simulations to keep track
of the incoming directions in the photon history. Definitely,
this requires a larger statistical sample and, in addition, defining
some sort of discrete ordinates, which can be numerically prob-
lematic. However, if the separation between the source and the
detector rab is sufficiently large, the integration in Eq. (12)
takes place in the spatial regions, where the angular dependence
of at least one of the Green’s functions involved is relatively
weak. We therefore can adopt the following approach to com-
puting the angular dependence of the Green’s function.

First, a given MC simulation produces the vector specific in-
tensity I�r; ŝ� for a given polarization of the source, Sin. The 4 ×
4 matrix of the Green’s function is then obtained by repeating
the MC process for four linearly independent and physically
realizable incident states of polarization. We will expand each
component of I�r; ŝ� in the spherical functions Y lm�ŝ�:

I�r; ŝ� �
Xlmax

l�0

Xl

m�−l

ilm�r�Y lm�ŝ� (13)

and, similarly, for theQ ,U , and V components. Here lmax is the
truncation order, and the functions ilm�r�, qlm�r�, ulm�r�,
vlm�r� are to be computed numerically. The algorithm proposed
here is efficient if lmax is not too large, say, not larger than 20.
Luckily, this is the case since one of the integrate functions always
has slow angular dependence, as was noted above. It can be easily
shown that, in a stochastic MC process and, for each voxel con-
taining the point r,

ilm�r� →
N→∞

X
j

I jY lm�ŝj�; (14)

where N is the total number of photons used in the MC simu-
lation, ŝj are the incoming directions of the photons entering a
given voxel (one photon can visit a given voxel more than once
or not at all), and I j are the respective first components of the
Stokes vector of the incoming ray. Note that the number of terms
in the summation is generally different fromN , but is expected to
be proportional toN in the limitN → ∞. Similar computational
formulas can be written for the remaining three coefficients
qlm, ulm, and vlm. Thus, for each voxel and each incident
state of polarization, we will compute and store in memory
4�lmax � 1�2 coefficients to represent the angular dependence of
the specific intensity. The Green’s function can then be calculated
by using these coefficients and four different incident polarization
states (unpolarized, Q-polarized, U-polarized, and V-polarized),
following the process introduced in [5]. Once the Green’s function
is obtained, the sensitivity kernel K can be calculated from
Eq. (12) analytically. Here we can use the relation Y lm�−ŝ� �
�−1�l Y lm�ŝ� and the orthogonality of the spherical functions.

We now show several examples of computing the physically
accessible matrix elements of the kernel K �rb; ŝb; ra; ŝa; r�.
In Fig. 2, the kernel elements are shown as functions of r for
normal illumination and detection. The MC process was imple-
mented in a macroscopically homogeneous slab with the typical
optical parameters of soft biological tissues, μ̄s � 500 cm−1 and
μ̄a � 0.03 cm−1. All spatial dimensions were scaled by the trans-
port mean free path, l� � 1∕�μ̄a � �1 − g�μ̄s �, where g is the

Fig. 2. Matrix elements of the dimensionless sensitivity kernel
�l��2K for normal incidence and normal detection. The matrix
element K 11 is shown in panels (a)–(c), and the linear combination
K 41 � K 44 is shown in panels (d)–(f ). From top to bottom, the
source-detector separation is 0.225l�, 0.45l�, and 1.05l�.
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scattering asymmetry parameter. The phase matrix Z was com-
puted by using Mie theory for spherical inclusions of the refrac-
tive index ni � 1.38 in a homogeneous host of the refractive
index nh � 1.33 (water in the visible spectral range), and the size
parameter of inclusions was nhωa∕c � 7.15, where a is the par-
ticle radius and ω is the working frequency. The scattering asym-
metry parameter for these particles is g � 0.95. The slab depth
was equal to l�, and we have used lmax � 15. We have verified
that the integral in Eq. (12) (if viewed as a function of lmax ) ap-
proaches its limiting value at lmax � 15 for all cases considered.

In panels (a)–(c) of Fig. 2, we show K 11 for varying source-
detector lateral separation. More specifically, the cross section of
K 11�rb; ŝb; ra; ŝa; r� is shown as a function of r in the vertical
plane that contains both the source and the detector. We can as-
sume that the variable r is restricted so that r � �x; 0; z� and the
cross sections of the medium visualized by the density plots are the
XZ planes, where the Z -axis is perpendicular to the slab. Note
that, in the MC simulations, the source position was to the left
of the detector. The element K 11 is relevant if we inject unpolar-
ized light into the medium and perform polarization-insensitive
intensity measurements. In this case, Sin � �1; 0; 0; 0�T . It can
be seen that the sensitivity kernel alters significantly with the
change in source-detector separation. As expected, the “bridge”
that connects the source to the detector in the intermediate region
lowers to greater depths as the separation is increased. On the
other hand, the greatest sensitivity is to inhomogeneities placed
in front of the source and the detector. Such absorbing inhomo-
geneities have the potential to block the light completely and the
corresponding sensitivity is very high. This is, of course, problem-
atic for practical application of optical tomography. One possible
solution is the utilization of transparent and homogeneous match-
ing layers (gels) to exclude the regions of very high sensitivity.

In panels (d)–(f) of Fig. 2, we also plot the linear combination
K 41 � K 44. This matrix element is relevant if we use right-
circularly polarized source and measure the Stokes component
V on exit. In this case, the polarization state of the incident beam
is Sin � �1; 0; 0; 1�T . We see here that for the two larger source-
detector separations, the sensitivity kernel is positive-valued at all
locations, similar to the case of the K 11. The most notable
difference is that the areas of high sensitivity are reduced in pan-
els (e,f ). The lower sensitivity results from the fundamental
inequality for polarized light I 2 ≥ Q2 � U 2 � V 2, and the
inevitable depolarization of the incident source due to multiple

scattering. In addition, for the smaller source-detector separation
shown in Fig. 2(d), a region of negative sensitivity appears close
to the surface, implying that an added absorber at these locations
increases the measured Stokes parameter V . This counter-
intuitive behavior can be explained by considering that certain
photon trajectories that penetrate only superficially are more
likely to experience a flip in their helicity, i.e., a change of
the sign of V [16]. Thus, when an absorber removes these pho-
tons, the measured signal becomes more positive. This example
highlights the complexity of polarization-sensitive measure-
ments. An efficient numerical tool to compute the sensitivity
kernel K , which we have developed here, allows one to take full
advantage of these unexpected features in image reconstruction.

In Fig. 3, we plot the results of a similar simulation, but for
an off-normal angle of incidence and detection (30° from the
normal). One notable feature of Fig. 3(d) is that the negative
region of the sensitivity kernel K 41 � K 44 becomes more pro-
nounced since the oblique incidence increases the probability of
shallow photon paths that tend to reverse the photon helicity.

In summary, we have presented an approach to the MC
calculation of the DOT sensitivity kernel for polarized light.
The reduction of the computational complexity was obtained
by utilizing a reciprocity relation for the vRTE. The numerical
results shown above were restricted to the cases when the source
and the detector collimation directions ŝa and ŝb are anti-parallel.
However, this is not a fundamental limitation of our method.
Measurement schemes with ŝa and ŝb making the same angle
with the normal, but not anti-parallel, can be handled with equal
efficiency. The case of more general ŝa and ŝb can also be accom-
modated, but requires twice the computation time.
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