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Optical tomography with structured illumination
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We consider the image reconstruction problem for optical tomography with structured illumination. A fast
image reconstruction algorithm is proposed that reduces the required number of measurements of the opti-
cal field compared to methods that utilize point-source illumination. The results are illustrated with nu-
merical simulations. © 2009 Optical Society of America
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Optical tomography is an emerging biomedical imag-
ing modality that uses diffuse light to probe struc-
tural variations in the optical properties of tissue [1].
In a typical experiment, a highly scattering medium
is illuminated by a point source, and the resultant
transmitted light is collected by an optical fiber or
imaged onto a CCD array. In the latter case, if a nar-
row collimated beam is used as the source of illumi-
nation, very large data sets of 108–1010 source–
detector pairs may be acquired. The method is then
known as noncontact optical tomography [2–4], and
the corresponding inverse scattering problem has
been the subject of considerable investigation [5,6].
In particular, fast image reconstruction algorithms
have been developed for several geometries and ex-
periments have been performed that demonstrate the
ability to image complex structures with subcentime-
ter resolution [7]. The reconstruction algorithms are
formulated in the spatial-frequency domain and uti-
lize a relatively small number of Fourier components
of the scattering data. However, a large number of
point sources are necessary to synthesize the re-
quired frequency components, resulting in prolonged
data collection times.

In a recent work, Cuccia et al. [8] introduced the
powerful experimental technique of modulated imag-
ing, which uses structured illumination for direct vi-
sualization of absorbing inhomogeneities in a turbid
medium. Since high spatial frequencies decay expo-
nentially with propagation, the method allows for a
simple means to achieve optical sectioning by adjust-
ing the spatial frequency of the illuminating field.
The intensity images that are obtained in this man-
ner contain information about the medium. However,
they are not tomographic, nor are they quantitatively
related to the medium’s optical properties.

In this Letter, we propose an alternative to noncon-
tact optical tomography in which, by making use of
structured illumination, scattering data are directly
measured in the spatial-frequency domain. We then
formulate the relevant inverse scattering problem
and show that it is possible to devise a fast recon-
struction algorithm to recover the optical absorption
coefficient for both reflection and transmission ex-

periments in the slab geometry. The principal advan-
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tage of the proposed method—a hybrid of modu-
lated imaging and a fast image reconstruction
algorithm—is that it allows for rapid collection of ex-
perimental data compared to the usual point-source
approach to noncontact optical tomography.

We begin by considering the propagation of a dif-
fuse wave in an absorbing medium. The energy den-
sity of the wave is assumed to satisfy the time-
independent diffusion equation [6]

− D�2u�r� + ��r�u�r� = S�r�, �1�

where � is the absorption coefficient, D is the diffu-
sion constant, and S is the power density of a
continuous-wave source. The energy density is also
taken to obey the boundary condition

u�r� + �n̂ · �u�r� = 0 �2�

on the surface bounding the medium, where n̂ is the
outward unit normal and � is the extrapolation
length. The intensity measured by a point detector at
r is given by the expression

I�r� =
c

4�
�1 +

�*

�
� � G�r,r��S�r��d3r�, �3�

where G is the Green’s function for Eq. (1), we have
assumed that the detector collects light in the out-
ward normal direction and �* is the transport mean
free path, which is related to the diffusion constant
by D=1/3c�*. Within the accuracy of the first Born
approximation, the Green’s function is given by

G�r,r�� = G0�r,r�� −� G0�r,r�����r��G0�r�,r��d3r�,

�4�

where G0 is the Green’s function for Eq. (1) with
��r�=�0 and ���r�=��r�−�0.

For the remainder of this Letter, we assume that
the medium to be imaged is a slab of width L, a ge-
ometry that is often employed in optical mammogra-
phy. We also assume that the source of illumination
is confined to the plane z=0 and that transmitted

light is detected on the plane z=L. We will also be in-
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terested in measurements for which reflected light is
detected on the z=0 plane. In either case, we consider
a source whose power density is of the form

S�r� = S0�1 + A cos�Q · � + �����z�, �5�

where r= �� ,z�; Q is a two-dimensional wave vector;
��z� is the one-dimensional Dirac delta function; and
S0, A, and � are the amplitude, modulation depth,
and phase of the source, respectively. Such a source,
which can be constructed by employing a liquid-
crystal spatial light modulator, produces a type of
structured illumination in which the incident diffuse
wave is modulated with spatial frequency Q. Next,
we consider two separate measurements with phases
�=0, � /2 and high-pass filter the results, eliminat-
ing the zero-frequency contribution to the field. We
then find that by taking an appropriate linear combi-
nation of the corresponding intensities, the change in
intensity of a diffuse wave due to fluctuations in the
absorption of the medium is proportional to the data
function �, which is defined by

��r� =� d3r�d2��eiQ·��G0�r,r��G0�r�;��,0����r��, �6�
[6], we compute the pseudoinverse solution of Eq. (11)
where r is the point of observation and we have re-
tained only the spatially oscillating part of the inten-
sity.

The inverse problem consists of recovering the
function �� from boundary measurements of � as the
source wave vector Q is varied. We assume that � is
sampled on a square lattice with spacing h. To pro-
ceed, we introduce the lattice Fourier transform of �,
which is defined by

�̃�q,z� = �
�

exp�iq · �����,z�, �7�

where q belongs to the first Brillouin zone (FBZ) of
the lattice [9]. Next, we make use of the plane-wave
decomposition of the Green’s function, which is of the
form

G0�r,r�� =� d2q

�2��2eiq·��−���g�z,z�;q�. �8�

Here g is given by the expression [6]
g�z,z�;q� =
�

D

sinh�Q�q��L − �z − z���	 + Q�q�� cosh�Q�q��L − �z − z���	

sinh�Q�q�L� + 2Q�q�� cosh�Q�q�L� + �Q�q���2 sinh�Q�q�L�
, �9�
where Q�q�=
q2+�0 /D. We then find that

�̃�q,Q� =
1

h2�
0

L

g�0,z;Q�g�z,zd;q���˜�q + Q,z�dz,

�10�

where zd is the z coordinate of the detector, we have
assumed that �� is bandlimited to the FBZ and have
indicated the dependence of � on the source wave
vector Q explicitly. After a change of variables, we re-
write Eq. (10) in the form

��Q,q� = �
0

L

K�Q,z;q���˜�q,z�dz, �11�

where

K�Q,z;q� =
1

h2g�0,z;Q�g�z,zd; �Q − q��, �12�

��Q,q� = �̃�q − Q,Q�. �13�

For fixed q, Eq. (11) defines a system of one-
dimensional integral equations for the Fourier trans-
form ��̃�q ,z�. Following the general approach of Ref.
and perform an inverse Fourier transform to obtain
our main result, which is the inversion formula

���r�

= �
FBZ

d2q

�2��2e−iq·� �
Q,Q�

K*�Q,z;q�MQQ�
−1 �q���Q�,q�.

�14�

Here the matrix elements of M are defined by

MQQ��q� = �
0

L

K�Q,z;q�K*�Q�,z;q�dz �15�

and the summations are carried out over all direc-
tions of illumination. It is important to note that M−1

must be regularized to control the ill-posedness of the
inverse problem; this we do by computing the singu-
lar value decomposition of M and truncating all sin-
gular values below a fixed threshold. Finally, an im-
age reconstruction algorithm based on Eq. (14), with
the use of the fast Fourier transform to compute �̃,
has computational complexity O�NM log M�, where
M is the number of measurements and N is the num-
ber of source wave vectors.

To illustrate the use of the inversion formula (14),

we numerically simulated the reconstruction of �� for
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a medium with optical properties similar to breast
tissue in the near infrared. We chose the background
absorption and diffusion constants to be �0=1 ns−1

and D=1 cm2 ns−1, respectively. The slab thickness
was set to be L=6.1 cm and the extrapolation length
to be �=0.1 cm. The detectors were located on a
square lattice with spacing h=0.1 cm. The source
wave vectors Q were chosen to occupy an 11�11
square lattice and were arranged symmetrically
around the center of the FBZ with a spacing of
1.2 cm−1. The forward data were computed for a col-
lection of point absorbers, allowing for interactions
between the absorbers, as described in Ref. [10]. The
absorbers had an effective volume of 10−3 cm3 and a
contrast of 4:1 and were arranged in two parallel
planes. In the z=2 cm plane, a pair of absorbers were
placed at x=y=0.7 cm and x=y=−0.7 cm, and in the
z=4 cm plane, a second pair of absorbers was placed
at x=−y=0.7 cm and x=−y=−0.7 cm. Thus the first
pair of absorbers is rotated by � /2 with respect to the
second.

Tomographic images were reconstructed with a
5.1 cm�5.1 cm field of view and a pixel size of
0.1 cm. Slices are shown in the planes z
=1,2, . . . ,6 cm. In Fig. 1 we present our results for
the slab geometry. It can be seen that the resolution,
as measured by the full width at half-maximum
(FWHM), is 0.4 cm in the transverse direction and
0.9 cm in the depth direction, the results being ap-
proximately the same for both planes in which the
absorbers are present. Reconstructions in the half-
space geometry (with L→	), shown in Fig. 2, are less
well resolved than in the case of the slab, as is usual
[11]. The FWHM in the z=2 cm plane is 0.8 cm in the
transverse direction and 1.0 cm in the depth direc-
tion. The absorbers in the z=4 cm plane are not vis-
ible at the scale shown. If the absorbers in the z
=2 cm plane are removed, reconstruction at z=4 cm
becomes possible, albeit with less accuracy (image
not shown). We note that the resolution limits we
have obtained must be considered to be best-case es-
timates. However, comparisons of simulations with
noncontact optical tomography experiments indicate
that under realistic conditions, ill-posedness is a
more significant determinant of image resolution

Fig. 1. (Color online) Reconstruction of �� in the slab ge-
ometry. All images are plotted on the same linear color

scale.
than instability due to the effects of noise or system-
atic errors [4,7].

It is instructive to contrast the above results with
those that can be obtained with point-source illumi-
nation. In Ref. [7], a noncontact optical tomography
system with 1225 sources was used to reconstruct ab-
sorption images with resolution comparable to the re-
sults shown in Fig. 1. However, using structured illu-
mination, only 2�121 incident wave vectors
(accounting for both phases �=0, � /2) were needed
to obtain the equivalent Fourier components. Thus, it
can be seen that comparable performance may be
achieved with nearly a factor of five speed-up in data
collection time, assuming equivalent integrated
source power.

In conclusion, we have developed a fast image re-
construction algorithm for optical tomography with
structured illumination. The proposed algorithm
achieves high spatial resolution while simulta-
neously reducing the required number of measure-
ments of the optical field compared to methods that
utilize point-source illumination.

This research was supported by the National Insti-
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