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Experimental demonstration of an analytic method
for image reconstruction in optical diffusion

tomography with large data sets
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We report the first experimental test of an analytic image reconstruction algorithm for optical tomography
with large data sets. Using a continuous-wave optical tomography system with 108 source–detector pairs, we
demonstrate the reconstruction of an absorption image of a phantom consisting of a highly scattering me-
dium containing absorbing inhomogeneities. © 2005 Optical Society of America

OCIS codes: 170.3880, 290.1990.
Optical diffusion tomography (ODT) is a biomedical
imaging modality that utilizes diffuse light as a
probe of tissue structure and function. Clinical appli-
cations include imaging of breast disease and func-
tional neuroimaging. The physical problem that is
considered is how to reconstruct the optical proper-
ties of an inhomogeneous medium from measure-
ments taken on its surface. In a typical experiment,
optical fibers are used for illumination and detection
of the transmitted light.1–3 The number of measure-
ments (source–detector pairs) that can be obtained,
in practice, varies between 102 and 104. A recently
proposed alternative to fiber-based experiments is to
employ a narrow incident beam for illumination. The
beam can be scanned over the surface of the medium
while a lens-coupled CCD detects the transmitted
light. Using such a noncontact method makes it pos-
sible to avoid many of the technical difficulties that
arise from fiber–sample interactions.4–6 In addition,
extremely large data sets of approximately 108–1010

measurements can readily be obtained. Data sets of
this size have the potential to vastly improve the
quality of reconstructed images in ODT.7,8

The reconstruction of images from large data sets
is an extremely challenging problem owing to the
high computational complexity of numerical ap-
proaches to the inverse problem in ODT. To address
this challenge, we have developed analytic methods
to solve the inverse problem.7–9 These methods lead
to a dramatic reduction in computational complexity
and have been applied in numerical simulations to
data sets as large as 1010 measurements.7 In this Let-
ter we report the first experimental demonstration of
the feasibility of image reconstruction by using our
analytic methods for optical tomography with large
data sets. A noncontact ODT system with 108 source–
detector pairs was employed to reconstruct the opti-
cal absorption of a highly scattering medium contain-
ing absorbing inhomogeneities.

We begin by considering the propagation of diffuse
light in an absorbing medium. The density of electro-
magnetic energy u�r� is assumed to satisfy the diffu-
sion equation −D�2u�r�+��r�u�r�=S�r�, where ��r�
is the absorption coefficient, S�r� is the power density
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of a continuous wave source, and D is the diffusion
constant. The energy density is taken to obey the
boundary condition u+�n̂ ·�u=0 on the surface
bounding the medium, where n̂ is the unit outward
normal and � is the extrapolation length.10 The rela-
tive intensity measured by a point detector at r2 due
to a point source at r1 is given, within the accuracy of
the first Rytov approximation, by the integral equa-
tion

��r1,r2� =� d3rG0�r1,r�G0�r,r2����r�, �1�

where the source and detector are oriented in the in-
ward and outward normal directions, respectively.8

Here ���r�=��r�−�0 denotes the spatial fluctuations
in ��r� relative to a reference medium with absorp-
tion �0, G0 is the Green’s function for the diffusion
equation with �=�0, and the data function � is de-
fined by ��r1 ,r2�=−G0�r1 ,r2�ln�I�r1 ,r2� /I0�r1 ,r2��,
where I�r1 ,r2� denotes the intensity in the medium
and I0�r1 ,r2� is the intensity in the reference me-
dium. Note that the intensity is related to the Green’s
function by the expression I�r1 ,r2�=cS0�1
+�* /��2 /4�G�r1 ,r2�, where S0 is the source power
and the transport mean free path �* is related to the
diffusion coefficient by D=1/3c�*. We further note
that the ratio of intensities in the definition of � may
be interpreted as a calibration step in an experiment.

We have constructed a noncontact ODT system to
test the analytic method of image reconstruction. The
source is a continuous-wave stabilized diode laser
(DL7140-201, Thorlabs) operating at a wavelength of
785 nm with an output power of 70 mW. The laser
output is divided into two beams by a beam splitter.
The reflected beam is incident on a powermeter,
which monitors the stability of the laser intensity.
The transmitted beam passes through a lens onto a
pair of galvanometer-controlled mirrors (SCA 750,
Lasesys). The mirrors are used to scan the beam,
which has a focal spot size of 200 �m, in a raster
fashion over the surface of the sample. After propa-
gating through the sample, the transmitted light

passes through a bandpass interference filter
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(10LF20-780, Newport) and is imaged onto a front il-
luminated thermoelectric-cooled 16 bit CCD array
(DV435, Andor Technology) by a 23 mm/ f1.4 lens. A
mechanical shutter is placed in front of the CCD to
reduce artifacts associated with frame transfer
within the CCD chip. A pulse generator with digital
delay is used to trigger and synchronize the CCD, the
shutter, and the position of the beam.

The sample chamber is a rectangular box of depth
5 cm with square faces of area 50 cm�50 cm con-
structed of clear acrylic sheets. The beam is scanned
on one face of the sample, and the opposite face is im-
aged by the CCD. The chamber is placed equidis-
tantly from the CCD and the laser source along the
optical axis at a distance of 110 cm. The chamber is
filled with a scattering medium, which consists of a
suspension of 1% Intralipid in water in which absorb-
ing objects may be suspended.

A tomographic data set is acquired by raster scan-
ning the beam over a 29�29 square lattice with a
lattice spacing of 0.5 cm. This yields 841 source posi-
tions within a 14 cm�14 cm area centered on the op-
tical axis. For each source, a 429�429 pixel region of
interest is read out from the CCD. This results in
184,041 detectors arranged in a square lattice with
an effective lattice spacing equivalent to 0.065 cm
and all detectors located within a 28 cm�28 cm area
centered on the optical axis. Thus a data set of 1.5
�108 source–detector pairs is acquired.

The inverse problem in ODT consists of recon-
structing �� from measurements of �. In this Letter
we consider the inversion of the integral equation (1)
in the slab measurement geometry. The approach
taken is to construct the singular value decomposi-
tion of the integral operator whose kernel is defined
by Eq. (1) and to use this result to obtain the pseudo-
inverse solution to Eq. (1). The starting point for this
development is to consider the lattice Fourier trans-
form of the sampled data function, which is defined
by �̃�q1 ,q2�=�r1,r2

exp�i�q1 ·r1+q2 ·r2����r1 ,r2�,
where the sum is carried out over the square lattices
of sources and detectors with lattice spacings hs and
hd, respectively. The wave vectors q1 and q2 belong to
the first Brillouin zones of the corresponding lattices,
denoted FBZ�hs� and FBZ�hd�. It can then be shown
that the pseudoinverse solution to the integral equa-
tion (1) is given by the inversion formula

���r� = �
FBZ�hs�

d2q�
FBZ�hd�

d2pK�r;q,p��̃�q − p,p�,

�2�

where the kernel K is defined in Ref. 8. Several as-
pects of Eq. (2) are important to note. First, in the ab-
sence of noise, the transverse spatial resolution of re-
constructed images is determined by the spatial
frequency of sampling of the data function with re-
spect to both source and detector coordinates. As a
consequence, a large number of source–detector pairs
are necessary to achieve the highest possible spatial
resolution. It can be seen that when the source and

detector lattices have equal spacing, the theoretical
limit of transverse resolution is given by the lattice
spacing.7 When the source and detector lattice spac-
ings are different, as is the case in the experiment re-
ported here (where hs=0.5 cm and hd=0.065 cm), the
resolution of reconstructed images is controlled by
the larger lattice spacing.8 The overall spatial extent
of the sources and detectors (windowing of the data
function) is also known to strongly influence spatial
resolution.7 Second, the inverse problem in ODT is
overdetermined. In addition, it is highly ill posed. As
a result, it can be said that large data sets allow the
data function to be averaged in such a way that the
sensitivity to noise in the inverse problem is partially
ameliorated. Finally, inversion based on Eq. (2) is
analytic in the sense that in certain geometries, such
as the slab geometry employed in this study, the ker-
nel K can be calculated explicitly.8,9

The first step in the reconstruction of tomographic
images is to measure the reference intensity I0 for
each source–detector pair. By fitting these data in the
spatial frequency domain to the intensity I with �
=�0, we obtain the diffuse wavenumber k0=��0 /D
=0.58 cm−1 and the extrapolation length �=0.7 cm.
Note that these parameters define the diffusion
Green’s function G in the slab geometry.10 Next, the
object to be imaged is placed in the sample chamber,
and the intensity I for each source–detector pair is
measured. In Fig. 1 we show the reconstruction of a
pair of black metal balls. The balls have a diameter of
8 mm and were suspended in the midplane of the

Fig. 1. (Color online) Reconstructions of �� for the two-
ball phantom plotted on a linear color scale. The distance of
each slice from the plane of sources is indicated. All images

are normalized to the maximum of the central slice.
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sample chamber at a constant height with a separa-
tion of 3.2 cm. Tomographic images were recon-
structed with a 15 cm�15 cm field of view by using
230�230 pixels per image with a separation between
the slices of 0.26 cm. It can be seen in the central
slice, which is equidistant from the source and the
detector planes, that the balls are well resolved. The
shallower and deeper slices show that the balls re-
main well resolved but with a smaller diameter, as
expected. Figure 2 is a plot of �� /�0 along the line
passing through the centers of both balls in the cen-
tral slice. The distance between the peaks is 3.3 cm,
in close agreement with the measured separation of
the balls. The FWHM of the peaks is 1.0 cm, which
slightly overestimates the diameter of the balls.

Several comments on the above results are neces-
sary. First, it can be seen that the resolution of recon-
structed images is primarily controlled by the source
separation hs and is further limited by noise. To illus-
trate this point we have investigated the dependence
of the reconstructed images on the detector spacing
hd. As is shown in Fig. 2, we find that the FWHM is
extremely stable under decimation of the detector
lattice until hd approaches hs, corresponding to 2.3
�106 source–detector pairs. This result is consistent

Fig. 2. One-dimensional profiles of the reconstructed ab-
sorption along the line passing through the centers of the
balls in the central slice. Results for different values of the
detector separation hd are shown: (a) hd=0.65 mm, (b) hd
=5.2 mm, (c) hd=10.4 mm.

Fig. 3. Frequency components of the data function for the
central source where �̃c�qx�=�x,y exp�iqxx���0,0;x ,y� with
the sum carried out over the lattice of detector positions.
with numerical simulations of the reconstruction of
an ideal point absorber carried out under conditions
identical to the experiment reported here. It is impor-
tant to note that previously reported simulations7 in-
dicate the potential for further improvement in reso-
lution with decreasing hs. However, for the
experiment described in this Letter, there is signifi-
cant onset of noise at a spatial frequency of approxi-
mately 1.5hs

−1, which precludes improvements in
resolution at smaller source separations, as is illus-
trated in Fig. 3. Second, it is important to note that
the reconstructed contrast in �� is not expected to be
quantitative owing to the possible breakdown of the
diffusion approximation in the interior of the
strongly absorbing balls. Interestingly, however, the
shape of the spherical absorbers is recovered well. Fi-
nally, the analytic method of image reconstruction is
extremely efficient computationally and when ap-
plied to a data set consisting of 108 source–detector
pairs requires about 10 min of CPU time on a 1.5
GHz workstation. It is important to note that recon-
structions of data sets of this size are not feasible by
using standard numerical reconstruction algorithms
in ODT.8

In conclusion, we have demonstrated the feasibility
of analytic methods for image reconstruction in ODT
with large data sets. We are currently conducting fur-
ther studies to assess the effects of absorption con-
trast on image resolution. We expect that with fur-
ther technological advances and experimental
refinements improvements in spatial resolution will
be achieved.
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