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Dual-projection optical diffusion tomography
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We propose a new approach to optical diffusion tomography that incorporates two orthogonal projections. All
the data obtained in a double projection measurement are treated simultaneously. The second projection
improves image quality due to the fact that the depth and transverse directions are interchanged. An image
reconstruction algorithm is derived and illustrated with simulations. It is shown that the spatial resolution
of images improves by a factor of 4–5 due to the second projection. © 2004 Optical Society of America
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Optical diffusion tomography (ODT) is an emerg-
ing biomedical imaging modality that utilizes near-
infrared (NIR) light as a probe of biological tissue.1 It
is generally recognized that ODT has the potential to
complement existing imaging methods and may have
applications to breast imaging, functional brain map-
ping, and molecular imaging.2 In the NIR spectral
region light experiences relatively weak absorption
but is strongly scattered in tissue. As a result, the
inverse problem of ODT is ill posed. Consequently,
the reconstructed images in ODT are of relatively low
quality, which limits the clinical utility of this method.

Optimization of image quality in ODT has attracted
significant attention (e.g., Refs. 3 and 4). However,
the high computational complexity of the image
reconstruction algorithms utilized in those studies
necessitated the use of data sets with relatively small
numbers of measurements (source–detector pairs).
We recently introduced a family of image reconstruc-
tion algorithms that is free of this limitation.5,6 With
the use of these algorithms it was demonstrated that
increasing the size of the data set can systematically
improve image quality. We also showed that in the
slab imaging geometry, which is often utilized for
breast imaging, the transverse and depth resolutions
are fundamentally different. The depth resolution
is controlled by noise and the fact that the inverse
problem is intrinsically ill posed.6 In contrast, the
transverse resolution is more stable in the presence of
noise and scales as the minimum separation between
the sources (detectors) and thus can potentially be
very small compared to depth resolution.5 This ob-
servation suggests that the use of measurements from
dual projections (different orientations of the slab)
should improve image quality by interchanging the
depth and transverse directions. In this Letter we de-
scribe an image reconstruction method that combines
the features of computationally eff icient algorithms5,6

with the use of dual projections. Using this approach,
we demonstrate in numerical simulations that the
addition of a second orthogonal projection can dra-
matically improve the spatial resolution and quality
of reconstructed images.

We use the diffusion approximation to describe
the propagation of NIR light in tissue.1 The
density of electromagnetic energy u is as-
sumed to obey the stationary diffusion equation
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D0=2u�r� 2 a�r�u�r� 1 S�r� � 0, where D0 and a�r�
are the diffusion and absorption coeff icients, respec-
tively, and S is an appropriate source function. For
simplicity we assume below that the diffusion coeffi-
cient D�r� � D0 is constant. The diffusion equation
is supplemented by an expression for the measurable
intensity that has the form I � �4p�3� �u 2 l�ŝ ? =u�,
where l� � 3D0�c is the transport mean free path
and ŝ is the direction in which the energy f lux is
measured. The inverse problem of ODT is to find
the spatial distributions of a inside the tissue from
surface measurements of intensity I . This inverse
problem is nonlinear.1 We perform a standard
linearization assuming that a�r� � a0 1 da�r�, where
a0 is the known background value of the absorption
coefficient and da is a small f luctuating part. Then
the measured signal f�rs, rd� can be related to da by
the linear integral equation

f�rs, rd� �
Z

GA�rs,rd; r�da�r�d3r , (1)

where rs and rd are the positions of the source and
the detector, respectively, and the kernel G can be ex-
pressed in terms of Green’s function G0�r, r0� of the
diffuse equation in a medium with a � a0 and D � D0
and appropriate boundary conditions.7

Since only one optical coefficient (namely, da) is
recovered in this case, stationary (dc) measurements
are suff icient.7,8 Second, we assume that the mea-
surements are performed in an infinite medium (free
boundary conditions). Then kernel G is given by
G�rs, rd; r� � G0�rs, r�G0�r, rd�. Note that these
assumptions are not fundamental and can be easily
avoided in practical applications. The details for
general boundary conditions and simultaneous re-
construction of da and dD, as well as the results for
more than two different projections, will be published
elsewhere.

In the slab geometry illustrated in Fig. 1 Green’s
function G0 can be expressed as a one-dimensional
Fourier integral of the form

G0�x, y, z;x0, y 0,z0� �
Z `

2`

dz

2p
exp�iz �z0 2 z��

3 g�z ;x0 2 x, y 0 2 y� . (2)
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In the case of free boundaries considered here,
g�z ; x0 2 x, y 0 2 y� � �1�2pD0�K0�Q�z � ��x 2

x0�2 1 � y 2 y 0�2�1�2�, where Q�z � � �z 2 1 k2
diff �1�2,

kdiff � �a0�D0�1�2 is the diffuse wave number, and
K0�x� is the modif ied Bessel function of the second
kind.

We now turn to the derivation of an image recon-
struction algorithm that utilizes simultaneously the
data obtained from two orthogonal projections shown
in Fig. 1. This is in contrast with previous studies
in which multiple projections in optical tomography
have been used in conjunction with a modif ied version
of x-ray backprojection tomography with phenomeno-
logical corrections introduced to compensate for
scattering.9,10 The slab can take one of two possible
positions, and the reconstruction is performed in
the shaded square region, which is not perturbed by
rotations of the slab. Let the position of the sources
and detectors on the incident and exit surfaces of the
slab be denoted by �xs, ys, zs� and �xd, yd, zd�, respec-
tively. For the first orientation of the slab we have
xs � 2L�2, xd � L�2, whereas ys, zs and yd, zd take
multiple values: ys�ns� � 2�Ns 2 1�h�2 1 �ns 2 1�h,
yd�nd� � 2�Nd 2 1�h�2 1 �nd 2 1�h, zs�ms� � msh,
and zd�md� � mdh, where ns,d � 1, . . . ,Ns,d and
ms,d � 0, 61, 62, . . . . Here h is the intersource
(interdetector) separation of the lattice step. Thus
for each given x 2 y cross section there are Ns,d
sources or detectors equally spaced within window
Ws,d � �Ns,d 2 1�h. However, the system is infinite in
the z direction. The latter requirement is necessary
for mathematical consistency but cannot be fulf illed
experimentally. However, because of the rapid expo-
nential decay of diffuse waves, a finite window in the
z direction is anticipated to be suff icient for data col-
lection.5 For the second orientation of the slab, zs,d
take the same values as above, but xs,d and ys,d are
mutually interchanged. Now we have ys � L�2 and
yd � 2L�2 while xs�ns� � 2�Ns 2 1�h�2 1 �ns 2 1�h
and xd�nd� �2�Nd 2 1�h�2 1 �nd 2 1�h.

Now we use expansion (2) and Fourier transform
main integral equation (1) with respect to variables zs
and zd. We then define the Fourier-transformed data
function as

f̃�xs,ys,qs; xd, yd, qd� �
X̀

ms�2`

X̀
md�2`

f�xs,ys, zs;

3 xd, yd, zd�exp�i�qszs�ms� 1 qdzd�md��� (3)

and a new data function ck,ns, nd �q� according to
ck,ns ,nd �q�

�

(
f̃�2L�2,ys�ns�,q�2;L�2, yd�nd�,q�2� , if k � 1
f̃�xs�ns�,L�2,q�2;xd�nd�,2L�2,q�2� , if k � 2

.

(4)

Here index k � 1, 2 labels the projection number. We
substitute expansion (2) into Eq. (1) and apply Fourier
transformation (3) and definition (4) to obtain

ck,ns ,nd �q� �
Z L�2

2L/2
dx

Z L�2

2L/2
dykk,ns ,nd �q; x, y�dã�x, y;q� ,

(5)

where
kk,ns ,nd �q;x, y� �
X̀
l�2`

8>>><
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h
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(6)
and dã�x, y; q� is the Fourier transform of da�x, y, z�
with respect to z defined by

dã�x, y;q� �
Z `

2`

da�x,y, z�exp�iqz�dz . (7)

It can be seen that Eq. (5) is a set of independent inte-
gral equations parameterized by q. For a fixed value
of q each integral equation can be discretized by re-
placing the integrals over dx and dy by Riemann sums.
Thus we obtain a set of independent systems of linear
algebraic equations for each q. Each of these systems
can be solved by standard singular value decomposi-
tion methods to obtain dã�x, y; q�. An approximation
to the real-space function can then be recovered by the
inverse Fourier transform:

da�x, y, z� �
Z p�h

2p/h
dã�x, y;q�exp�2iqz�

dq
2p

, (8)

Fig. 1. Illustration of the reference frame used for the
derivation of inversion formulas.
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Fig. 2. PSFs in reconstructed images of a point absorber
for single (left column) and double (right column) projection
imaging and different levels of random Gaussian noise n.
Image quality parameter hx for the x PSFs is shown in
each graph.

where we have assumed that dã�x, y; q� is band lim-
ited to the first Brillouin zone of the lattice of sources
(detectors), namely, 2p�h , q # p�h.5

Equations (5)–(8) are the mathematical formulation
of the image reconstruction algorithm proposed in this
Letter. The inversion is analytical in one dimension
�z� and numerical in the two remaining dimensions
(x and y). It is important to note that the reduction
from the three-dimensional ODT problem to the
two-dimensional problem leads to a dramatic decrease
in computational complexity of numerical inversion
{from O��W�h�12� to O��W�h�6�, where parameter W�h
can be of the order of 100 in certain applications}.

Point-spread functions (PSFs) are reconstructed
images of a single-point (delta-function) absorber.
Sample PSFs obtained by numerical implementa-
tion of the proposed algorithm at different levels
of Gaussian random noise n are shown in Fig. 2.
Here the forward data were calculated for a point
(delta-function) absorber located at the center of a
slab with thickness L � ldiff � 2p�D0�a0�1�2. The
windows in the plane perpendicular to the z axis were
Ws � Wd � 2L, and the lattice step was h � L�40.
PSFs are shown in the x and y directions corre-
sponding to the depth and transverse directions,
respectively, in the case of a single projection.

It is evident that the second projection significantly
improves image quality. The improvement is espe-
cially pronounced at high noise levels. Note that the
second projection makes the PSFs in the x and y di-
rections approximately of the same width and shape.
This helps remove distortions in the images that re-
sult from the substantially different shapes of the PSFs
apparent in the one-projection case. Another advan-
tage of two-projection imaging is that the PSFs do not
change substantially when the absorber is moved closer
to the measurement surfaces (data not shown). The
dependence of the PSFs on depth in one-projection im-
ages is strong6 and can result in severe image arti-
facts. To maintain the constant shape of the PSFs in
the two-projection images (and high transverse resolu-
tion), window W must be significantly larger than L.

To quantify the quality of reconstructed images, we
constructed a simple numerical measure. Let a func-
tion f be defined at N points in space: fi � f �ri�,
i � 1, . . . . ,N . Assume that we know that the true
values of this function, f

target
i , are zero everywhere ex-

cept for i � i0, whereas fi is the reconstruction that
only approximately coincides with f

target
i . Then we de-

fine h � N21
P

ifii0 � fi�fi0 �2. Obviously, if fi coincides
exactly with the target, then h � 0. In general, h can
be interpreted as the fraction of pixels for which the re-
constructed result is substantially incorrect. The un-
certainty in locating the position of the target can be
estimated as dr � hNh � hL for the PSFs shown in
Fig. 2. It can seen that h decreases by a factor of
3–4 due to the second projection. For a noise-to-signal
level of n � 6% the second projection results in reduc-
ing h by a factor of 4.5.

In summary, we have presented a computationally
efficient algorithm for treating dual-projection data
in ODT. The use of a second projection leads to sig-
nificant improvement in image quality. In general,
multiple-projection data can be collected in practice
by filling the slab with matching f luid. Then either
the sample can be rotated inside the device or the
device itself can be rotated around the sample. This
modality is well suited, for example, to imaging the
breast and small animals.
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