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Scanning paraxial optical tomography
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We present a solution to this problem in the form of a fast algorithm with computational complexity that
scales as N log N , where N is the number of spatial measurements of the scattered field. © 2002 Optical
Society of America
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There has been considerable recent interest in the
development of tomographic methods for imaging
with diffuse light.1 Such methods have the potential
to provide novel diagnostic tools while complement-
ing existing medical imaging modalities. Clinical
applications of current importance include breast
imaging and functional brain mapping. A typical
experimental conf iguration, often used in optical
mammography,2,3 is the slab geometry in which N
harmonically modulated point sources are located
on one face of the slab and N point detectors are
located on the opposite face [Fig. 1(c)]. The physical
problem to be considered consists of reconstructing
the optical properties of the interior of the slab from a
complete set of N2 measurements taken on its surface.
It is often assumed that many measurements (at a
fixed modulation frequency) are needed for obtaining
images with high spatial resolution, a requirement
that is diff icult to realize in practice. Such large
data sets also lead to image reconstruction algorithms
with high computational complexity. Thus the de-
velopment of reconstruction algorithms that are both
computationally efficient and reduce the required
number of spatial measurements below O�N2� would
be of considerable importance.

To mitigate the principal diff iculties associated with
the complete-data problem, we consider the problem
in the paraxial geometry. In this geometry a single
source is used to illuminate the medium, and the scat-
tered light is collected by an on-axis detector along with
a small number of off-axis detectors [Fig. 1(b)]. The
entire source–detector array is then scanned over N
points on the surface of the slab while the frequency
of the source is varied over a specified range, result-
ing in O�N � spatial measurements. We refer to this
method as scanning paraxial optical tomography. In
this Letter we show that the linearized form of the cor-
responding inverse scattering problem may be solved
analytically by means of an explicit inversion formula.
This result has three important consequences. First,
by trading spatial information for frequency informa-
tion, we obtain an image reconstruction algorithm that
reduces the required number of spatial measurements
of the scattered f ield from O�N2� to O�N �. Evidently,
this reduction leads to a considerable simplif ication of
the imaging experiment. Second, this algorithm has
computational complexity that scales as N log N and
is stable in the presence of added noise. This result
should be compared with the N2 log N scaling of the
computational complexity of the complete-data prob-
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lem.4 Third, we explicitly account for the effects of
sampling of the data, obtaining reconstructed images
whose spatial resolution scales as the minimum sepa-
ration between the sources.

We begin by considering the propagation of diffuse
light in the slab geometry. For simplicity, we assume
that the slab is characterized by an inhomogeneous
optical absorption coeff icient a�r� and a diffusion con-
stant D0. The change in intensity of transmitted light
as a result of f luctuations in a�r� is given by the inte-
gral equation5

f�r1,r2� �
Z

d3rG�r1,r2;r�da�r� . (1)

Here, the data function f�r1, r2� is proportional to
the change in complex intensity relative to a refer-
ence medium with absorption a0, da�r� � a�r� 2 a0,
and r1 and r2 denote the transverse coordinates of
the source and the detector, respectively. The kernel
G�r1, r2; r� may be obtained from the Green’s function
for the diffusion equation in the reference medium and
is given by the plane-wave decomposition:

G�r1,r2; r� �
1

�2p�4
Z

d2q1d2q2k�q1,q2; z�

3 exp�2i�q1 2 q2� ? r� 1 i�q1 ? r1 2 q2 ? r2�� , (2)

where r � �r�, z�. General expressions for k�q1,
q2; z� are given in Ref. 5 and depend on the nature

Fig. 1. Illustration of the geometries corresponding to
the (a) axial, (b) paraxial, and (c) complete-data problems.
Also illustrated in (d) is the relationship between the
window size, W , and the linear dimension of the field of
view, L.
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of the boundary conditions obeyed by the Green’s
function. Here we restrict our attention to absorbing
boundary conditions, in which case k�q1, q2; z� is of
the form

k�q1,q2;z� �
sinh�Q�q1� �L 2 z��sinh�Q�q2�z�

sinh�Q�q1�L�sinh�Q�q2�L�
, (3)

where L is the slab thickness and Q�q� � �q2 1

k2�v��1�2; k2�v� � �a0 2 iv��D0 is the diffuse wave
number at the source modulation frequency, v.

In the paraxial geometry we denote the transverse
coordinate of the source by r, and we assume that the
detectors have transverse coordinates r 1 drn, where
the off-axis displacement of the nth detector, drn, is
assumed to be suff iciently small, jdrnj ,, L. We fur-
ther assume that linear combinations of detector out-
puts of the form cn�r� �

P
m cnmf�r, r 1 drm� are

directly measurable. The coefficients cnm are taken
to be complex, allowing for the possibility of a phased-
array measurement scheme. Making use of these def-
initions, we find that integral equation (1) becomes

cn�r� �
Z

d3r
X
m

cnmG�r,r 1 drm;r�da�r� . (4)

We now observe that, when the modulation frequency
of the source is fixed, the inverse problem of recon-
structing da�r� from cn�r� is underdetermined. This
should be contrasted with the complete-data inverse
problem defined by Eq. (1), which is overdetermined.
The overdetermined nature of the complete-data
problem is the origin of the requirement for O�N2�
measurements of the scattered field. In the paraxial
geometry, however, we show that by varying the modu-
lation frequency it is possible to include sufficient
additional information to allow the inverse problem
to be solved uniquely, requiring only O�N � spatial
measurements.

A special case of the paraxial geometry is the axial
geometry shown in Fig. 1(a). We note that in the
absence of off-axis data there is still, in principle,
suff icient information to solve the inverse problem
(with multiple frequencies). However, in this case a
symmetry is present in integral equation (4). This
symmetry is manifested by the invariance of f�r, r�
under ref lection of da�r� about the midplane of the
slab. Thus, reconstructions based on axial data
contain twin ref lected images of da�r�. To eliminate
such artifacts it is necessary to break the ref lection
symmetry. This can be achieved by introduction of
additional data in the form of paraxial measurements.

We now consider the derivation of the inversion
formula for scanning paraxial optical tomography.
To account for sampling of the data, we assume
that cn�r� is measured on a two-dimensional square
lattice with lattice spacing a. It will prove useful
to introduce the Fourier transform of cn�r�, which
is defined by ĉn�q� �

P
r exp�iq ? r�cn�r�, where

the sum over r is carried out over all lattice vectors.
Here, q belongs to the f irst Brillouin zone (FBZ) of
the lattice. Making use of Eq. (4) and the identityP

r exp�iq ? r� � �2p�a�2
P

p d�q 2 p�, where p
denotes a reciprocal lattice vector, we arrive at the
system of equations

ĉn�v; q� �
Z L

0
dz

X
p
Kn�v, z;q 2 p� fda�q 2 p, z� , (5)

where

Kn�v, z;q� �
Z d2q0

�2pa�2
X
m

cnmk�q0 1 q,q0; z�

3 exp�iq0 ? drm� , (6)

fda�q, z� �
R

d2r� exp�iq ? r��da�r�, the dependence
of all quantities on modulation frequency v has been
made explicit, and the integration over q0 is over
all space. For f ixed q, Eq. (5) defines a system of
one-dimensional integral equations for fda�q, z�. Fol-
lowing the general method of Ref. 4 we find that the
pseudoinverse solution of Eq. (5) is given by

fda�q 2 p, z� �
X

v, v0

X
n,m

Kn
��v, z;q 2 p�

3 Mnm
21�v,v0;q�ĉm�v0,q� , (7)

where the frequencies v and v0 are treated as discrete
and Mnm�v, v0; q�, which is to be interpreted as a block
matrix, is given by the overlap integral

Mnm�v,v0;q� �
Z L

0
dz

X
p
Kn�v, z;q 2 p�

3 Km
��v0, z;q 2 p� . (8)

Since all possible transverse Fourier components of
da�r� are specif ied by Eq. (7), we may apply the
inverse Fourier transform to arrive at the inversion
formula

da�r� �
Z
FBZ

d2q
�2p�2

exp�2iq ? r��
X

v,v0

X
n,m

X
p

3 exp�ip ? r��Kn
��v, z;q 2 p�

3 Mnm
21�v,v0;q�ĉm�v0,q� , (9)

which is the main result of this Letter.
Several comments on inversion formula (9) are nec-

essary. First, the solution that we have constructed
to the inverse problem of scanning paraxial optical
tomography is the unique minimum L2 norm solu-
tion to integral equation (4).4 Second, the required
number of spatial measurements of the scattered f ield
is O�N � rather than O�N2� as in the complete-data
problem. Third, with the use of the fast Fourier
transform to compute ĉn�q�, a reconstruction algo-
rithm based on Eq. (9) has computational complexity
that scales as N log N . Fourth, if da�r� is assumed
to be transversely band limited, then the sum over
p in Eqs. (8) and (9) may be truncated. In this
situation the inversion formula produces the best (in
the sense of minimizing the L2 norm) band-limited
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Fig. 2. Tomographic images of the slab at different depths
z and window sizes W . The images are calibrated from
21 (blue) to 1 (red) all on the same linear color scale. Here
red corresponds to the maximum value of da obtained for
a point absorber located in the center of the field of view
at a particular depth.

approximation to da�r� that is consistent with the
lattice on which cn�r� is sampled. Fifth, to avoid
numerical instability and control the ill-posedness of
the inverse problem, M21 must be regularized to limit
the contribution of small singular values of M . The
simplest way to do this is to ignore all singular values
below some threshold e. The minimum value of e

for which the reconstruction algorithm is numerically
stable is defined by experimental noise and in the
absence of noise by numerical precision. Sixth, the
speed of data collection may be further increased by
employment of multiple frequency-encoded sources.
Finally, our results may be extended to the paraxial
cylindrical geometry and also to the problem of si-
multaneous reconstruction of both the absorption and
diffusion coefficients in either the slab or cylindrical
geometries.

Multiple factors inf luence the spatial resolution of
images reconstructed with inversion formula (9). In
the absence of noise, the transverse resolution is con-
trolled by the size of the FBZ and is therefore equal to
the lattice spacing, a. In the presence of noise, for suf-
ficiently small values of the regularization parameter,
e, the transverse resolution still scales as a. However,
resolution in the depth direction is a different matter
and is primarily determined by numerical precision.
Resolution is further inf luenced by limiting the size
of the window W on which the data function cn�r�
is sampled [Fig. 1(d)]. Smaller values of W require
larger values of e to stabilize the reconstruction, re-
sulting in a corresponding decrease in the resolution.
To illustrate the use of inversion formula (9), we
have numerically simulated the reconstruction of
da�r� for one or more point absorbers of the form
da�r� � Ad�r 2 r0�, with A � 2 cm3 ns21. In this
situation the data function cn�r� may be obtained
in closed form. The simulations were performed
for a slab of thickness L � 5 cm with optical prop-
erties similar to breast tissue in the near infrared.
The background absorption and diffusion coeffi-
cients are given by ma � a0�c � 0.03 cm21 and
D0 � 0.4 cm2 ns21. Three linear paraxial detectors
were used, as shown in Fig. 1(b), with jdrnj � 2na
for n � 0, 1. The outputs of the two outer detectors
are added so that the corresponding coeff icients cnm
are set equal to unity, with all other matrix elements
vanishing. The source–detector array is scanned
over a square lattice of size W 3 W with lattice spacing
a � 0.25 cm. Fifteen uniformly spaced modulation
frequencies over the range 0 # v�2p # 1 GHz are
employed. Numerical integration over q is carried
out over a 41 3 41 square grid in the FBZ. The field
of view of each reconstructed image is L 3 L, with the
pixel size coinciding with the lattice spacing, a.

In Fig. 2 we present reconstructions at different
depths of several point absorbers located in the planes
z � 0.3L, z � 0.5L, and z � 0.8L. To demonstrate
the stability of the reconstruction algorithm in the
presence of noise, we added Gaussian noise of zero
mean to the data at the 1% level, relative to the mean
signal, for W � 2L and W � 3L. The regularization
parameter, e, was taken to be e � 1029 for W � 2L,
e � 10210 for W � 3L, and e � 10218 for W � `. It
can be seen that as the window size is increased from
W � 2L to W � 3L the resolution of the reconstructed
images improves. This improvement continues until,
in the absence of noise, for an infinite window the
fundamental limit of transverse resolution is achieved.
Note the absence of twin ref lected images in the
planes z � 0.2L and z � 0.7L. To translate these
results to the clinical setting, we note for a window size
of W � 15 cm, corresponding to N � �W�a�2 � 3600
measurements, that a resolution of 2.5–5.0 mm should
be achievable depending on the level of noise.

In conclusion, we have described a fast image re-
construction algorithm for optical tomography in the
paraxial geometry. This algorithm achieves high spa-
tial resolution while simultaneously reducing the re-
quired number of independent spatial measurements
of the scattered f ield.
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