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A B S T R A C T
We consider the collision expansion of the Green’s function of the radiative transport equation (RTE)
in an infinite medium. Analytical expressions in terms of quadratures of the most simple form are given
for all orders of the expansion. Singularities of the Green’s function are considered in detail. While it
is well known that the zeroth and first terms in the expansion are singular (and proportional to delta
functions), we show that the second order term contains a logarithmic singularity. All higher-order
terms are regular. We further establish a relation between the Green’s function and the signal measured
by a collimated detector. In the presence of singularities, this relation is not always obvious and, at
second order, it cannot be stated in a form that is independent of the acceptance angle of the detector.
We also consider the density and energy current. Theoretical results are supported by Monte-Carlo
simulations.

1. Introduction
The expansion of the Green’s function of the radiative

transport equation (RTE) in powers of the scattering coeffi-
cient (also known as the collision expansion) is a fundamen-
tal part of radiative transport theory. It provides an intuitive
picture of multiple scattering and leads to useful approxima-
tions to the solution of the RTE. The zeroth-order term in
the expansion (the ballistic Green’s function) describes a ray
whose intensity is exponentially attenuated according to the
Beer-Lambert law, a result that is widely used in computed
X-ray tomography [1, 2]. The first order term describes a
broken ray with a scattering vertex. The associated broken-
ray transform is utilized in single-scattering tomography [3,
4] and its generalizations [5]. Other applications include
remote sensing and recovering the optical parameters of a
medium from intensity measurements [6].

The collision expansion is easily derived from the RTE.
Nevertheless, its individual terms, in particular, the low-
order terms, have a rather complicated mathematical form.
An explicit expression for the first-order term was derived
by Siewert in 1985 [7] assuming isotropic scattering. In the
same work, Siewert pointed out that the first order term is
singular. It was widely known that the zeroth-order term
is also singular, but the singularity at first order came as
a bit of a surprise. In 1998, Bondarenko showed that, in
addition to the above singularities, the Green’s function of
the RTE also contains a logarithmic singularity [8]. It is clear
from the results of Ref. [8] that this singularity cannot be
attributed to the zeroth and first-order terms, but the second-
order term was not derived in [8] explicitly. Expressions for
the first-order term were derived in other physical settings
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more recently in Refs. [3, 9], and for the vector RTE in
Refs. [10, 11].

In spite of all these developments, the theory of the
collision expansion is not complete, and there remain im-
portant points to be made regarding even the first-order
term. In particular, this term contains a delta function, which
is defined with respect to a particular axis of symmetry.
Indeed, different expressions are obtained in different ref-
erence frames. Of course, these expressions predict the
same measurable signal. However, the relation between the
Green’s function and the measurable signal is not obvious.
While one might assume naively that the signal measured
by a narrowly collimated detector is proportional to the
Green’s function, this relation cannot hold when the latter
is singular. In addition, assuming that the smooth pre-factor
in front of the delta function is the measurable signal is,
in fact, incorrect. Furthermore, the second-order term has
rarely been considered in the literature, and the fact that it
contains a logarithmic singularity is not widely known. Even
though this singularity is in some sense relatively weak,
disregarding it can lead to errors. For example, attempts
to compute by numerical integration the contribution of
doubly-scattered photons, when the source and detector are
collimated in the same plane, yields a manifestly incorrect
result.

In this paper, we fill the gaps in the theory mentioned
above, derive explicit expressions for all terms in the col-
lision expansion, and reduce these expressions to simple
quadratures. In the case of the first-order term, we provide
two-different derivations in the reference frames associated
with the primary ray and the line of sight. We also establish
the relationship between the first-order Green’s function and
the signal measured by a collimated detector. In addition,
we show how these results can be used to compute the
density and current of electromagnetic energy. The second-
order term can be written in a reference frame-independent
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form, but still contains a singularity. We show that, near the
singularity, the relation between the Green’s function and
the measurable signal cannot be stated in a general form,
but depends in an essential way on the properties of the
detector. We also give examples of computing the density
and energy current at second order. Higher-order terms can
be reduced to relatively simple quadratures. At third and
higher orders, these results are of little practical importance
due to the computational complexity involved in evaluating
the integrals. However, we have applied these results to show
that all terms of third order and higher are regular. Therefore,
all singularities are contained in the zeroth, first and second
order terms.

Throughout the paper, we illustrate our theoretical re-
sults with numerical simulations. All examples are obtained
for a non-absorbing medium with the Henyey-Greenstein
phase function [12]

𝒜 (𝑥) = 1
4𝜋

1 − 𝑔2
(

1 − 2 𝑔 𝑥 + 𝑔2
)3∕2 , (1)

where 𝑥 is the cosine of the scattering angle and 𝑔 is the
scattering asymmetry parameter (0 ≤ 𝑔 < 1). We consider
two cases: 𝑔 = 0.8, which corresponds to forward-peaked
scattering, and 𝑔 = 0, which corresponds to the constant
phase function 𝒜 (𝑥) = 1∕4𝜋 (isotropic scattering).

Two types of simulations will be presented. In the first
type, we have computed the terms in the collision expansion
of the Green’s function 𝐺𝑛 for 𝑛 = 1, 2 by numerical
integration. Then we used the numerical values of 𝐺𝑛 and
the formulas derived below to compute the terms 𝑊𝑛 in
the expansion of the signal 𝑊 measured by a narrowly-
collimated detector. Note that, at second order, the mathe-
matical relation between 𝑊2 and 𝐺2 cannot be established
for some special orientations of the detector. This is due to
the logarithmic singularity in 𝐺2. We will also compute the
terms in the expansion of the energy density 𝑢𝑛 and current
𝐉𝑛, by numerical integration of 𝐺𝑛. The quantities 𝑊𝑛, 𝑢𝑛and 𝐉𝑛 are physically measurable and will be displayed in
the figures.

Secondly, to validate the theoretical results of this paper,
we have computed the same quantities (𝑊𝑛, 𝑢𝑛 and 𝐉𝑛) by
the Monte-Carlo method. We have implemented the stan-
dard Monte-Carlo algorithm with an exponential probability
density of the step length. The probability density of the
new direction upon scattering was determined according to
(1). Detection was in a small region 𝛿𝑉 (location of the
detector) characterized by the distance to the primary ray
𝐻 and projection onto the primary ray 𝐿. To accelerate
convergence, we have accounted for the cylindrical symme-
try of the problem as described in [13]. For the purpose of
computing 𝑊𝑛, we counted only the photons arriving in 𝛿𝑉
with the directional vectors �̂� in the solid angle subtended
by the detector. The volumetric detection scheme is algo-
rithmically different from counting the photons that cross
the detector surface (which was not introduced explicitly),
but the two approaches are approximately equivalent under
the conditions reported in the simulations. To compute 𝑢𝑛,

we counted the photons arriving in 𝛿𝑉 regardless of �̂�, and
to compute 𝐉𝑛 we counted photons with the weight �̂�. To
make comparisons with the theory at a given 𝑛, we only
counted the photons that underwent exactly 𝑛 scattering
events. When our intent was to fully account for multiple
scattering, we counted all photons regardless of history, but
terminated the trajectories after 10 scattering events. For the
chosen geometries, limiting the number of scattering events
by 10 was sufficient to obtain convergence.

For simplicity, all formulas below have been obtained for
a homogeneous medium. However, the generalization to an
inhomogeneous medium is straightforward. The key idea is
that formulas containing products of the total attenuation co-
efficient 𝜇𝑡 and the length of the ray that connects the source
and detector, for given positions of the scattering vertices
𝐫1,… , 𝐫𝑛, must be replaced by integrals of 𝜇𝑡(𝐫) along the
corresponding trajectory. The factors 𝜇𝑛

𝑠 must be replaced by
𝜇𝑠(𝐫1)⋯𝜇𝑠(𝐫𝑛). Finally, the phase function can also be made
position-dependent without much difficulty. We do not show
these results because they require lengthy formulas, whose
practical utility beyond first order is unclear.

The paper is organized as follows. In section 2, we
introduce the stationary RTE and the collision expansion
of its Green’s function 𝐺. In section 3, we establish the
relationship between the Green’s function 𝐺 or the terms
in the collision expansion 𝐺𝑛 and the signal measured by
a collimated detector (𝑊 or 𝑊𝑛). Some of the formulas
derived in this section are general and some are applicable
only if 𝐺 is a smooth function of the angular variables. In the
sections that follow, we utilize the more general expressions
in the cases when 𝐺 is singular. In sections 4 and 5, we con-
sider the first and second orders in the collision expansion,
respectively. There we derive and illustrate numerically the
terms 𝐺1 and 𝐺2 and the corresponding contributions to the
signal measured by a collimated detector, 𝑊1 and 𝑊2. We
also compute the density 𝑢𝑛 and energy current 𝐉𝑛 (𝑛 = 1, 2).
In section (6), we provide without derivation the expressions
for 𝐺𝑛 with 𝑛 ≥ 3. Finally, section 7 contains a discussion of
our results.

2. Collision expansion for the stationary RTE
We consider the stationary RTE
�̂� ⋅ ∇𝐼(𝐫, �̂�) + 𝜇𝑡𝐼(𝐫, �̂�) =

𝜇𝑠 ∫ 𝒜 (�̂� ⋅ �̂�′) 𝐼(𝐫, �̂�′) d2�̂�′ +𝑄(𝐫, �̂�) , (2)

where 𝐼(𝐫, �̂�) is the specific intensity at the point 𝐫 in the
direction of the unit vector �̂�, 𝜇𝑡 is the total attenuation
coefficient, 𝜇𝑠 is the scattering coefficient, 𝒜 (𝑥) is the scat-
tering phase function, and 𝑄(𝐫, �̂�) is the source. The Green’s
function 𝐺(𝐫, �̂�; 𝐫′, �̂�′) gives the specific intensity due to a
point-like, ideally collimated source of the form

𝑄(𝐫, �̂�) = Δ(�̂�, �̂�′) 𝛿(𝐫 − 𝐫′) , (3)
where Δ(�̂�, �̂�′) is the angular delta function (defined in Ap-
pendix A) and 𝛿(⋅) is the usual Dirac delta function. The
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collision expansion of the Green’s function is of the form

𝐺 =
∞
∑

𝑛=0
(𝐺0𝑆)𝑛𝐺0 = 𝐺0

∞
∑

𝑛=0
(𝑆𝐺0)𝑛 , (4)

where 𝑆 and 𝐺0 are the scattering operator and the zeroth
order (ballistic) Green’s function [14]. The kernels of these
operators are defined as

𝑆(𝐫, �̂�; 𝐫′, �̂�′) = 𝜇𝑠 𝛿(𝐫 − 𝐫′)𝒜 (�̂� ⋅ �̂�′) (5)
and

𝐺0(𝐫, �̂�; 𝐫′, �̂�′) = Δ(�̂�, �̂�′) Δ(𝐫 − 𝐫′, �̂�′) 𝑔(𝐫, 𝐫′) , (6)
where

𝑔(𝐫, 𝐫′) ∶= 𝑝(𝐫, 𝐫′)
|𝐫 − 𝐫′|2

, 𝑝(𝐫, 𝐫′) ∶= 𝑒−𝜇𝑡 |𝐫−𝐫
′
| . (7)

Note the relation

∫ 𝐺0(𝐫, �̂�; 𝐫′, �̂�′) d2�̂� d2�̂�′ = 𝑔(𝐫, 𝐫′) . (8)

In what follows, we will compute explicitly (more pre-
cisely, reduce to quadratures) all terms in the expansion (4).
However, we will pay particular attention to 𝐺1 and 𝐺2,
as these terms are amendable to numerical computation,
and are singular. To make the resulting expressions more
symmetric, we will denote the position and direction of the
source by 𝐫𝑏 and �̂�𝑏 and the analogous quantities character-
izing the point of observation by 𝐫𝑎 and �̂�𝑎. Thus, we will
compute explicitly the functions

𝐺𝑛(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = ∫ 𝐺0(𝐫𝑏, �̂�𝑏; 𝐫1, �̂�1)𝑆(𝐫1, �̂�1; 𝐫2, �̂�2)

× 𝐺0(𝐫2, �̂�2; 𝐫3, �̂�3)⋯𝑆(𝐫2𝑛−1, �̂�2𝑛−1; 𝐫2𝑛, �̂�2𝑛)
× 𝐺0(𝐫2𝑛, �̂�2𝑛; 𝐫𝑏, �̂�𝑏) d3𝑟1⋯ d3𝑟2𝑛 d2�̂�1⋯ d2�̂�2𝑛 . (9)

Note that the 𝑛th term in (9) contains 𝑛 copies of the operator
𝑆 and therefore is proportional to 𝜇𝑛

𝑠 .

3. Measurable signal
We will need to define the relation between the Green’s

function (or the terms in the collision expansion) and the
signal measured by a collimated detector. Assume that the
detector is suitably small, located at the point 𝐫, with its axis
in the direction �̂�. Then we can write the power registered
by the detector due to a point source with power 𝑃0, located
at 𝐫𝑏 and pointing in the direction �̂�𝑏 as

𝑃 (𝐫, �̂�) = 𝜂 𝑃0 𝑆 ∫
�̂�⋅�̂�> 1−𝛽2∕2

𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) d2�̂� , (10)

where 𝑆 is the detector area, 𝜂 is its energy conversion effi-
ciency and 𝜋𝛽2 is the solid angle subtended by the detector.
Here we view 𝐫𝑏 and �̂�𝑏 as parameters and focus on the

dependence of 𝑃 on 𝐫 and �̂�. It is convenient to introduce
the dimensionless signal

𝑊 (𝐫, �̂�) ∶= 𝜇−2
𝑡 ∫
�̂�⋅�̂�> 1−𝛽2∕2

𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) d2�̂� , (11)

so that
𝑃 (𝐫, �̂�) = 𝜂 𝑃0 𝜇

2
𝑡 𝑆 𝑊 (𝐫, �̂�) . (12)

The overall constant 𝜂 𝑃0 𝜇2
𝑡 𝑆 does not depend on 𝐫 and �̂�

and may not be known in an experiment. We will therefore
focus on computing 𝑊 (𝐫, �̂�). To this end, we will need to
evaluate the integral (11) assuming 𝛽 is small. Consider a
reference frame with spherical coordinates 𝑟, 𝜃, 𝜑 and let the
polar and azimuthal angles of �̂� be 𝜃𝑢 and 𝜑𝑢. Since 𝛽 is
small, the vector �̂� in (11) is close to �̂� and we can write for
its angles 𝜃 = 𝜃𝑢 + 𝛿𝜃 and 𝜑 = 𝜑𝑢 + 𝛿𝜑, where 𝛿𝜃 and 𝛿𝜑
are small. Then, to lowest nonvanishing order, we have

�̂� ⋅ �̂� ≈ 1 − 1
2
(

𝛿𝜃2 + sin2 𝜃𝑢 𝛿𝜑2) . (13)

Using this result, we can rewrite (11) as

𝑊 (𝐫, �̂�) ≈ 𝜇−2
𝑡

𝜃𝑢+𝛽

∫
𝜃𝑢−𝛽

sin 𝜃 d𝜃

𝜑𝑢+𝛼(𝜃)

∫
𝜑𝑢−𝛼(𝜃)

d𝜑 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) , (14)

where

𝛼(𝜃) ∶=
√

𝛽2 − (𝜃 − 𝜃𝑢)2

sin 𝜃𝑢
. (15)

If 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) is a smooth function of �̂�, we can replace �̂�
by �̂� in the above expressions and write

𝑊 (𝐫, �̂�) ≈ 2𝜇−2
𝑡 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏)

𝜃𝑢+𝛽

∫
𝜃𝑢−𝛽

𝛼(𝜃) sin 𝜃 d𝜃 . (16)

Since in the integration domain of (16) sin 𝜃 ≈ sin 𝜃𝑢, we
can further simplify this expression as

𝑊 (𝐫, �̂�) ≈ 2𝜇−2
𝑡 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏)∫

𝛽

−𝛽

√

𝛽2 − 𝑡2 d𝑡

= 𝜋𝛽2 𝜇−2
𝑡 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) . (17)

Thus, the power registered by a collimated detector is pro-
portional to its acceptance solid angle and the specific in-
tensity at the location of the detector and in the direction of
axis of collimation �̂�. In general, this allows us to view the
specific intensity and the corresponding Green’s function as
measurable quantities under conditions when the approxi-
mations adopted above are accurate.

An important point here is that the derivation of equation
(17) was based on the assumption that 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) is a
smooth function of �̂�. Under this assumption, the result
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(17) could be easily anticipated on physical grounds. How-
ever, for the first two terms in the collision expansion, the
smoothness assumption is not valid. For such functions, the
derivation must be carried out more carefully starting from
Eq. (14) and, in fact, yields a different result, as will be
demonstrated below.

Some types of measurements (e.g., involving wide ac-
ceptance angles), as well as physical processes such as fluo-
rescence, are sensitive to the density and current of energy,
which are defined as

𝑢(𝐫) = ∫ 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) d2�̂� , (18a)

𝐉(𝐫) = ∫ 𝐺(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) �̂� d2�̂� . (18b)

These quantities are different from 𝑊 (𝐫, �̂�) and will also be
computed below.

4. First-order scattering
The first-order term in the collision expansion is given

by (9) with 𝑛 = 1. Using (5), (6), we obtain the following
expression:

𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇𝑠𝒜 (�̂�𝑎 ⋅ �̂�𝑏)∫ 𝑔(𝐫𝑎, 𝐫) 𝑔(𝐫, 𝐫𝑏)

×Δ(𝐫𝑎 − 𝐫, �̂�𝑎) Δ(𝐫 − 𝐫𝑏, �̂�𝑏) d3𝑟 . (19)
We now introduce the change of variables

𝐫 = 𝐫𝑏 + 𝓁�̂� , d3𝑟 = 𝓁2 d𝓁 d2�̂� . (20)
Upon integrating over �̂�, we are left with the one-dimensional
integral

𝐺1(𝐫𝑎,�̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇𝑠𝒜 (�̂�𝑎 ⋅ �̂�𝑏) ∫
∞

0

d𝓁
𝑤2(𝓁)

× Δ(𝐰(𝓁), �̂�𝑎) exp[−𝜇𝑡(𝓁 +𝑤(𝓁))] , (21)
where

𝐰(𝓁) ∶= 𝐫𝑎𝑏 − 𝓁 �̂�𝑏 , 𝐫𝑎𝑏 ∶= 𝐫𝑎 − 𝐫𝑏 , (22)
and we have used the definition of the 𝑝-function in (7). Even
though the integral (21) appears to be simple, it is not easy
to compute. As was pointed out by Siewert [7], the result
contains a singularity. Below, we will compute 𝐺1 in two
different ways.
4.1. Reference frame associated with the primary

ray
Consider the rectangular frame shown in Fig. 1. Here

the source is located at the origin and the vector �̂�𝑏 is
pointing in the positive direction of the 𝑍-axis, so that
�̂�𝑏 = �̂�. Consequently, the 𝑍-axis coincides with the primary
(unscattered) ray. The point of observation 𝐫𝑎 is located at
the distance 𝐻 > 0 from the primary ray, and its projection
onto the primary ray is 𝐿, so that, 𝐫𝑎𝑏 ⋅ �̂�𝑏 = 𝐿. Here 𝐿 can

Figure 1: Reference frame associated with the primary beam.
The green line is the single-scattered or broken ray with a
vertex at 𝐫0.

be positive, negative, or zero. The condition 𝐻 > 0 implies
that the point of observation does not lie along the primary
ray. We denote by 𝜃𝑎 and 𝜑𝑎 the polar and azimuthal angles
of �̂�𝑎 and by 𝜃𝑟, and 𝜑𝑟 the polar and azimuthal angles of 𝐫𝑎𝑏.The angle 𝜑𝑎 is not shown in the drawing. Note that

𝜃𝑟 = arctan(𝐻∕𝐿) . (23)
A scattering vertex 𝐫0 exists only if 𝜃𝑎 > 𝜃𝑟. Therefore, we
immediately see that 𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 0 if 𝜃𝑎 < 𝜃𝑟.We now use the reference frame-dependent representa-
tion of the angular delta function to simplify (21). Let 𝜃𝑤(𝓁)and 𝜑𝑤(𝓁) be the polar and azimuthal angles of the vector
𝐰(𝓁) in the reference frame of Fig. 1. Then
Δ
(

𝐰(𝓁), �̂�𝑎
)

= 𝛿
(

𝜑𝑤(𝓁) − 𝜑𝑎
)

𝛿
(

cos 𝜃𝑤(𝓁) − cos 𝜃𝑎
)

.
(24)

It follows from Fig. 1 that

𝜑𝑤(𝓁) = 𝜑𝑟 , cos 𝜃𝑤(𝓁) =
𝐿 − 𝓁

√

𝐻2 + (𝐿 − 𝓁)2
. (25)

We can use the above expressions to rewrite (24) as
Δ
(

𝐰(𝓁), �̂�𝑎
)

= 𝛿(𝜑𝑎 − 𝜑𝑟) 𝛿 (𝑓 (𝓁)) , (26)
where

𝑓 (𝓁) ∶= 𝐿 − 𝓁
√

𝐻2 + (𝓁 − 𝐿)2
− cos 𝜃𝑎 . (27)

If 𝑓 (𝓁) has only simple roots 𝓁𝑘, we have that

𝛿(𝑓 (𝓁)) =
∑

𝑘

𝛿(𝓁 − 𝓁𝑘)
|𝑓 ′(𝓁𝑘)|

, (28)

where the prime denotes the first derivative. The function
𝑓 (𝓁) defined in (27) has one simple root

𝓁0 = 𝐿 −𝐻 cot 𝜃𝑎 (29)
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and no other roots. Using this result, we find that

|

|

𝑓 ′(𝓁0)|| =
sin3 𝜃𝑎
𝐻

, 𝑤2(𝓁0) =
𝐻2

sin2 𝜃𝑎
. (30)

We thus obtain
Δ
(

𝐰(𝓁), �̂�𝑎
)

= 𝐻
sin3 𝜃𝑎

𝛿(𝜑𝑎 − 𝜑𝑟) 𝛿(𝓁 − 𝓁0) . (31)

Putting everything together, we evaluate the integral in (21)
as
𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏 = �̂�) = Θ(𝜃𝑎 − 𝜃𝑟) 𝛿(𝜑𝑎 − 𝜑𝑟)

×
𝜇𝑠𝒜 (cos 𝜃𝑎)
𝐻 sin 𝜃𝑎

exp
[

−𝜇𝑡
(

𝐿 +𝐻
1 − cos 𝜃𝑎
sin 𝜃𝑎

)]

. (32)

In this expression, Θ(𝑥) is the step function and the factor
Θ(𝜃𝑎 − 𝜃𝑟) expresses the condition that the vertex 𝐫0 is on
the primary ray; otherwise, the integral in (21) vanishes.
Note that the critical angle 𝜃𝑟 is defined to be in the interval
(0, 𝜋), and the branch of the arctangent in (23) must be
chosen correspondingly. The argument of the exponent is the
optical path along the broken ray 𝐫𝑏 → 𝐫0 → 𝐫𝑎, which
is shown in Fig. 1 by the green line segments. We also
indicated explicitly that (32) is the restriction for �̂�𝑏 = �̂� of
the function 𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏). Note that while for every �̂�𝑏,there is a special reference frame in which (32) is correct, this
expression cannot be used directly to compute the first-order
approximation to the specific intensity for a more general
source function. To this end, the expression derived in the
next subsection is more convenient.

We see from the above that the first-order Green’s func-
tion is singular due to the presence of the angular delta
function 𝛿(𝜑𝑎 − 𝜑𝑟). It is important to keep in mind that the
angle𝜑𝑎 is not arbitrary, but is defined as the azimuthal angle
of the unit vector �̂�𝑎 in the reference frame of Fig. 1.
4.2. Reference frame associated with the line of

sight
Now we repeat the computation of 𝐺1 in the reference

frame whose 𝑍-axis coincides with the line of sight, that
is, with the ray connecting the source and the point of
observation. The relevant geometry is illustrated in Fig. 2.
We denote by 𝜃𝑎, 𝜑𝑎 and 𝜃𝑏, 𝜑𝑏 the polar and azimuthal
angles of the vectors �̂�𝑎 and �̂�𝑏. Note that these are not the
same angles as in section 4.1. Also, in contrast to the case
where the 𝑍-axis coincides with the primary ray, now both
�̂�𝑎 and �̂�𝑏 can vary.

As above, we start from the expression (21) and utilize
the coordinate-dependent representation (24) of the angular
delta function Δ(𝐰(𝓁), �̂�𝑎). In the reference frame of Fig. 2,
we have

𝜑𝑤(𝓁) = 𝜋 + 𝜑𝑏 , (33a)
cos 𝜃𝑤(𝓁) =

𝑟𝑎𝑏 − 𝓁 cos 𝜃𝑏
√

𝑟2𝑎𝑏 − 2𝓁 𝑟𝑎𝑏 cos 𝜃𝑏 + 𝓁2
. (33b)

Figure 2: Reference frame associated with the line of sight.
The green line is the single-scattered or broken ray with the
vertex at 𝐫0.

Therefore, the function 𝑓 (𝓁) in (26) is of the form
𝑓 (𝓁) =

𝑟𝑎𝑏 − 𝓁 cos 𝜃𝑏
√

𝑟2𝑎𝑏 − 2𝓁 𝑟𝑎𝑏 cos 𝜃𝑏 + 𝓁2
− cos 𝜃𝑎 . (34)

This function has one simple root
𝓁0 = 𝑟𝑎𝑏

sin 𝜃𝑎
sin(𝜃𝑎 + 𝜃𝑏)

. (35)
We can verify this result from the triangle (𝐫𝑎, 𝐫0, 𝐫𝑏) in
Fig. 2. We also have

|

|

𝑓 ′(𝓁0)|| =
1
𝑟𝑎𝑏

sin 𝜃𝑎
sin 𝜃𝑏

sin2(𝜃𝑎 + 𝜃𝑏) , (36a)

𝑤2(𝓁0) = 𝑟2𝑎𝑏
sin2 𝜃𝑏

sin2(𝜃𝑎 + 𝜃𝑏)
, (36b)

�̂�𝑎 ⋅ �̂�𝑏 = cos(𝜃𝑎 + 𝜃𝑏) . (36c)
Putting everything together, we find

𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = Θ(𝜋 − 𝜃𝑎 − 𝜃𝑏) 𝛿(𝜋 + 𝜑𝑏 − 𝜑𝑎)

×
𝜇𝑠𝒜 (cos(𝜃𝑎 + 𝜃𝑏))
𝑟𝑎𝑏 sin 𝜃𝑎 sin 𝜃𝑏

exp
[

−𝜇𝑡 𝑟𝑎𝑏
sin 𝜃𝑎 + sin 𝜃𝑏
sin(𝜃𝑎 + 𝜃𝑏)

]

. (37)
The step function expresses the condition that 𝓁0 must be
positive; otherwise, the integral vanishes. As in section 4.1,
the argument of the exponent is the optical path along the
broken ray 𝐫𝑏 → 𝐫0 → 𝐫𝑎, although now it is expressed
in terms of different geometric quantities. It is easy to see
that the optical paths that appear in (32) and (37) are in
fact equal. The result (37) was derived in [3] for spatially
inhomogeneous media.
4.3. Collimated detector

We now compute the contribution of the first-order term
in the collision expansion to the signal. We have from the
general relation (14)

𝑊1(𝐫, �̂�) ≈ 𝜇−2
𝑡

𝜃𝑢+𝛽

∫
𝜃𝑢−𝛽

sin 𝜃 d𝜃

𝜑𝑢+𝛼(𝜃)

∫
𝜑𝑢−𝛼(𝜃)

d𝜑 𝐺1(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) . (38)
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Since 𝐺1(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) is a singular function of �̂�, we cannot
follow the sequence of approximations that were outlined in
section 3, but must evaluate the integral more carefully. To
this end, we need a specific expression for 𝐺1(𝐫, �̂�; 𝐫𝑏, �̂�𝑏).Either (32) or (37) can be used and will yield the same
result. Without loss of generality, let us start with (32).
We immediately notice that 𝑊1(𝐫, �̂�) vanishes unless the
collimation axis �̂� lies in the plane of the triangle (𝐫𝑏, 𝐫0, 𝐫𝑎),within the small solid angle defined by 𝛽. We therefore place
the detector so that its axis is in the above plane. Then the
signal can be parameterized as 𝑊1(𝐿,𝐻, 𝜃𝑢), where 𝜃𝑢 is
the angle between �̂� and the 𝑍-axis (we have cos 𝜃𝑢 = �̂� ⋅ �̂�).
With the above in mind, we substitute the expression (32)
into (38) and find that the delta function 𝛿(𝜑 − 𝜑𝑟) can be
integrated directly. This is a substantial difference compared
with section 3, where the integral over 𝜑 was proportional to
2𝛼(𝜃). Now, due to the presence of the angular delta function
in (32), the integral over 𝜑 is 1. We then have

𝑊1(𝐿,𝐻, 𝜃𝑢) ≈

𝜃𝑢+𝛽

∫
𝜃𝑢−𝛽

Θ(𝜃 − 𝜃𝑟) sin 𝜃 d𝜃

×
𝜇𝑠𝒜 (cos 𝜃)
𝜇2
𝑡 𝐻 sin 𝜃

exp
[

−𝜇𝑡
(

𝐿 +𝐻 1 − cos 𝜃
sin 𝜃

)]

. (39)

It can be seen that the factor of sin 𝜃 cancels. The remaining
function is smooth except at 𝜃 = 𝜃𝑟. However, this disconti-
nuity can be easily handled. Assuming 𝛽 is small, we obtain
the approximation

𝑊1(𝐿,𝐻, 𝜃𝑢) ≈
2𝛽 𝜇𝑠
𝜇2
𝑡 𝐻

Θ(𝜃𝑢 − 𝜃𝑟)𝒜 (cos 𝜃𝑢)

× exp
[

−𝜇𝑡
(

𝐿 +𝐻
1 − cos 𝜃𝑢
sin 𝜃𝑢

)]

. (40)

Thus, we see that 𝑊1 is not proportional to the solid angle of
acceptance of the detector (rather, the coefficient is 2𝛽), and
is not proportional to 𝐺1. In Fig. 3, we provide a numerical
verification of this result. Here we plot the function defined
in (40) and compare it to Monte-Carlo simulations in which
only one scattering event for each photon was taken into
account. The correspondence is very good, apart from small
statistical fluctuations, which were left intentionally in the
data (by keeping the number of photons relatively small) so
that the curves could be visually distinguished. We empha-
size that inclusion of the factor of sin 𝜃𝑢 in the denominator
of the formula for 𝑊1, as is suggested by the form of (32) or
(37), would not allow us to fit the data.

The quantity shown in Fig. 3 is the first order contri-
bution 𝑊1 to the total signal 𝑊 . The following question
arises: does 𝑊1 approximate 𝑊 accurately? It so happens
that the answer to this question cannot be given in general,
but depends on the value of 𝛽. For 𝛽 = 0.02 and other
parameters that were used to generate the data for Fig. 3,
the approximation is in fact very good. However, the higher
order terms in the expansion of 𝐺 are smooth functions of
�̂� (except for 𝐺2, which must be considered separately). As

was shown in section 3, the contributions of such functions
to 𝑊 scale as 𝜋𝛽2, while the contribution of 𝐺1 scales as
2𝛽. Therefore, for any position of the detector such that
there exists a single-scattering vertex, we can choose 𝛽 to
be sufficiently small for 𝑊1 to dominate the total signal
𝑊 . It follows that, with sufficient collimation, one can
always measure 𝑊1. The same is true for the contribution
of ballistic (non-scattered) photons as described by 𝑊0. In
practice, the possibility of such filtering of scattered light
is limited, since the amplitudes of the delta functions in 𝐺0and 𝐺1 decay exponentially with the source-detector sepa-
ration. Correspondingly, an exponentially-small collimation
angle is required to achieve the effect, which results in an
exponentially-weak signal. Here the effects of noise have not
been considered.

If measurements of 𝑊1(𝐿,𝐻, 𝜃𝑢) are available for sev-
eral values of 𝐿 and 𝐻 , one can determine the optical pa-
rameters of the medium including the attenuation coefficient
𝜇𝑡 and the phase function 𝒜 (𝑥) by fitting experimental data
to the formula (40). It is important to use this expression
(without the factor of sin 𝜃𝑢 in the denominator) rather than
any expression for 𝐺1. Note that the scattering coefficient 𝜇𝑠cannot be recovered in this manner since it appears in the
formula as an overall coefficient. Of course, this approach
works only if 𝑊1 is the dominant contribution to 𝑊 , which
can be controlled to some extent by reducing the collimation
parameter 𝛽. A good indication that 𝑊1 gives the dominant
contribution to the measured signal is a sharp transition of
the measured power from a finite value to zero at the critical
angle 𝜃𝑟. If there is a discontinuity but the signal past the
critical angle is not zero, it can be concluded that multiple
scattering is a significant contribution to the signal.
4.4. Density and current

The density and current of energy are defined in (18).
The first order contributions to these quantities are defined
as

𝑢1(𝐫) = ∫ 𝐺1(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) d2�̂� , (41a)

𝐉1(𝐫) = ∫ 𝐺1(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) �̂� d2�̂� . (41b)

As in the case of𝑊1, we can compute the density and current
using either (32) or (37) for 𝐺1; it is convenient to start from
the former expression. We parameterize 𝑢 and 𝐉 by 𝐿 and 𝐻
(see Fig. 1), and substitute (32) into

𝑢1(𝐿,𝐻) =
𝜇𝑠
𝐻 ∫

𝜋

𝜃𝑟
𝒜 (cos 𝜃) 𝑒−𝒪(𝜃) d𝜃 , (42a)

𝐽1𝑧(𝐿,𝐻) =
𝜇𝑠
𝐻 ∫

𝜋

𝜃𝑟
𝒜 (cos 𝜃) 𝑒−𝒪(𝜃) cos 𝜃 d𝜃 , (42b)

𝐽1𝜌(𝐿,𝐻) =
𝜇𝑠
𝐻 ∫

𝜋

𝜃𝑟
𝒜 (cos 𝜃) 𝑒−𝒪(𝜃) sin 𝜃 d𝜃 , (42c)

where
𝒪(𝜃) = 𝜇𝑡

(

𝐿 +𝐻 1 − cos 𝜃
sin 𝜃

)

(43)
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Figure 3: First order contribution 𝑊1 to the signal measured by
a collimated detector with the axis �̂�, normalized to 2𝛽, for an
infinite nonabsorbing medium characterized by 𝜇𝑠 = 𝜇𝑡 = const
and the Henyey-Greenstein phase function with 𝑔 = 0.8 (a,b)
and 𝑔 = 0.0 (c,d). In this figure, 𝑊1 is plotted as a function
of cos 𝜃𝑢 for 𝜇𝑡𝐻 = 0.1 (in all cases) and 𝜇𝑡𝐿 = 0.2 (a,c)
and 𝜇𝑡𝐿 = 0.1 (b,d). Here 𝜃𝑢 is the angle between the axis
of the detector and the 𝑍-axis. See Fig. 2 for an illustration
of the applicable geometry. Thick red lines represent the
analytical result (40) and thin blue lines represent Monte-Carlo
simulations accounting for exactly one scattering event. For
the MC simulations, the detector acceptance parameter was
set to 𝛽 = 0.02.

is the optical path along the broken ray with the exit direction
𝜃 in a homogeneous medium with the attenuation coefficient
𝜇𝑡. We denote by 𝐽1𝑧 the Cartesian component of 𝐉1 along
the 𝑍-axis and by 𝐽1𝜌 the radial component (in the direction
perpendicular to the 𝑍 axis).

The expressions (42) are too complicated to evaluate
analytically. However, the integrals can be easily computed
numerically. Several examples of computations of 𝑢1 and
𝐉1 are shown in Figs. 4,5 and 6 for the same media as in
Fig. 3. However, for 𝑢 and 𝐉, there is no angular dependence

to display. Instead, we plot the quantities of interest as
functions of 𝐿 for two different fixed values of 𝐻 . For
comparison, we also plot in these figures the total density
and current 𝑢 and 𝐉 computed by Monte-Carlo simulations
accounting for up to 10 scattering events, which is enough
for convergence for all parameters considered. It can be
seen that, at 𝜇𝑡𝐻 = 0.1, the first-order approximation is
only moderately accurate. However, Cartesian components
of the current are approximated better than the density. This
is in agreement with the observation made above, namely,
that, with sufficient collimation, one can measure directly
𝑊1 even under the conditions when multiple scattering is
not negligible. Indeed, computation of the current can be
regarded as weak collimation. At 𝜇𝑡𝐻 = 0.01, the accuracy
of the first-order approximation is quite good for all three
quantities that are displayed in Figs. 4-6. Note that here we
consider much larger values of 𝐿 than in Fig. 3. In general,
one can expect the quality of approximation to decrease as
we move further away from the source.

We conclude this section with the following observation.
The radial component of the current 𝐽1𝜌 is nonnegative.
However, 𝐽1𝑧 changes sign and has a negative minimum.
In a homogeneous nonamplifying medium, this property
of 𝐉 is generally true and not specific to the first-order
approximation. However, the minimum can be shallow and
difficult to see, as is the case in Panel (c) of Fig. 5.

5. Second-order scattering
The second-order term in the collision expansion is

defined by (9) with 𝑛 = 2. Upon integration, we obtain the
expression

𝐺2(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇2
𝑠 ∫ 𝑔(𝐫𝑎, 𝐫1) 𝑔(𝐫1, 𝐫2) 𝑔(𝐫2, 𝐫𝑏)

× Δ(𝐫𝑎 − 𝐫1, �̂�𝑎)𝒜 (�̂�𝑎 ⋅ �̂�) Δ(�̂�, 𝐫1 − 𝐫2)

× 𝒜 (�̂� ⋅ �̂�𝑏) Δ(�̂�𝑏, 𝐫2 − 𝐫𝑏) d3𝑟1 d3𝑟2 d2�̂� . (44)
We now make the change of variables

𝐫1 = 𝐫𝑎 + 𝓁1�̂�1 , d3𝑟1 = 𝓁2
1 d𝓁1 d

2�̂�1 ,

𝐫2 = 𝐫𝑏 + 𝓁2�̂�2 , d3𝑟2 = 𝓁2
2 d𝓁2 d

2�̂�2 .

Integrating out the remaining delta functions, we obtain

𝐺2(𝐫𝑎,�̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇2
𝑠

∞

∫
0

∞

∫
0

d𝓁1d𝓁2
𝑤2(𝓁1,𝓁2)

𝑒−𝜇𝑡[𝓁1+𝓁2+𝑤(𝓁1,𝓁2)]

× 𝒜
(

�̂�𝑎 ⋅ �̂�(𝓁1,𝓁2)
)

𝒜
(

�̂�(𝓁1,𝓁2) ⋅ �̂�𝑏
)

. (45)
In this expression,

𝐰(𝓁1,𝓁2) ∶= 𝐫𝑎𝑏 − (𝓁1�̂�𝑎 + 𝓁2�̂�𝑏) , (46)
and �̂� = 𝐰∕𝑤 is the unit vector in the direction of 𝐰.
The relevant geometrical objects are illustrated in Fig. 7.
Note that the three vectors 𝐫𝑎𝑏, �̂�𝑎 and �̂�𝑏 are not necessarily
restricted to a plane.
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Figure 4: The first-order term 𝑢1 in the collision expansion
of the energy density as a function of 𝐿 for 𝜇𝑡𝐻 = 0.1
(a,b) and 𝜇𝑡𝐻 = 0.01 (c,d) in the same media as in Fig. 3
with the scattering asymmetry parameter 𝑔 = 0.8 (a,c) and
𝑔 = 0 (b,d). Thick red lines show the results of numerical
integration according to (42a). Thin blue lines show for
comparison the total energy density 𝑢 computed by Monte-
Carlo simulations with up to 10 scattering events, which is
enough for convergence in all cases.

5.1. Logarithmic singularity
For some values of the parameters (𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏), the

function 𝑤2(𝓁1,𝓁2) can vanish in the domain of inte-
gration in (45). In this case, the integral diverges, and
𝐺2(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) is not defined. To analyze the resulting
singularity, it is convenient to express the vector 𝐫𝑎𝑏 in the
following form:
𝐫𝑎𝑏 = 𝓁1 �̂�𝑎 + 𝓁2 �̂�𝑏 + 𝐡 , where 𝐡 ⋅ �̂�𝑎 = 𝐡 ⋅ �̂�𝑏 = 0 . (47)

Assuming sin 𝜃𝑎𝑏 ≠ 0 (otherwise, the two lines (𝐫𝑎, 𝐫1) and
(𝐫𝑏, 𝐫2) in Fig. 7 are parallel and 𝑤2(𝓁1,𝓁2) never vanishes),
the parameters 𝓁1 and 𝓁2 are defined uniquely as

𝓁1 = 𝑟𝑎𝑏
cos 𝜃𝑎 − cos 𝜃𝑏 cos 𝜃𝑎𝑏

sin2 𝜃𝑎𝑏
, (48a)

MC (converged)
J1z, Eq. (42b)

Jz �tH = 0.10
(a) g = 0.8

2

1

0

Jz

�tH = 0.10
(b) g = 0.00

−0.3

−0.6

Jz
�tH = 0.01
(c) g = 0.850

25

0

�tL

Jz �tH = 0.01
(d) g = 0.0

21.510.50−0.5

0

−4

−8

Figure 5: Same as in Fig. 4 but for the 𝑧-component of the
current of energy, 𝐽𝑧. Thick red lines have been computed by
numerical integration according to (42b).

𝓁2 = 𝑟𝑎𝑏
cos 𝜃𝑏 − cos 𝜃𝑎 cos 𝜃𝑎𝑏

sin2 𝜃𝑎𝑏
, (48b)

where cos 𝜃𝑎 = �̂�𝑎 ⋅ �̂�𝑎𝑏, cos 𝜃𝑏 = �̂�𝑏 ⋅ �̂�𝑎𝑏, cos 𝜃𝑎𝑏 = �̂�𝑎 ⋅ �̂�𝑏(see Fig. 7). Note that 𝓁1 and 𝓁2 can be positive or negative.
Substituting (47) into (46), we find that

𝐰(𝓁1,𝓁2) = (𝓁1 − 𝓁1) �̂�𝑎 + (𝓁2 − 𝓁2) �̂�𝑏 + 𝐡 . (49)
We can further use (48) to compute the length of 𝐡. A
straightforward calculation yields

ℎ2 =
𝑟2𝑎𝑏

sin2 𝜃𝑎𝑏

(

sin2 𝜃𝑎𝑏 + 2 cos 𝜃𝑎𝑏 cos 𝜃𝑎 cos 𝜃𝑏

−cos2 𝜃𝑎 − cos2 𝜃𝑏
)

. (50)
Geometrically, ℎ is the distance between the two lines that
cross the points 𝐫𝑎 and 𝐫𝑏 and are collinear with the direc-
tional vectors �̂�𝑎 and �̂�𝑏, respectively. This distance is shown
in Fig. 7 by a blue line segment. If the three vectors �̂�𝑎, �̂�𝑏 and
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MC (converged)
J1�, Eq. (42b)

J� �tH = 0.10
(a) g = 0.8

1

0.5

0

J�
�tH = 0.10
(b) g = 0.01.2

0.6

0

J�
�tH = 0.01
(c) g = 0.812

6

0

�tL

J�
�tH = 0.01
(d) g = 0.0

21.510.50−0.5

14

7

0

Figure 6: Same as in Fig. 4 but for the radial component of
the current of energy, 𝐽𝜌. Thick red lines have been computed
by numerical integration according to (42c).

𝐫𝑎𝑏 are in the same plane (equivalently, if 𝜃𝑎+𝜃𝑏+𝜃𝑎𝑏 = 𝜋),
the two lines intersect and, correspondingly, 𝐡 = 0. If, in
addition, 𝓁1,𝓁2 > 0, we have

𝐫1(𝓁1) = 𝐫2(𝓁2) = 𝐫0 , (51)
where 𝐫0 is the single-scattering vertex. Existence of the sin-
gle scattering vertex is the sufficient and necessary condition
under which the integral (45) diverges and 𝐺2(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏)is not defined. We can also make the following equivalent
statement. The function 𝐺2(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) is defined if and
only if its arguments are such that 𝐺1(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 0.

We can prove the above statement and at the same time
gain additional insight into the nature of the singularity
as follows. Assume that 𝓁1,𝓁2 > 0. If at least one of
these parameters is negative, the function 𝑤2(𝓁1,𝓁2) does
not vanish in the domain of integration in (45). We then
introduce the new integration variables 𝜂1 = 𝓁1 − 𝓁1, 𝜂2 =
𝓁2 −𝓁2 and a small region 𝜎 in the (𝜂1, 𝜂2) plane centered at

Figure 7: Illustrating the geometry of second-order scattering.

the origin,
𝜎 ∶= {𝜂1, 𝜂2 ∶ (𝜂1�̂�𝑎 + 𝜂2�̂�𝑏)2 ≤ 𝑅2} , (52)

where 𝑅 is a constant. We can always choose 𝑅 to be suffi-
ciently small so that 𝜎 is entirely contained in the integration
domain. The contribution of the integration region 𝜎 to 𝐺2can be written as

𝐺(𝜎)
2 (𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇2

𝑠 𝐶 𝑒−𝜇𝑡(𝓁1+𝓁2)

× ∫𝜎
d𝜂1 d𝜂2

(𝜂1�̂�𝑎 + 𝜂2�̂�𝑏)2 + ℎ2
, (53)

where 𝐶 is a positive constant bounded from below and
above by the minimum and maximum over 𝜎 of the function

𝐹 (𝜂1, 𝜂2) ∶= 𝒜
(

�̂�𝑎 ⋅ �̂�(𝓁1 + 𝜂1,𝓁2 + 𝜂2)
)

×𝒜
(

�̂�(𝓁1 + 𝜂1,𝓁2 + 𝜂2) ⋅ �̂�𝑏
)

× exp
{

−𝜇𝑡
[

𝜂1 + 𝜂2 +𝑤(𝓁1 + 𝜂1,𝓁2 + 𝜂2)
]}

. (54)
Note that, in the case ℎ = 0, the function 𝐹 (𝜂1, 𝜂2) does
not have a limit when 𝜂1, 𝜂2 → 0. This is because the unit
vector �̂�(𝓁1,𝓁2) = 𝐡∕ℎ is not defined for 𝐡 = 0. We
can also say that, when the two scattering vertices 𝐫1 and
𝐫2 coalesce into the single vertex 𝐫0, the scattering angles
and the phase functions that depend on these angles become
undefined (except for the constant phase function). However,
the function 𝐹 (𝜂1, 𝜂2) is positive and bounded from above
and below, and therefore has a positive minimum and a
positive maximum in the compact set 𝜎. This shows that the
constant 𝐶 that appears in (53) is well defined.

We can now compute the integral (53) analytically, This
yields

𝐺(𝜎)
2 (𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) =

𝜋 𝜇2
𝑠 𝐶

sin 𝜃𝑎𝑏
𝑒−𝜇𝑡(𝓁1+𝓁2)

× ln
[

1 + (𝑅∕ℎ)2
]

. (55)
We thus see that 𝐺2(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) diverges as − lnℎ when
ℎ → 0. This singularity is integrable. Indeed, we have

∫

𝑅

0
ln
[

1 + (𝑅∕ℎ)2
]

dℎ = 𝑅 (𝜋∕2 + ln 2) . (56)
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detector

(a) (b)

Figure 8: Illustrating the geometry used in Figs. 9, 10 and
11. Panel (a) shows the 𝑋𝑍 plane looking into the negative
𝑌 -direction and Panel (b) shows the 𝑋𝑌 plane looking into
the positive 𝑍-direction.

5.2. Collimated detector
It follows from the results of section 3 that, sufficiently

far from the singularity, the second-order contribution to the
signal is given by

𝑊2(𝐫, �̂�) = 𝜋𝛽2 𝜇−2
𝑡 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) . (57)

Thus, 𝑊2 is proportional to the acceptance solid angle of the
detector 𝜋𝛽2. Near the singularity, the dependence on 𝛽 may
be different, but is not expected to be as slowly varying as
2𝛽, which is characteristic of 𝑊1. To illustrate these state-
ments, we have computed 𝐺2 by numerical integration and
compared the results predicted by the formula (57) to Monte-
Carlo simulations in which only double-scattered photons
were counted. The measurement geometry is illustrated in
Fig. 8. We assume that the primary ray coincides with the 𝑍-
axis of a rectangular frame, the source is at the origin, and the
distance 𝐻 from the primary ray to the point of observation
is fixed. The directional vector �̂� has zero projection onto 𝑍,
but can rotate in the 𝑋𝑌 plane making the angle 𝜑𝑢 with the
𝑋-axis.

In Fig. 9, we plot 𝑊2 as a function of 𝐿 for several
fixed nonzero azimuthal angles 𝜑𝑢. The curves shown in
this figure describe a detector with a fixed direction of
collimation, which is scanned along the horizontal dotted
line in Fig. 8(a). The thick red curves were obtained by
numerical integration according to (57) and (45), and the
thin blue curves by Monte-Carlo simulations in which only
double-scattered photons were counted. The agreement is
excellent (small fluctuations were left in the Monte-Carlo
data intentionally), even for 𝜑𝑢 = 0.05𝜋, which is close
to the singularity. The theoretical curves are smooth with a
maximum located somewhere between 𝜇𝑡𝐿 = 0 and 𝜇𝑡𝐿 =
1, depending on 𝜑𝑢. For larger values of 𝜑𝑢, the values
of 𝑊2 are smaller, and the maximum is less pronounced.
At negative values of 𝐿 (behind the source), the values of
𝑊2 are relatively small since the corresponding second-
order trajectories entail significant exponential decay. The

0.4�

0.2�

0.1�

'u = 0.05�

W2∕��2

(a) g = 0.80.03

0.02

0.01

0

MC, � = 0.02
Eqs. (45),(57)

0.4�

0.2�

0.1�

'u = 0.05�

(two scattering events)

�tL

W2∕��2 (b) g = 0.0

21.510.50−0.5

0.06

0.04

0.02

0

Figure 9: Second-order contribution to the signal, 𝑊2, nor-
malized to the acceptance solid angle 𝜋𝛽2 in the same medium
as in Fig. 3, as a function of 𝐿 for 𝜇𝑡𝐻 = 0.1 and several fixed
values of 𝜑𝑢 as labeled. Thick red lines have been computed
according to (57) and then using numerical integration to
evaluate 𝐺2 according to (45). Thin blue lines have been
obtained by Monte-Carlo simulations in which only double-
scattered photons were counted and the detector acceptance
parameter was set to 𝛽 = 0.02.

transition at 𝐿 = 0 is more pronounced when 𝑔 = 0.8, since
the phase function in this case is forward-peaked.

Fig. 9 does not address the case when the detector
axis intersects the primary ray exactly when the function
𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) is not defined and (57) is not applicable. For
this orientation of the detector, it is difficult to express 𝑊2in terms of 𝐺2. In particular, the dependence of 𝑊2 on 𝛽 is
more complicated than just a multiplicative factor. In Fig. 10,
we show the results of Monte-Carlo simulations of 𝑊2 for
𝜑𝑢 = 0 and different values of 𝛽. It is obvious that 𝑊2 is not
proportional to 𝜋𝛽2. Normalizing instead to 2𝛽 would yield
curves that are even further apart. Moreover, the curves in
Fig. 10 do not differ by a multiplicative factor, although this
relation holds approximately in a limited range of 𝐿. It can
also be seen that the numerical values of 𝑊2 in Fig. 10 are
substantially larger than those in Fig. 9 (by about a factor of
6). This is due to the contribution of the singularity. Still, for
the values of 𝛽 considered, we have 𝑊2(𝐫, �̂�) ≪ 𝑊1(𝐫, �̂�),assuming that �̂� intersects the primary ray (compare Fig. 10
to Fig. 3 and note the different normalization factors).

Another way to illustrate the logarithmic singularity is to
consider the angular dependence of 𝑊2. In Fig. 11, we plot
𝑊2 as a function of𝜑𝑢 in a small interval of angles, which in-
cludes the singularity at 𝜑𝑢 = 0. Outside of this interval, the
function is relatively small and varies slowly. Thick red lines
show computations according to (57) where 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏)was computed by numerical integration according to (45).
As can be seen, this function diverges at 𝜑𝑢 = 0. Thin blue
curves were obtained by Monte-Carlo simulations in which
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(two scattering events)
All lines: MC

W2∕��2 (a) g = 0.8
0.2
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0

� = 0.08
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� = 0.01
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21.510.50−0.5

0.2

0.1

0

Figure 10: Second-order contribution to the signal, 𝑊2,
normalized to the acceptance solid angle 𝜋𝛽2 as a function
of 𝐿 computed at 𝜑𝑢 = 0, so that the axis of the detector
intersects the primary beam. As 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) is in this case
not defined, we show the results of Monte-Carlo simulations in
which only double-scattered photons were counted by detectors
with different values of 𝛽. The lines for 𝛽 = 0.01 are noisy due
to insufficient statistical averaging. 𝜇𝑡𝐻 = 0.1.

only doubly-scattered photons were counted. The agreement
between the two methods is excellent except close to the
singularity. Even though (57) is inapplicable for 𝐿 > 0 and
𝜑𝑢 = 0,𝑊2 is still a finite and continuous function. However,
the value of 𝑊2(𝜑𝑢 = 0) depends on the detector parameter
𝛽. In particular, the data of Fig. 11 were computed using
𝛽 = 0.02. For 𝐿 < 0, the single-scattering vertex does not
exist, and the theoretical curves are continuous at 𝜑𝑢 = 0.
We have illustrated this fact for 𝜇𝑡𝐿 = −0.01, which is quite
close to zero, but sufficient to demonstrate the point. For
negative values of 𝜇𝑡𝐿 that are further away from zero, 𝐺2is still continuous but too small to be displayed in the same
plots.
5.3. Density and current

The first order contributions to the density and energy
current were considered in section 4.4 above. We now turn
to the second-order contributions, which are defined as the
angular integrals

𝑢2(𝐫) ∶= ∫ 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) d2�̂� , (58a)

𝐉2(𝐫) ∶= ∫ 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏) �̂� d2�̂� . (58b)

Note that 𝑢2(𝐫) and 𝐉2(𝐫) are continuous and have no singu-
larities. However, numerical computation of these functions
is much harder than at first order. Indeed, (58) involves a
four-fold integration, which must be carried out for every
value of 𝐫. This task is possible, but should be approached
with care. It is convenient to work in the geometry of Fig. 8,

MC, � = 0.02
Eqs. (45),(57)

−0.01
0.0

1.0

�tL = 0.5
(two scattering events)

W2∕��2 (a) g = 0.8
0.15

0.1

0.05

0

−0.01
0.0
1.0

�tL = 0.5

'u∕�

W2∕��2 (b) g = 0.0

0.040.020−0.02−0.04

0.13

0.08

0.03

Figure 11: Second-order contribution to the signal, 𝑊2,
normalized to the acceptance solid angle 𝜋𝛽2 as a function
of 𝜑𝑢 (in a small interval centered at 𝜑𝑢 = 0) for 𝜇𝑡𝐻 = 0.1
and several fixed values of 𝜇𝑡𝐿 as labeled. Thick red lines have
been computed according to (57) and then using numerical
integration to evaluate 𝐺2 according to (45). Thin blue lines
have been obtained by Monte-Carlo simulations in which
only double-scattered photons were counted and the detector
acceptance parameter was set to 𝛽 = 0.02.

where the source is placed at the origin and illuminates
the positive direction of the 𝑍-axis, so that 𝐫𝑏 = 0 and
�̂�𝑏 = �̂�, while the point of observation is 𝐫 = (𝐿, 0,𝐻). Some
technical details of numerical integration applicable to this
geometry are described in Appendix B.

We show examples of the functions 𝑢2(𝐫), 𝐉2(𝐫) com-
puted by numerical integration in Fig. 12. Here the setup
is similar to that used in section 4.4 and Figs. 4-6, except
that now we consider only the case 𝜇𝑡𝐻 = 0.1 since, at
𝜇𝑡𝐻 = 0.01, the terms 𝑢1(𝐫) and 𝐉1(𝐫) already provide
an accurate approximation to the total energy density and
current and the second order terms are relatively negligible.
In Figs. 13, 14 and 15, we plot the sums 𝑢1 + 𝑢2 and 𝐉1 + 𝐉2for 𝜇𝑡𝐻 = 0.1 and compare the results to those obtained by
Monte-Carlo simulation accounting for up to 10 scattering
events, which is sufficient for convergence (the same thin
blue curves as in Fig. 4, Panels (a) and (b)). It can be seen
that the sum of the first two terms in the collision expansion
provides a much better approximation than just the first term.
In the case 𝑔 = 0.8, the first two terms provide an accurate
approximation to all displayed quantities for 𝜇𝑡𝐿 < 0.5 and
to 𝐽𝜌 in the whole range of 𝐿 considered. In the case 𝑔 = 0,
𝐽𝑧 is accurately captured in the whole range of 𝐿, but 𝐽𝜌and 𝑢 are not. The remaining discrepancies are explained
by the contribution of higher-order terms in the collision
expansion. In the geometry considered, these contributions
are relatively small but not negligible. Of course, if we
move the detector further away from the the source, the
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Figure 12: Second-order contributions to the density and
energy current 𝑢2 and 𝐉2 computed by numerical integration
according to (58) and (45). Here the density 𝑢2 and the
components of the current 𝐽2𝜌 (radial) and 𝐽2𝑧 (along 𝑍) are
shown as functions of 𝐿 for 𝜇𝑡𝐻 = 0.1 and for the same values
of the scattering asymmetry parameter 𝑔 that were considered
previously.

higher-order terms will become dominant, and the low-order
approximations to 𝐮(𝐫) and 𝐉(𝐫) will lose validity.

6. Third- and higher-order terms
The third-order term in the expansion of the Green’s

function can be expressed in terms of quadratures by inte-
grating out all the angular delta functions. Here we omit the
intermediate steps and show the final result, which is of the
form

𝐺3(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇3
𝑠

∞

∫
0

∞

∫
0

∞

∫
0

d𝓁1 d𝓁2 d𝓁3 ∫
4𝜋

d2�̂�

× 𝑒−𝜇𝑡(𝓁1+𝓁2+𝓁3+𝑤)

𝑤2 𝒜 (�̂�𝑎 ⋅ �̂�)𝒜 (�̂� ⋅ �̂�)𝒜 (�̂� ⋅ �̂�𝑏) , (59)

where
𝐰 ∶= 𝐫𝑎𝑏 − (𝓁1�̂�𝑎 + 𝓁2�̂�𝑏 + 𝓁3�̂�) . (60)

Various quantities appearing in (59) are illustrated geomet-
rically in Fig. 16.

Although (59) is not complicated, it contains a 5-fold
integration and cannot be further simplified analytically. For
this reason, the expression is unlikely to be of practical
utility. However, we can show that 𝐺3(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) contains
no singularities. Indeed, fix �̂� and consider integration over
three-dimensional space of vectors𝝆 = (𝓁1,𝓁2,𝓁3). Assume
that 𝐰(𝝆0) = 0. Since 𝐰 is linear in 𝝆, the factor 1∕𝑤2

diverges near 𝝆0 not stronger than |𝝆 − 𝝆0|
−2. Other factors

in the integrand are bounded. It is therefore easy to see that

MC (converged)
u1 + u2 (num. int.)

u
(a) g = 0.8

3

2

1

0

�tL

u (b) g = 0.0

21.510.50−0.5

2

1

0

Figure 13: Thick red lines show the sums of the first and
second order terms in the collision expansion of the density
of energy, 𝑢1 + 𝑢2, computed by numerical integration for
𝜇𝑡𝐻 = 0.1. Thin blue lines are the same as in Fig. 4(a,b)
and show the results of Monte Carlo simulations for the total
density 𝑢 accounting for up to 10 scattering events, which is
sufficient for convergence. The curves with 𝜇𝑡𝐻 = 0.01 (shown
in Panels (c) and (d) in Fig. 4) are not included in this figure
since, in this case, 𝑢1 + 𝑢2 and 𝑢 are very close and cannot be
visually distinguished.

MC (converged)
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2
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Figure 14: Same as in Fig. 13 but for the 𝑍-component of
the current of energy, 𝐽𝑧.

the integral

∫𝜎
d3𝜌

|𝝆 − 𝝆0|
2 (61)

converges. Here 𝜎 is a small region containing 𝝆0. Conse-
quently, 𝐺3(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) is well defined and finite for all
values of its arguments.
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Figure 15: Same as in Fig. 13 but for the radial component
of the current of energy, 𝐽𝜌.

Figure 16: . Illustrating the geometry of third-order scattering.
Note that the various points and line segments appearing in
the drawing are not necessarily in the same plane.

We can find the expression for 𝐺𝑛 of arbitrary order 𝑛
by adding more line segments to Fig. 16 and including the
corresponding terms to (59). In this manner, we obtain for
𝑛 > 3:
𝐺𝑛(𝐫𝑎, �̂�𝑎; 𝐫𝑏, �̂�𝑏) = 𝜇𝑛

𝑠 ∫ d𝓁1 ... d𝓁𝑛 d2�̂�1 ... d2�̂�𝑛−2

× 1
𝑤2 𝑒−𝜇𝑡(𝓁1+...+𝓁𝑛+𝑤)

×𝒜 (�̂�𝑎 ⋅ �̂�) 𝒜 (�̂� ⋅ �̂�1) 𝒜 (�̂�1 ⋅ �̂�2) ... 𝒜 (�̂�𝑛−2 ⋅ �̂�𝑏) , (62)
where
𝐰 ∶= 𝐫𝑎𝑏 −

(

𝓁1 �̂�𝑎 + 𝓁2 �̂�𝑏 + 𝓁3 �̂�1 + ... + 𝓁𝑛−2 �̂�𝑛−2
)

.
(63)

By the same arguments as above, we can see that 𝐺𝑛 is
not singular. Of course, evaluating (62) by a numerical
quadrature is impractical; one should instead use stochastic
methods such as Monte-Carlo integration.

7. Discussion
The mathematical difficulties encountered in calculating

the terms in the collision expansion for the RTE are related to
the presence of singularities. At first order, the singularity in
𝐺1 has the form of a delta function, whose argument depends
on a choice of reference frame. Therefore, in order to derive
a formula for 𝐺1, one must specify the reference frame.
There are two logical choices: a frame associated with the
primary ray and a frame associated with the line of sight. The
formulas for 𝐺1 in these two frames are different. However,
both predict the same measurable signal 𝑊1 for a collimated
detector. To see that this is indeed the case, one must estab-
lish the relation between 𝐺1 and 𝑊1 that is valid when 𝐺1 is
singular. The presence of the delta function means that 𝑊1is defined as a convolution of 𝐺1 with a mollifier. Assuming
the detector is cylindrically symmetric and accepts incoming
rays in a small solid angle with the axis of symmetry �̂�, it is
possible to compute 𝑊1 analytically. While the expression
for 𝑊1 itself is independent of the reference frame, to derive
it, we must start in one of the frames mentioned above and
compute the convolution by integrating over the solid angle.
If one intends to use measurements of 𝑊1 to recover the
optical parameters of the medium, it is important to use the
correct analytical expression for the quantity 𝑊1.

At second order, the singularity is logarithmic. Although
it is in some sense weak, it is also more difficult to handle
mathematically. In particular, when the axis of the detector
�̂� is close to the direction at which 𝐺1 is singular, it is not
possible to state a general relation between 𝑊2 and 𝐺2.
Rather, 𝑊2 also depends on the acceptance angle of the
detector in a complicated manner.

All higher-order terms 𝐺𝑛 with 𝑛 ≥ 3 are regular. As a
result, the relation between 𝑊𝑛 and 𝐺𝑛 can be reduced to
simple proportionality, with 𝑊𝑛 = 𝜋𝛽2 𝜇−1

𝑡 𝐺𝑛. For large
source-detector separations, when the low-order terms 𝐺0,
𝐺1 and𝐺2 yield a negligible contribution to the total Green’s
function 𝐺, there exists an approximate relation 𝑊 =
𝜋𝛽2 𝜇−1

𝑡 𝐺. One can conclude that, under these conditions,
the Green’s function (or, more broadly, the specific intensity)
is measurable. However, close to the source where the sin-
gularities are non-negligible, 𝐺 is not directly measurable.

Research data for this article
Simulated data that were used in the figures above as well

as scripts that can be used to generate all figures from the
data (except for the figures containing geometrical sketches)
are available in the dataset CollExp (Mendeley Data, V1,
doi:10.17632/9c9b8sdrrs.1).
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A. Angular delta function
In the literature on radiative transport theory, it is com-

mon to denote the angular delta function of two vectors 𝐮
and 𝐯 as 𝛿(�̂� − �̂�), where �̂� = 𝐮∕𝑢, �̂� = 𝐯∕𝑣, and 𝑢 = |𝐮|,
𝑣 = |𝐯|. Although, in most cases, this notation can be used
without incurring an error, the minus sign in the argument
should not be interpreted literally as an algebraic operation.
This precaution is important when 𝐮 or 𝐯 are expressed
in terms of other variables. In such cases, the minus sign
in 𝛿(�̂� − �̂�) should be treated as a symbol separating two
mathematically-independent arguments. We account for this
observation explicitly by introducing the notation Δ(𝐮, 𝐯).
Here 𝐮 and 𝐯 are not restricted to being unit vectors. How-
ever, since Δ(𝐮, 𝐯) = Δ(�̂�, �̂�), we often use the latter form
(sometimes, the arguments of an angular delta function are
unit vectors by definition). In the paper, we denote the usual
Dirac delta function by 𝛿(⋅) and its dimension is implied from
the dimension of its argument. For example, 𝛿(𝐫) is a three-
dimensional delta function and 𝛿(𝑥) a one-dimensional delta
function. However, the angular delta function is denoted
by Δ(⋅, ⋅), and its arguments are always a pair of three-
dimensional vectors. Below, we provide a more detailed
definition.

Consider the three-dimensional delta function 𝛿(⋅). Here
the argument in the parenthesis can be any expression that
evaluates to a three-dimensional vector. For example, 𝛿(𝐮 −
𝐯) is a function of the shift 𝐮 − 𝐯. If 𝐯 = 𝐮 − 𝐰, then
𝛿(𝐮 − 𝐯) = 𝛿(𝐰). In other words, algebraic operations
inside the argument of this delta function are allowed. In a

rectangular reference frame 𝑋𝑌𝑍, we can also write
𝛿(𝐮 − 𝐯) = 𝛿(𝑢𝑥 − 𝑣𝑥) 𝛿(𝑢𝑦 − 𝑣𝑦) 𝛿(𝑢𝑧 − 𝑣𝑧) , (64)

and the above property is retained. However, it is lost if
spherical coordinates are used. Indeed, let (𝑢, 𝜃𝑢, 𝜑𝑢) be the
length and the polar and azimuthal angles of 𝐮, and similarly
for 𝐯. We have

𝛿(𝐮 − 𝐯) =𝛿(𝑢 − 𝑣)
𝑢2

∞
∑

𝑛=−∞
𝛿(𝜑𝑢 − 𝜑𝑣 + 2𝜋𝑛)

× 𝛿(cos 𝜃𝑢 − cos 𝜃𝑣) . (65)
Note that summation over 𝑛 is necessary if 𝜑𝑢 or 𝜑𝑣 can take
values outside of the interval [0, 2𝜋). It can be seen that the
function depends on cos 𝜃𝑢 − cos 𝜃𝑣 rather than on 𝜃𝑢 − 𝜃𝑣.

Now, the second and third functions in (65) can be
combined in a single notation:

Δ(𝐮, 𝐯) ∶=
∞
∑

𝑛=−∞
𝛿(𝜑𝑢 − 𝜑𝑣 + 2𝜋𝑛) 𝛿(cos 𝜃𝑢 − cos 𝜃𝑣) .

(66)
Since Δ(𝐮, 𝐯) depends on the directions of 𝐮 and 𝐯 but not
on their magnitudes, we have

Δ(𝐮, 𝐯) = Δ(�̂�, 𝐯) = Δ(𝐮, �̂�) = Δ(�̂�, �̂�) . (67)
An important point is that the notation Δ(�̂�, �̂�) can be used
independently of reference frame; it is not specific to spher-
ical coordinates. In other words, (66) provides a particular
expression for Δ(�̂�, �̂�) in spherical coordinates, but there
exist other equivalent expressions. In fact, the angular delta
function is completely defined by the following reference
frame-independent relations:

Δ(𝐮, 𝐯) = Δ(𝐯,𝐮) , (68a)

∫ Δ(𝐮, 𝐯) d2�̂� = ∫ Δ(𝐮, 𝐯) d2�̂� = 1 , (68b)

∫ 𝑓 (𝐯) Δ(𝐮, 𝐯) d2�̂� = 𝑓 (𝑣 �̂�) . (68c)

Here d2�̂� is an element of solid angle and d3𝑣 is an element
of volume. The following relation follows from (68)

∫ 𝑓 (𝐯) Δ(𝐮, 𝐯) d3𝑣 = ∫

∞

0
𝑓 (𝑣 �̂�) 𝑣2 d𝑣 . (69)

We finally note that for the angular delta functions there is
no analog of the identity 𝛿(𝛽𝑥) = |𝛽|−1𝛿(𝑥).

B. Quasi-uniform sampling of the unit sphere
for numerical computation of 𝑢2 and 𝐉2.
Assume that a procedure for computing 𝐺2(𝐫, �̂�; 𝐫𝑏, �̂�𝑏)is available. The feasibility of this computation was demon-

strated in section 5.2 above. In order to evaluate (58) numer-
ically, we must sample �̂� on the unit sphere as uniformly as
possible, and with sufficient density to capture the angular
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dependence of 𝐺2. Yet it is important not to use any discrete
values of �̂� for which 𝐺2 is not defined. One algorithm to
achieve such sampling is described below.

Let the polar and azimuthal angles of �̂� in the reference
frame of Fig. 8 be 𝜃 and 𝜑. First, we sample the variable 𝑐 =
cos 𝜃 in the interval [−1, 1]. The samples are 𝑐𝑛 = −1 + 𝛼 𝑛,
𝑛 = 0, 1, ..., 𝑁 , where 𝛼 = 2∕𝑁 and 𝑁 is a sufficiently large
even integer (the last condition is important). Then, at each
value of 𝑛, we sample the angle 𝜑 in the interval [0, 2𝜋] as
follows:

𝜑𝑛𝑚 = 𝛽𝑛 (𝑚 − 1∕2) , 𝑚 = 1, 2,… ,𝑀𝑛 , (70a)
where

𝑀𝑛 =
{

2𝑛 + 1 , 𝑚 ≤ 𝑁∕2
2(𝑁 − 𝑛) + 1 , 𝑚 > 𝑁∕2

, (70b)
𝛽𝑛 = 2𝜋∕𝑀𝑛 . (70c)

Note that 𝑀0 = 𝑀𝑁 = 1, so that there is only one sample
at the North and South poles of the unit sphere. The number
of samples on the equator is 𝑁 + 1. Generally, the number
of samples on each discrete line of latitude is proportional
to its length, so that the sampling is quasi-uniform. Also, the
samples 𝜑𝑛𝑚 defined by (70a) are all nonzero and therefore
we have avoided computing 𝐺2 in the directions of �̂� for
which it is not defined. To evaluate the integrals in (58), we
compute the integrands at the discrete values �̂�𝑛𝑚, multiply
the results by the weights 𝑤𝑛𝛼𝛽𝑛 (where 𝑤0 = 𝑤𝑁 = 1∕2
and 𝑤𝑛 = 1 for all other 𝑛) and sum the numbers thus
obtained over all 𝑛 and 𝑚. The following identity,

𝑁
∑

𝑛=0

𝑀𝑛
∑

𝑚=1
𝑤𝑛 𝛼 𝛽𝑛 = 4𝜋 , (71)

confirms that we have described a correct quadrature. Note
that the density of sampling of the unit sphere is controlled
by the single parameter 𝑁 .
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