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ABSTRACT

We discuss an operational scheme for measuring the power extinguished by a single particle in terms
of physical energy fluxes. Illumination by an infinite plane wave and a collimated Gaussian beam
is considered. For the case of a collimated beam, consideration of extinguished power presents an
apparent paradox, which is resolved in this paper. It is then shown that the extinguished power is
measurable as a flow of energy for a narrow, collimated incident beam and a small scatterer. In this
case, the extinguished power is simply removed from the transmitted beam. If we relax the above
assumptions, definition of the extinguished power in terms of measurable energy fluxes is still possible
but becomes more nuanced.
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1. Introduction
Extinction of waves by particles or potentials plays a fun-

damental role in the theory of scattering. For incident plane
waves, one can introduce the absorption and scattering cross
sections �a and �s and the extinction cross section �e =
�a + �s. Conventionally, �e is interpreted as a quantita-
tive measure of how strongly an object extinguishes, that is,
modifies and/or suppresses the incident wave. In particular,
smallness of �e is a better indicator of invisibility of an ob-
ject than smallness of �s [1]. It should be clarified however
that the incident wave is not really modified in a scattering
process; it is determined by the external sources of radiation
and independent of the scatterer. Therefore, what exactly is
quantified by the extinction cross section is a subtle ques-
tion the answer to which may depend on the physical situa-
tion [2]. The goal of this paper is to clarify the meaning of
extinction for some commonly encountered incident fields.

The extinguished power is surprisingly difficult to ex-
press in terms of physical energy fluxes since it involves the
product of the incident and the scattered fields (the “cross
term”) whereas only the sum of these two fields enters the
definition of any directly measurable flux. This has led his-
torically to various paradoxes, including the classical extinc-
tion paradox whose complete understanding was achieved
only recently [3, 4, 5] although an important insight was
made by Brillouin in 1949 [6]. Another paradox related to
extinction, which is much less known, is discussed and re-
solved below.

In addition to resolving the above-mentioned paradox,
we will show that, in the case of incident collimated beams,
the extinguished power can be defined in terms of a physical
energy flux, which can be measured with one or at most two
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flat detectors. We say that such a definition is operational.
The definition is in good agreement with the conventional
interpretation of extinction: the extinguished power is liter-
ally removed from the beam. This result could, of course,
be anticipated from the experimental point of view. How-
ever, its theoretical demonstration is subtle. We note that
providing a similar direct measurement scheme for incident
plane waves is also possible but somewhat problematic and
involves several applicability conditions.

In the case of an incident collimated beam and not very
forward-peaked scattering, the incident and the scatteredwaves
overlap only in a relatively small region of space. As one
could expect, an operational definition of extinction can be
given more easily when the incident and the scattered waves
overlap in some sense weakly. This does not mean that there
is no interference between the two waves – extinction is in-
terference. However, the condition of small overlap implies
that a dominant part of the scattered power does not interfere
with the incident wave. If this is so, the scattered power also
becomes (approximately) a physical energy flux, although
its measurement requires a 4� solid angle arrangement of
detectors.

We start by briefly reviewing what is currently known
about extinction. One basic result in this area is the opti-
cal theorem, which relates �e to the imaginary part of the
scattering amplitude in the forward direction. However, a
forward direction can be defined only for an incident plane
wave. To circumvent this problem, generalizations of the
optical theorem for various superpositions of incident plane
waves or (equivalently) for incident structured beams have
been derived [7, 8, 9, 10]. These generalizations are not
as simple as the classical optical theorem and involve either
Fourier-space or real-space integrals.

The generalization of the optical theorem that involves a
real-space integral [7] (also see [11, 12] for the discretized
case) has amore transparent physical interpretation. Namely,
the extinguished power is expressed as the total work done by
the incident field on the medium, i.e., on the induced electric
current in the case of electromagnetic waves or on moving
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elements of fluid in acoustics. This is different from the work
done by the total field, which gives the absorbed power. An
important point here is that the field inside any object is not
equal to the incident field. For this reason, absorbed power
is different from the extinguished power. We note that ab-
sorption is related to the work done by the actual physical
field inside the object and therefore it can be related mathe-
matically to the total inward energy flux through any surface
enclosing the object. No such simple consideration exists for
extinction.

The definitions of extinguished power in terms of volume
integrals as in [13] or Fourier integrals as in [9] are not op-
erational. This means that one can not access the physical
quantities that enter these definitions by performing power
measurements in free space. However, measurements of the
latter type are typical in optics. Therefore, it is desirable to
develop an operational definition of the extinguished power
in terms of free-space energy fluxes. This problem was con-
sidered in a series of papers [14, 15, 16, 17, 18] for incident
plane waves. A unifying goal of these references is to devise
an experimental set-up in which the extinguished power can
be measured with a single flat detector.

In [14], it was suggested that the power extinguished by
a single particle can be measured by considering the energy
flux into a circular detector placed behind the scatterer per-
pendicularly to the direction of incidence and subtracting the
corresponding incident power, which would have been mea-
sured in the absence of the scatterer. It was found that, in
order to obtain a converged result, the detector should sub-
tend an angle of about �∕3 when viewed from the scatterer.
We reproduce this result below, although only for differen-
tial measurements and for some special positions of the mea-
surement planes 1. In [15], the results of Ref. [14] were gen-
eralized to the case of ordered or disordered arrangements of
several particles, some of which can be located off the op-
tical axis. It was found that the measurement aperture that
is needed to achieve convergence is significantly smaller in
this case.

Refs. [14, 15] were concerned only with the cross-term
and the incident parts of the total energy flux. It was assumed
that the scattered flux is small due to the 1∕r2 dependence
(we note that the paradox discussed below for collimated
beams grows essentially from the same logic). However the
flux that is quadratic in the scattered field is not always neg-
ligible. To obtain an accurate measurement of extinction,
this (generally, unknown) flux should be subtracted from the
power measured in the set up of [14, 15]. Otherwise, the
measurements should be performed in such a way that the
contribution of the scattered flux is in fact negligible. This
problem was addressed in [16, 17, 18] as discussed in more

1The differential measurements of the type described below are needed
because the relevant integral taken over just one plane behind the scatterer
diverges. The divergence occurs if a monochromatic scalar scattered wave
contains a non-negligible isotropic component (the partial s-wave). For
partially coherent waves or more complex apertures (including a square or
circles displaced from the axis of symmetry), the divergence can be sup-
pressed. This comment concerns only plane-wave illumination; for colli-
mated beams, measurement on one plane is always sufficient.

detail below.
In [16], it was pointed out that, even for a single scatter-

ing particle, the integral of the cross-term in the energy flux
converges much faster if the shape of the detector aperture
is different from a circle centered on the axis of symmetry.
A square detector was used in [16] to illustrate the point but
similar results can be obtained even with a circular detector
if it sufficiently displaced from the optical axis. This finding
helps explain the result of [15], namely, that the cross-term
integral converges faster for scatterers located off the optical
axis. Moreover, it was shown in [16] that, for detectors lo-
cated sufficiently far from the scatterer, convergence of the
integral can be achieved while the contribution of the scat-
tered power is still relatively small. This provides a direct
operational definition of the extinguished energy, although,
in order to obtained accurate results, certain conditions must
be met. The detector should be small enough so that the
scattered power can be neglected but large enough to aver-
age out the spurious oscillations in the intensity. This can
be achieved if the scatterer is well in the Fraunhofer diffrac-
tion zone when viewed from the detector. We confirm these
result below as well. The two notable differences between
the simulations shown below and [16] are that we compute
the current of energy rather than its density and, more im-
portantly, we do not rely on the paraxial approximation and
evaluate the relevant integrals numerically.

Finally, Refs. [17, 18] point out that the extinguished
power can be accessed even not very far from the scatterer
(i.e., not necessarily far in the Fraunhofer zone) by perform-
ing holographic (interferometric) measurements of the total
field. Essentially, this entails multiple measurements with
detectors of different size or one spatially-resolved measure-
ment with a CCD camera located behind the scatterer. The
incident flux is measured independently and then subtracted
from the hologram in post-processing. However, the flux
that is quadratic in the scattered field is unknown and can not
be subtracted in this manner. In the earlier work [17], an ap-
proximation was adopted in which this unknown flux is not
accounted for. In [18], this approximation was removed and
it transpired that any integral measurement with a large area
detector yields absorption rather than extinction (we confirm
this result as well). To circumvent the problem, it was pro-
posed to extract the extinguished power by post-processing
the entire hologram. The post-processing entailed extrap-
olation to zero size (zero subtending angle) of the trend in
the oscillatory relation between the registered power and the
size of the detector. In this manner, accurate results were ob-
tained for extinction from both simulated and experimental
data [18]. Intuitively, this approach is consistent with the op-
tical theorem, which contains the scattering amplitude only
in the forward direction.

We note that the approaches of Ref. [16] and Refs. [17,
18] are closely related; both are aimed at removing or aver-
aging out the spurious oscillations in the intensity. Ref. [16]
relies on an intermediate asymptote in the dependence of
the registered power on the detector size (when the latter is
increased past the intermediate asymptote region, the mea-
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surement crosses over to absortion rather than extinction).
In Refs. [17, 18], this intermediate asymptote is extracted by
post-processing. However, post-processing and extrapolat-
ing holographic data may not always be numerically stable.
We will be interested therefore in a definition of extinction
that utilizes integral power measurements only.

The rest of this article is organized as follows. In Sec-
tion 2, we describe a simple scalar-wave model that is used
in the paper. The case of incident plane waves is considered
in detail in Section 3 and the case of an incident Gaussian
beam in Section 4. Section 5 contains a brief discussion of
the obtained results.

2. Model
For simplicity, we consider monochromatic scalar waves

of the form Ψ(r, t) =  (r)e−i!t. The model is not com-
pletely general but encompasses some physical situations in-
cluding quantum-mechanical and acoustic scattering. In the
case of quantummechanics,Ψ(r, t) is the complexwave func-
tion whereas, in the acoustic case, the deviation of pressure
from its equilibrium value is given by Re[Ψ(r, t)]. The the-
ory of this paper applies to both cases.

As is conventional in the scattering theory, we decom-
pose the total field  into the incident and scattered compo-
nents  i and  s so that

 (r) =  i(r) +  s(r) . (1)

We further assume that the scattering particle or potential is
supported in a small region around the origin of a reference
frame. Assuming this region fits entirely inside a ball of ra-
dius a, we require that ka ≪ 1, where k = !∕c and c is
the relevant phase velocity. Under these conditions, we can
write

 s(r) = � i(0)
eikr

r
, k = !

c
, (2)

where r is the distance from the origin to the point of obser-
vation and � is a coefficient. Equation (2) follows from lin-
earity of the underlying wave equation and smallness of the
scatterer. Generalization of (2) to the case of multiple small
scatterers is known as the Foldy-Lax approximation [19, 20].

For monochromatic fields, the stationary flux of energy
(or probability) can be written as

j(r) = Im[ ∗(r)∇ (r)] . (3)

The absorbed power Qa is given by integrating the inward
flux of energy over any (almost everywhere) regular surface
S completely enclosing the origin, viz,

Qa = −∮S
j(r) ⋅ n̂(r)d2r , (4)

where n̂(r) is the outward unit normal to S at r ∈ S. Using
the decomposition (1), we can write Qa = Qe − Qs, where
the extinguished and scattered powers Qe and Qs are given
by

Qe = −∮S
je(r) ⋅ n̂(r)d2r , (5a)

Qs = ∮S
js(r) ⋅ n̂(r)d2r , (5b)

and

je(r) = Im[ ∗i (r)∇ s(r) +  ∗s (r)∇ i(r)] , (6a)
js(r) = Im[ ∗s (r)∇ s(r)] . (6b)

Here we have accounted for the fact that the energy flux of
the incident field integrates to zero over any closed surface
that does not contain the source.

We thus see that only the absorbed energy is defined in
terms of a physical energy flux, that is, a flux that actually
exists in space. The scattered energy is defined in terms of
the flux that is created by the scattered field alone. The ex-
tinguished power is defined in terms of a peculiar flux that
is created by the interference between the incident and the
scattered fields. This fact was previously noted as the main
difficulty in deriving an operational definition of the extin-
guished power.

For the simple s-wave scattering that is described by (2),
js depends on the incident field trivially, as is given by

js(r) = | i(0)|2
k|�|2

r2
r̂ . (7)

Integrating this expression over a sphere according to (5b),
we obtain

Qs = 4�k| i(0)|2|�|2 . (8a)

The extinguished power can be obtained for an arbitrary in-
cident field from the generalized optical theorem [13]. Spe-
cializing the more general result of [13] to the setting of this
paper, we obtain

Qe = 4�| i(0)|2Im� . (8b)

Equation (8b) can be easily verified for an incident panewave
by integrating over a sphere. But it holds generally, as long
as the incident field satisfies the underlying wave equation.
We reiterate that simple relation of the form (8) are applica-
ble to sufficiently small particles only.

We now see that the assumption of passivity of the scat-
terer places a constraint on �. Indeed, the condition that the
scatterer does not generate energy readsQa = Qe−Qs ≥ 0.
Using (8), we can transform this inequality to

Im(1∕k�) ≤ −1 . (9)

Therefore, we can write

k� = 1
x − iy

, (10)

where x and y are real dimensionless variables and y ≥ 1.
We will say that the incident field is exactly in resonance
with the scatterer if x = 0 and that the scatterer is non-
absorbing if y = 1.

The measurement geometry considered in this paper is
illustrated in Fig. 1. The scatterer is placed at the origin and
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its size and shape enter the problem only through the coeffi-
cient �. We then consider a cylindrical region Ω containing
the origin. The surface of Ω is the union of two planar faces

S± = {z = ±L ; x2 + y2 ≤ R2} (11a)

and the cylindrical surface

D = {−L ≤ z ≤ L ; x2 + y2 = R2} . (11b)

We will see that, under some conditions, the energy flux
through D can be neglected.

We are interested in a measurement scheme utilizing one
or two flat detectors, which integrate the electromagnetic
power incident on their entire surfaces. We will place these
detector in front and behind the scatterer on the surface S±.
We will see that, in the case of plane-wave illumination and
large-area detectors, measurements of this type yield absorp-
tion rather than scattering. Extracting extinction is still pos-
siblewithR-resolvedmeasurements and post-processing [17,
18] or by utilizing the intermediate asymptotic regime when
the scatterer is far in the Fraunhofer zone of the detectors
(L ≫ kR2∕2�) [16]. However, in the case of incident Gaus-
sian beams, extinction can be measured quite easily with
only one flat detector located at an arbitrarily-selected plane
behind the scatterer (within some range, of course), assum-
ing the incident power is known or can be measured inde-
pendently.

3. Incident plane wave
Consider first the case when the incident field is a plane

wave of the form

 i = Aeikz . (12)

The current js is then given by (7) with  i(0) = A and je is
given by

je =
|A|2

r
Im

[

�eik(r−z) ikr − 1
r

r̂ + ik�∗e−ik(r−z)ẑ
]

. (13)

Let us compute the power that enters the cylindrical region
Ω shown in Fig. 1 through the planar surfaces S− and S+.
Let

� =
√

x2 + y2 (14)

be the distance from a point in S± to the cylinder axis. We
then define

�e(R) = 2� ∫

R

0
ẑ ⋅ [je(�,−L) − je(�, L)]�d� , (15a)

�s(R) = 2� ∫

R

0
ẑ ⋅ [js(�,−L) − js(�, L)]�d� , (15b)

�t(R) = �e(R) + �s(R) . (15c)

Thus, �t(R) is the power that entersΩ through S− minus the
power that leaves through S+. We will see momentarily that

  

Figure 1: Illustration of the measurement surfaces that are
considered in this paper. The radius of the base of the cylinder
is R and the height is 2L. Surface S± and D are defined in
(11).

the power entering Ω through D can be neglected for some
special values of L but not generally.

The conventional interpretation suggests that the extin-
guished power Qe can be approximated by �t(R). One can
hope that there exists an interval of R such that �s(R) ≪
�e(R) and �e(R) ≈ Qe. In this case, we can measure Qe by
measuring �t(R) in an appropriate interval of R. The im-
portant point here is that this definition of Qe is operational
since �t(R) is a physical energy flux, which is directly ac-
cessible in optical measurements.

Note that integrals of the individual terms ẑ ⋅ je(�,±L)
in (15a) do not have limits when R → ∞. Integral of the
difference of the ± terms also does not generally converge
to a fixed limit except for some special values of L. Indeed,
using (13), we can write

�e(R) = 4�|A|2
[

I1(R) cos(kL) + I2(R) sin(kL)
]

, (16)

where

I1(R) = Im
[

� ∫

R

0

�d�
r2

(L
r
− ikL

)

eikr
]

, (17a)

I2(R) = Im
[

k�∗ ∫

R

0

�d�
r
e−ikr

]

(17b)

These integrals can be evaluated:

I1(R) = Im

[

�

(

eikL − Leik
√

L2+R2

√

L2 + R2

)]

, (18a)
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I2(R) = Re
[

�
(

eik
√

L2+R2 − eikL
)]

. (18b)

It can be seen that I2(R) does not have a limit when R→ ∞
but I1(R) has such a limit, although this limit depends on L.

There exists however an interesting special case. Namely,
let us select L so that sin(kL) = 0 or, equivalently, eikL =
±1. Then I2(R) does not enter (16) and the limiting value of
I1(R) does not depend on L (as long as L takes one of the
infinitely many discrete values for which sin(kL) = 0). In
this case, we obtain,

�e(R) = 4�|A|2Im

[

�

(

1 ∓ Leik
√

L2+R2

√

L2 + R2

)]

, (19)

Here the “−” sign must be chosen if eikL = 1 and “+” if
eikL = −1. But regardless of the sign, it can be seen that
limR→∞ �e(R) = Qe.

The above result is easy to understand. Under the con-
dition eikL = ±1, the flux of energy through the cylindrical
surface D approaches zero when R → ∞. Indeed, the inci-
dent flux is directed along the Z-axis and is zero when pro-
jected onto the normal toD at any point. The flux associated
with je integrates to zero. We can use (6a) to see this eas-
ily. Indeed, the scattered field  s(r) as well as its derivative
∇ s(r) are almost constant on D when R → ∞. There-
fore, the only spatial dependence in the integral that remains
when R → ∞ is due to the phase factor eikz in the incident
wave. Integrating the exponent between z1 and z2 such that
eikz2 = eikz1 yields zero. In deriving (19), we have, essen-
tially, required that this condition holds. Finally, it is easy
to check that the flux of energy through D that is associated
with js vanishes as 1∕R.

Thus, it may seem that we can measure Qe if we select
L correctly and then integrate the energy flux over a suffi-
ciently wide aperture of radius R. In practice, one would
need to take R ≫ L. This is inconvenient, of course, but
more importantly this is not correct. The reason is that �s(R)
is not at all negligible. A simple calculations shows that

�s(R) = −4�k|�|2|A|2
(

1 − L
√

L2 + R2

)

. (20)

Combining (15c), (16) and (20), we conclude that

lim
R→∞

�t(R) = 4�|A|2
(

Im� − k|�|2
)

= Qa . (21)

Thus, the limit of �t(R) when R goes to infinity is the ab-
sorbed, not the extinguished power. However, as discussed
above, there exist some methods to extractQe from the mea-
surements of �t. This is discussed below in more detail.

The functions �e(R), �s(R) and �t(R) normalized to the
theoretical value of the extinguished power, Qe, are plotted
in Fig. 2 for a resonant non-absorbing scatterer with k� = i
and various distances between the scatterer and the measure-
ment planes as quantified by the parameter kL. The left
(right) columns correspond to a circular (square) detectors,
respectively. We note that in the case of a square detector, the

volumeΩ is not a cylinder such as the one shown in Fig. 1 but
a cuboid. Since the integrals are not expressible in terms of
elementary functions for the square aperture, we have eval-
uated them numerically.

Consider first the case when the parameter kL is rela-
tively small and is a multiple of �, which is illustrated in
Panels (a)-(d) of Fig. 2. Accounting for our choice to con-
sider a non-absorbing particle with Qa = 0, we expect the
curves shown in these panels to approach the following lim-
its:

lim
R→∞

�e(R)∕Qe = 1 , (22a)

lim
R→∞

�s(R)∕Qe = −1 , (22b)

lim
R→∞

�t(R)∕Qe = 0 . (22c)

This is indeed the case although the convergence is slow.
At the aperture R = 4L, which implies a very wide solid
angle of reception, the limits are still not reached. At small
values of R, �t(R) is close to �e(R) (i.e., up to R ≈ 0.5L),
but the value of �t is still quite far away from Qe for such
small R. However, it can also be seen that �e(R) oscillates
about its asymptotic value and the amplitude of oscillations
is relatively smaller for the square detector. Moreover, in the
case kL = 40�, the curve �t(R) (for the square detector) is
not such a bad estimator of Qe in the range 0.5 ≲ R∕L ≲
1.0. Still, if only integrating detectors are used, measuring
extinction with good accuracy is not possible if kL = 10�
or kL = 40�.

We next turn to the case kL = 32.5, which is not a mul-
tiple of � [Panels (e,f)]. In this case, the limits (22) are not
reached for the circular aperture at all. This is in line with
the observation that the energy that enters the cylindrical re-
gion Ω through its side surface D is zero only in the special
cases kL = �n, where n is an integer. But, interestingly, the
limits are still reached for the square aperture. In particular,
the curve �e(R) in Panel (f) oscillates about Qe. The rea-
son is that the volume Ω in the case of a square aperture is
a cuboid rather than a cylinder. The energy flux through its
four side faces is integrated to (almost) zero irrespective of
kL. This is due to the property of square apertures to aver-
age out oscillations shaped as concentric circles. Thus, the
use of a square detector removes the need to select special
planes for measurement. Still, the parameter kL in Panels
(e,f) is too small to neglect the contribution of �s.

We next consider the parameter kL = 1000� [Panels
(g,h)]. For the circular aperture, the fluctuations are still
very large and direct measurement of Qe is not possible.
However, for the square aperture [Fig. 2(h)], the oscillations
die out at R∕L ≳ 0.25. In this case, measurement of Qe

with about 5% to 10% relative error is possible by register-
ing �t(R) at R ≈ 0.25L. This is in agreement with the re-
sults of Ref. [16], namely, that square (more generally, not
cylindrically-symmetric) detectors average out spurious os-
cillations in the intensity and thus make measurement of ex-
tinction with a single integrating detector possible. We have
confirmed this conclusion by using direct numerical integra-
tion and not relying on the paraxial approximation.
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Figure 2: Functions �e(R), �s(R) and �t(R) for k� = i and kL as labeled. Energy flux is integrated over a circular aperture of
the radius R (left column – a,c,e,g) and over a square of side 2R (right column – b,d,f,h).
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The above discussion concerned integrating detectors.
However, the solid thin (red) curves in Fig. 2 are the radial
profiles of the (integrated) holograms, which were studied
in [18]. As was shown in [18], the data contained in these
curves can be post-processed to yieldQe. The specific recipe
given in [18] was to connect the minima point of �t(R) by
a cubic spline, do the same for the maxima point, and then
compute the trend as the average of these two splines. The
trend is then evaluated at the argument corresponding to the
first maximum of �t(R). A visual inspection of the solid
thin curves in Fig. 2 suggests that this approach will indeed
yield a result close to the true value ofQe. The extrapolation
procedure relies on the observation thatQe is the average of
the first few oscillations of �e(R) taken over the range of R
for which �t(R) is still close to �e(R). A coarser but prob-
ably a qualitatively similar estimate of Qe can be obtained
by taking one half of the first maximum of �t(R). We note
however that for this prescription to work �t(R) should os-
cillate about Qe at small R. This is not always the case for
circular detectors.

4. Incident collimated beam
Interference effects in power flows for incident collimated

beams are rarely considered in the literature. Two-dimensional
beams incident perpendicularly to the axis of an infinite cylin-
drical scatterer have been considered in [3, 4] in relation to
resolving the classical extinction paradox. However, an op-
erational definition of extinguished power in terms of energy
fluxes was not discussed in these works. Here we will per-
form a simple analysis of this kind and show that the conven-
tional interpretation of extinguished power applies perfectly
well to narrow collimated beams and small scatterers.

We start by noting that extinction of collimated beams
involves an apparent paradox, which was discussed by us
earlier [21]. Indeed, let us assume that the incident field is
a perfectly collimated pencil beam as shown in Fig. 3. Then
the area of the surface regions S± where the incident and
the scattered fields overlap does not depend on the distance
to the scatterer, which scales as ∼ L. We conclude that the
scattered field on S± decays as ∼ 1∕L. On the other hand,
the incident field on S± varies only due to the trivial fac-
tor e±ikL (since the beam is assumed to propagate without
diffraction). Then the equations (5a) and (6a) seem to predict
thatQe ∝ |A|2w2∕Lwherew is the beam radius. This scal-
ing law is inconsistent with (8b). However, (8b) was derived
in a mathematically rigorous way and should be correct.

Let us assume for the sake of the argument that the pre-
dictionQe ∝ |A|2w2∕L is correct. Then, if we select the in-
tegration surface to be a sphere of radius L (which contains
S±) and compute the total outward energy flux, we would
obtain Qs instead of −Qa. Strictly speaking, this integra-
tion yields Qs − Qe but, if Qe decays as 1∕L and can be
neglected for sufficiently large L, then the result is close to
Qs. This conclusion contradicts conservation of energy: it
suggests that the particle generates energy at the rate Qs.

It is tempting to resolve the above paradox by noting that
a perfect pencil beam is a poor approximation. The radius

  
Figure 3: Illustration of the paradox involving extinction of a
perfectly collimated beam by a small particle. The scattered
field decays as ∼ 1∕L on the surfaces S± where the interference
of the incident and the scattered fields occurs. It then follows
that Qe ∼ w2∕L, where w is the constant beam radius. This
expression approaches zero when L→ ∞ in violation of energy
conservation.

of a paraxial Gaussian beam, for example, increases linearly
with L (for sufficiently large L) and for even larger propaga-
tion distances the paraxial approximation ceases to hold and
the Gaussian beam behaves almost like a spherical wave. For
these reasons, the original assumption that the area of S± is
independent of L is not generally correct. However, this ob-
servation is not sufficient to explain the paradox. Indeed, a
Gaussian beam can be made arbitrarily slowly diverging in
an arbitrarily large (but not infinite, of course) range of prop-
agation distances. So, while the above effects are real, their
onset does not occur fast enough to resolve the paradox. Be-
low, we will show that the resolution is quite different and
does not require or imply diffraction of the incident field or
dependence of the area of S± on L.

Let the incident field be given by a cylindrically-symmetric
scalar Gaussian beam. The exact expression for this field is

 i(�, z) = A
2
�2 ∫

e−(q∕�k)
2
eikz

√

1−(q∕k)2J0(q�)qdq , (23)

where � is the dimensionless parameter determining the beam
waist, J0(x) is the Bessel function of the first kind and A is
the amplitude. We note that, as before,  i(0) = A.

The expression in the right-hand side of (23) satisfies the
wave equation exactly. However, if z is sufficiently small,
we can make the paraxial approximation by expanding the
square root as

√

1 −
( q
k

)2
= 1 − 1

2

( q
k

)2
− 1
8

( q
k

)4
+…

and keeping only the first two terms in this expansion. It
can be seen that the condition of applicability of the paraxial
approximation is kz ≪ 4�∕�4. For small �, the critical
distance at which the paraxial approximation breaks can be
very large. If we keep, as suggested, only the first two terms
in the above expansion, the integral (23) can be evaluated
analytically with the result

 i(�, z) =
A

1 + i�2kz∕2
exp

[

ikz −
(�k�∕2)2

1 + i�2kz∕2

]

, (24)

The beam width in the paraxial approximation is given by
the well-known formula

w(z) = w0

√

1 +
(

z
z0

)2
, w0 =

2
�k

, z0 =
2
�2k

. (25)
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We thus see that there exists a range of z such that 2∕� ≪
kz ≪ 2∕�2 ≪ 4�∕�4 in which the paraxial approximation
is accurate, the propagation distance is much larger than the
beam waist, and there is still no noticeable diffraction. For
example, if we take � = 0.001 (in optics, this choice corre-
sponds to a beam of about 1mm in radius at the waist), the
range of z in which the beam is non-diffracting covers about
two decades. In principle, one can consider even smaller val-
ues of �. This observation clearly indicates that diffraction
of the incident beam is not sufficient to resolve the paradox
described above.

Let us consider again the functions �e(R), �s(R) and
�t(R) that were defined in (15). The integrands in (15) de-
pend on the fluxes je(�,±L), which are expressed in terms
of the incident and scattered fields in (6a). In Section 3, we
have used the plane wave (12) for the incident field; now
we will use the paraxial Gaussian beam (24). Note that the
scattered field is the same in both cases and given by (2) with
 i(0) = A. With this in mind, let us rewrite (15a) as

�e(R) =
2�|A|2

L ∫

R

0
fe(�, L)�d� , (26)

where

fe(�, L) =
L

|A|2
ẑ ⋅ [je(�,−L) − je(�, L)] . (27)

Note that fe is dimensionless. In Fig. 4(a), we plot fe(�, L)
as a function of � for � = 0.001 and k� = i (as above).
It can be seen that fe(�, L) is of the same order of mag-
nitude for the different values of kL. It might seem there-
fore that (26) predicts that �e(R) ∼ 1∕L. Recall that, on
one hand, limR→∞ �e(R) = Qe but, on the other hand, we
know theoretically that Qe is given by (8b), which is inde-
pendent of L. The explanation of this apparent contradic-
tion is as follows. The rate of oscillation of fe(�, L), when
considered as a function of �, tends to decrease with L. As
a result, the integral in (26) is approximately proportional
to L. The proportionality becomes more precise when R is
increased. Therefore, the factor of L in (26) is effectively
canceled. This is illustrated in Fig. 4(b) where we show that
�e(R) approaches its theoretical limit (8b) irrespective of L.
Convergence is achieved when R∕w0 ≳ 3. For smaller L,
�e(R) makes more oscillations before reaching its limiting
value.

Thus, the resolution of the paradox turns out to be very
simple. Even though the scattered field decreases as 1∕L
for r ∈ S±, the total energy flux associated with je remains
independent of L as long as integration in (26) is carried
out to sufficiently large values of R. This happens because
the rate of oscillation of the integrand fe(�, L) tends to de-
crease with L. In other words, the paradox was based on an
implicit assumption that Qe is determined only by the “in-
teraction area” and the amplitude of the integrand. However,
this is not so for oscillatory integrals because the phase and
the frequency of the integrand oscillations also matter. A
similar mathematical behavior was observed in the case of
plane waves [14, 16].

0 1 2 3

-2

-1

0

1

2

(a)

0 1 2 3

0

1

2

(b)

Figure 4: (a) Function fe(�, L) defined in (27) for an incident
paraxial Gaussian beam with � = 0.001, k� = i and different
values of kL, as labeled; (b) �e(R,L) normalized to its theoret-
ical limit Qe and computed by numerical integration of fe(�, L)
according to (26) for the same values of kL as in Panel (a).
The variable � is shown in units of the waist radius w0 = 2∕�.

The above consideration is applicable for 2∕� ≪ kL ≪
2∕�2, that is, while diffraction of the Gaussian beam is not
significant. The numerical values of kL used in Fig. 4 are in
this range, although the inequality is not particularly strong
for kL = 106. We now discuss briefly what happens out-
side of the above interval of L. Of course, oscillations of
fe(�, L) can not get slower indefinitely. When kL = 2∕�2,
fe(�, L) is almost constant on the scale of ∼ w0. However,
the area of S± starts to increase with L for kL ≳ 2∕�2. This
yields the theoretically expected result limR→∞ �e(R) = Qe

although integration now should be carried out to larger val-
ues ofR. We do not show the corresponding plots as they do
not reveal anything conceptually new. This behavior is also
easily understandable gometrically.

For even larger values of L such that kL ≳ 4�∕�4, the
paraxial approximation becomes inaccurate and one must
use the exact expression (23) for the incident field. Numeri-
cal integration becomes difficult in this case but nothing un-
expected happens. Since (23) satisfies the wave equation ex-
actly, the generalized optical theorem also holds exactly; it
is just necessary to integrate fe(�, L) over an increasingly
large area.

In order to provide an operational method of measuring

V.A. Markel: Preprint submitted to Elsevier Page 8 of 10



What is extinction?
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-0.004
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0.004

Figure 5: Function �(−)
e
(R) for the same parameters as in

Fig. 4 but only the case kL = 104 is shown. The numerical
values of �(−)

e
(R) for kL = 105 and kL = 106 are too small to

be shown in the same figure frame.

Qe, it remains to show that �s ≪ �e for some reasonable
measurement parameters. This relation could be expected
since S± typically make a small fraction of the sphere of
radius L (in terms of area) and scattering by small parti-
cles is isotropic or, at least, not very forward-peaked. We
can make the statement more quantitative for the parame-
ters used in Fig. (4). ConsiderR = 2w0 as the characteristic
point. Then |�s∕�e| ≈ 0.07 for kL = 104, |�s∕�e| ≈ 8 10−4
for kL = 105 and ≈ 8 10−6 for kL = 106. So, in the cases
considered above, the scattered and incident fields can be ef-
fectively separated and the extinguished power can be mea-
sured in terms of energy fluxes.

Note that �e was defined in (15a) using the difference be-
tween the flux of je that enters the region Ω through S− mi-
nus the flux that exits throughS+. However, the first quantity
can be negligible for some “useful” values of R. By useful,
we mean such R that �e is already close to its limiting value
yet �s is still negligible. This is illustrated in Fig. 5 where
we plot the function

�(−)
e
(R) = 2� ∫

R

0
ẑ ⋅ je(�,−L)�d� (28)

for the same parameters as in Fig. 4 and kL = 104. For the
larger values of L that were considered in Fig. 4, �(−)e (R) is
even smaller. This is due to cancellation of terms in (6a).
The two terms in the right-hand side of this expression in-
terfere destructively at z = −L. In addition, �(−)e (R) ap-
proaches its limiting value of zero when R ∼ 3w0.

Finally, we should not forget about the incident energy
flux. What we have shown so far is that the energy fluxes
Q(−)e andQ(−)s through S− are negligible. However, the inci-
dent energy flux is just the incident power,W . We therefore
have Q(−)

t
≈ W for the total energy flux through S−. Anal-

ogously, we have Q(+)
t
≈ W −Qe. The approximate equal-

ity is used to indicate that we disregarded various negligible
terms discussed above. The difference, ΔQ ≡ Q(−)

t
− Q(+)

t

is therefore a good approximation for Qe. However, if the
incident energy flux W is known a priori, then Qe can be

measured with a single flat detector located on S+. In this
case, themeasurement scheme becomes identical to that pro-
posed in Ref. [18].

Thus, we have an operation definition of extinction in
terms of directly measurable energy fluxes. Importantly, the
extinguished energy Qe can be measured with just one flat,
power-integrating detector, assuming the incident power is
known or can be measured independently. The shape and
size of the detector does not matter as long as it is large
enough to intercept the beam but small enough to not be af-
fected by the scattered energy flux. Under these conditions,
Qs can also bemeasured directly by using 4�-solid angle de-
tectors, although it is probably much easier to measure Qe

and Qa with flat detectors of different size (a small detector
will measureQe and two large detectors would still measure
Qa as in the previous Section) and then compute the scat-
tered power as Qe −Qa.

5. Discussion
We have shown that extinguished power is a meaningful

physical quantity for narrow collimated beams and small, al-
most isotropically scattering particles. In this regime, the ex-
tinguished power is literally removed from the beam. How-
ever, as we relax the above assumptions, definition of extin-
guished power in terms of directly measurable energy fluxes
becomes not impossible but increasingly problematic.

In particular, the extinction cross section does not char-
acterize fully small particles for the case of a very wide-
front incident waves. This is obvious already from the fol-
lowing example: a periodic arrangement of non-absorbing
small particles support a wave that propagates through such
a medium without any attenuation even though each particle
can have a large extinction cross section. If we then consider
a disordered arrangement, all incident power will be back-
reflected (for a sufficiently thick layer of such particles), but
the rate of decay of the wave inside the layer will depend on
the scattering phase function of each particle, not on its total
extinction cross section. This is well-known in the theory of
radiative transport.

Another limitation is related to strongly forward-peaked
scattering. Large objects create a geometric shadow behind
them and this is related to a highly forward-peaked scattering
amplitude. Measuring the extinguished power in this case is
problematic because it is difficult to separate spatially the in-
cident and the scattered fields. Basically, the larger the scat-
tering object is, the further from it the measurement surfaces
must be placed. On the other hand, we need tomake sure that
the incident beam is still tightly collimated at such propaga-
tion distances. The two requirements contradict each other.
Therefore, although it is theoretically possible to construct
a collimated beam so that the power extinguished by any fi-
nite object can be measured in the manner described above,
the parameters of this beam can easily become extreme or
unrealistic.

We have considered extinction by a single isolated par-
ticle. Additional complicated effects arise when the parti-
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cle can move, or there are more than one particle, or there
are several particles that can move. The above effects can
make measuring the extinction easier by averaging out the
oscillations in the interference term [15]. On the other hand,
multiple-scattering effects can make the theoretical consid-
erationsmore complicated, as can be glimpsed from the above
example of a thick layer containing many particles.

Scalar Gaussian beams have a relatively simple mathe-
matical form, and this was the main motivation for consid-
ering a scalar field in this paper. We expect however that the
same conclusions can be reached in the more complicated
electromagnetic case, although some new polarization-related
effects will arise, as is demonstrated in [10]. A linearly-
polarized Gaussian beam is not very different from the scalar
beam considered below. However, one important difference
between the scalar wave and vector wave physics is that, in
the latter case, the scattered field is never truly isotropic. The
effects of the scattered field anisotropy on the operational
definition of extinction is an interesting subject for further
investigation.
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