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In this article, we consider the theoretical underpinning of the coupled-dipole approximation as
it is used in the multiple scattering theory. Specific topics include the definitions of the bare and
renormalized polarizabilities, radiative and non-radiative corrections, coupled-dipole equations in the
vicinity of a substrate, and rigorous derivation of the energy relations, particularly, in the case when
the particle polarizabilities can be tensorial. It is shown how the Purcell factors can be related to the
renormalized polarizabilities. As an application, several extinction-related paradoxes are considered
by using the coupled-dipole approximation as the underlying physical model.
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1. Introduction
The coupled-dipole approximation (CDA) is immensely

popular in the optics literature due to its intuitive phys-
ical appeal, the wide variety of optical (more generally,
electromagnetic) phenomena that this mathematical model
encompasses and, not least, simplicity. There exist however
two different, concurrently used versions of the coupled-
dipole equations (CDEs). This can lead to confusion. It is
useful therefore to state both versions of the CDEs in one
place and explain how conversion from one formulation to
another can be achieved. Doing so seems to be especially
important for the case when the particle polarizabilities are
tensorial since this possibility is rarely addressed in the
literature (a few notable exceptions are mentioned below).
Some closely-related subjects that can benefit from a self-
contained exposition include the so-called radiative and non-
radiative corrections (to the bare polarizabilities) and the
definition of renormalized polarizabilities in the presence of
large objects such as a substrate.

Another goal of this article is to provide a clean deriva-
tion of the energy relations such as the relation between the
excited dipole moments and the extinguished, absorbed and
scattered powers. In the case of tensorial polarizabilities, or
particles of complicated shape and internal structure, this
derivation is not straightforward and requires some care.

As an application, we use the CDA to illustrate some
paradoxes related to extinction. The point of this exercise
is to show that, for example, the classical extinction paradox
(wherein the extinction cross section of an optically large
sphere is roughly twice its geometrical cross section) is not
just a peculiar mathematical feature of the Mie solution but,
rather, a general phenomenon, which can be fully understood
within the framework of CDA. We also note that only the
absorbed power is a directly measurable physical quantity.
Contrary to the popular belief, the extinguished and the
scattered powers (or cross sections in the case of an incident
plane wave) are mathematical constructs that cannot be
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easily related to some measurable energy fluxes. This is the
reason behind the various “extinction paradoxes” that are
discussed below, some of which are well-known while others
are not.

This Section contains introductory material. In the Sec-
tion 2, we discuss two versions of the CDEs. Here the bare
and the renormalized polarizabilities are introduced. Non-
radiative corrections is an important topic that comes up
frequently in the context of finding an accurate relation be-
tween the bare and the renormalized polarizabilities. These
corrections are discussed in detail in Section 3. In Section 4,
we illustrate the concepts of bare and renormalized polariz-
abilities by considering the CDEs near a planar substrate. It
is shown how the renormalized polarizabilities can be used
to compute the Purcell’s factors. In Section 5, we derive the
energy relations while keeping the discussion as general as
possible. In Section 6, we illustrate the effects of radiative
and non-radiative corrections to the quasistatic polarizability
of a particle (an elementary dipole in the CDA) with several
numerical examples. The importance of accounting for the
radiative corrections in systems with optical resonances is
underscored. In Section 7, we discuss several extinction-
related paradoxes using the CDA as the underlying physical
model. Concluding remarks are given in Section 8.

1.1. Motivation and review
To start with, it is useful to distinguish between two

general classes of applications in which the CDEs are used.
The first class is the so-called discrete-dipole approximation
(DDA), which is concerned with computing numerically
the optical responses (typically, optical cross sections) of
bulk non-spherical particles such as small ice crystals in
the atmosphere. The particles are approximated by an array
of point isotropic (in some rare cases, anisotropic) dipoles
arranged, most typically, on a cubic (sometimes, rectan-
gular) lattice and having approximately the same overall
shape and size as the bulk particle. The basic assumption
is that, with the proper choice of particle polarizabilities and
with sufficiently dense sampling, the array of point dipoles
would mimic the optical response of the bulk particle. The
technique was introduced by Purcell and Pennypacker [1]
and then refined by Draine [2] and Draine and Goodman [3].
Mathematically, the DDA can be derived by discretization of
the macroscopic Maxwell’s equations written in the integral
form [4, 5, 6, 7]. Further reviews of the technique were
given by Draine and Flatau [8, 9] and, with an emphasis
on a mathematically-rigorous derivation, by Yurkin and
Hoekstra [7]. A recurring theme in the theory of DDA is the
correct definition of polarizabilities of the fictitious dipoles
that form the discrete backbone of a bulk particle [7, 10].

It should be kept in mind that, in the framework of DDA,
the dipoles are purely mathematical constructs; they do not
correspond to any physical particles. Perhaps, the dipoles
can be said to represent the medium voxels. However, one
can envisage a situation in which particles with the polar-
izabilities prescribed by the DDA actually exist and can
even be arranged on the DDA lattice. In this case, the same

set of equations describes two different physical objects.
This is not surprising if we recall that the electromagnetic
properties of some composites can be well approximated by
an effective medium theory. Then, assuming the wavelength
is sufficiently large, the Clausius-Mossotti relation and its
inverse – the Maxwell Garnett mixing formula – can be used
to navigate between the bulk and the particulate descriptions
of the medium.

Another class of applications, with which this article is
primarily concerned, is multiple scattering and absorption
of electromagnetic waves by an assembly of small particles.
These particles are assumed to physically exist; they are
not conjured to represent or approximate a bulk object.
Consequently, the particles are not required to be arranged
on any lattice or to form any geometrical structure or shape.
The only requirements are that the particles are sufficiently
small compared to the wavelength and do not approach
each other too closely, lest the dipole approximation breaks
down [11]. We refer to this approximation as to the coupled-
dipole approximation (CDA), not to be confused with the
DDA 1. Conceptually, the CDA is similar to what is known
in the mathematical literature as the Foldy-Lax approxima-
tion [12, 13], although the latter was originally formulated
for scalar waves.

While the goal of the CDA is to describe physical par-
ticles, at some level of consideration, the particle shape and
size can disappear completely from the theory. All that can
be said about a particle in this case is that it has a position
(a point in space) and a dipole polarizability. Then one can
consider the arising mathematical model in a purely formal
manner. Even though the CDA theory can be constructed
without any reference to the physical origin, shape and size
of the particles, application of this theory requires that we
take all those things into account in order to determine
whether the CDA is applicable to a particular setting. Luck-
ily, the CDA is not too restrictive. For example, if two
spherical particles of radius 𝑎 are small compared to the
external wavelength (i.e., the optical size parameter satisfies
|𝑚|𝑘𝑎 ≲ 0.2, where 𝑘 = 𝜔∕𝑐 and𝑚 is the complex refractive
index of the particle [14]) and do not quite touch (i.e., if
the surface-to-surface separation 𝜎 of two spherical particles
of radius 𝑎 is 𝜎 ≳ 0.2𝑎 [15, 16]), the CDA is applicable.
It was further argued by Khlebtsov that the above pairwise
condition of CDA applicability remains valid for aggregates
containing an arbitrary number of particles [17]. Of course,
in each particular setting, the CDA applicability conditions
can depend to some extent on the geometry and properties
of the particles and the aggregate. A first principles check
can be performed by comparing the CDA results to those of

1The term discrete-dipole approximation (DDA) has been used in the
literature quite broadly. In particular, it was used to refer to the multiple
scattering theories in which several or many small particles interact via
dipole electromagnetic fields. Here we wish to make a clear distinction and
refer to the latter flavor of the theory as to the coupled-dipole approximation
(CDA). DDA and CDA operate, formally, with the same set of equations,
but the definitions of particle polarizabilities and the spatial arrangements
of dipoles are substantially different in the two cases.
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a more accurate approximation that involves several higher-
order multipoles, i.e., see [18].

The motivation for writing this article is three-fold. First,
most if not all available reviews of the subject, some of
which have been cited above, are concerned specifically
with the DDA. However, the DDA does not consider the
most general problem of dipole interaction and rarely al-
lows the particle polarizabilities to be tensorial. However,
tensorial polarizabilities become important in some of the
modern applications. The energy relations for the tensorial
polarizabilities, or for the polarizabilities that correspond
to complicated or internally inhomogeneous particles, are
not obvious and the derivation in this case requires some
care. The second motivation is the existence of two different
versions of the CDEs, which differ from each other by the
manner in which the diagonal element of the Green’s tensor
is used or denoted. The two versions are mathematically
equivalent and related to each other by a simple algebraic
transformation. However, this fact is not always obvious or
transparent, especially in the case when more complicated
Green’s functions are used, i.e., for particles located near a
substrate or another large object. This situation is discussed
in Section 4 below. Third, we show how the CDA can be
used to describe and understand various paradoxes related
to extinction, including the classical extinction paradox.

We finally note that the CDA is an important research
tool in optics and electromagnetic theory. To name just a
few examples, the CDA has been applied to the description
of superradiance [19], ferroelectricity [20], surface effects
in organic molecular films [21], atmospheric optics [22, 23],
and chemical sensing [24, 25]. Recently, applications related
to optimizing optical transparency [26] or absorption [27,
28] have also emerged (the application of Ref. [27] explicitly
requires the introduction of tensorial polarizabilities). There
are therefore sufficient grounds to believe that the CDA is
still a useful and viable physical theory.

1.2. Notations and units
Below we use two different notations for the polarizabil-

ity of a particle. The upright symbol χ (tensor) or the slanted
symbol 𝜒 (scalar) denote the bare polarizability, which
does not account for the radiation reaction effects while the
symbols α (tensor) or 𝛼 (scalar) refer to the renormalized
polarizability, which does.

Tensors are distinguished from scalars by the font type.
The upright “typewriter” font such as 𝙶, 𝙸, etc., is used
to represent tensors (3 × 3 matrices). Scalars are typeset
using the usual mathematical italic font, such as 𝑘, 𝑄, etc.
Three-dimensional vectors are typeset using the bold-face
straight font as in 𝐝 or𝐄. No overhead decorations are used to
distinguish tensors, vectors and scalars with one exception:
unit vectors are decorated with an overhead hat as in �̂� or
�̂�. It is assumed throughout that all unit vectors have purely
real Cartesian components so that, for example, �̂� ⋅ �̂� =
1 (no complex conjugation is involved). This assumption
does not hold for other vectors; for example, the vectors of
dipole moments 𝐝𝑛 can have complex Cartesian components

of arbitrary relative phase; such vectors do not define a
direction in space.

We will also define 3𝑁-dimensional vectors. In this case,
Dirac notations will be used as in |𝑑⟩, which is a 3𝑁-
dimensional vector of all Cartesian components of𝑁 dipole
moments, or in |𝐸⟩, which is a similar 3𝑁-dimensional
vector of incident field components. Linear operators acting
in the 3𝑁-dimensional vector space (3𝑁 × 3𝑁 matrices)
are denoted by capital letters using the mathematical italic
font like 𝐺 in the matrix element ⟨𝐸|𝐺|𝑑⟩. Note that here
the usual rules for Hermitian conjugation should be applied,
i.e., ⟨𝐸| is the Hermitian conjugate of |𝐸⟩.

We will use the same symbols for time-dependent quan-
tities represented in time and frequency domains. For exam-
ple, 𝐄(𝐫, 𝑡) is the electric field in time domain while 𝐄(𝐫) is
the electric field in frequency domain. The dependence of the
frequency𝜔 is omitted in the latter case. However, we should
keep in mind that the frequency-domain solutions depend
on the frequency. It should be clear from the context and the
displayed lists of formal arguments whether the time-domain
of the frequency-domain representation is used.

Gaussian system of units is used throughout this article.

2. Two versions of the coupled-dipole
equations
In this Section, we describe two equivalent versions

of the CDEs. The versions are related to each other by a
trivial transformation but involve different definitions of the
Green’s function and the polarizabilities. We start however
with describing the basic mathematical ingredients of the
CDA that are common in both approaches.

In all cases, we consider 𝑁 point particles located at
the positions 𝐫𝑛 in space and characterized by the (gen-
erally, tensorial) polarizabilities denoted below by α𝑛 or
χ𝑛 (depending on the approach used) and by the induced
dipole moments 𝐝𝑛, 𝑛 = 1, 2,… , 𝑁 . We note that in the
literature the polarizabilities are typically assumed to be
scalar, although deviations from this assumption can be
practically important. There are however some exceptions.
For instance, tensor polarizabilities have been introduced by
Smunev, Chaumet and Yurkin [29] in the context of DDA
for the so-called “rectangular voxels” (and for an anisotropic
bulk material) and by Rasskazov, Karpov and Markel for the
case of interacting differently oriented ellipsoids. [30].

The system is irradiated by a monochromatic external
wave 𝐄ext(𝐫) whose electric field at the point 𝐫𝑛 is denoted
by 𝐄𝑛, that is, 𝐄𝑛 = 𝐄ext(𝐫𝑛). We assume that α𝑛 or χ𝑛 are
symmetric and diagonalizable in some real and orthogonal
principal axes, although we do not require that these axes
are the same for all particles. We can write therefore (for
economy of space, we adduce the formulas for α but exactly
the same relations are valid for χ):

α𝑛 = 𝚁𝑇𝑛 𝙳𝑛𝚁𝑛 , (1)

where 𝚁𝑛 are orthogonal matrices of rotation, the superscript
𝑇 denotes transposition, and 𝙳𝑛 are diagonal matrix of the
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form

𝙳𝑛 =
⎡

⎢

⎢

⎣

𝛼(1)𝑛 0 0
0 𝛼(2)𝑛 0
0 0 𝛼(3)𝑛

⎤

⎥

⎥

⎦

. (2)

Here 𝛼(𝑝)𝑛 (𝑝 = 1, 2, 3) are the principal values of α𝑛. An
equivalent representation of the tensor α𝑛 is

α𝑛 =
3
∑

𝑝=1
𝛼(𝑝)𝑛 �̂�(𝑝)𝑛 ⊗ �̂�(𝑝)𝑛 , (3)

where �̂�(1)𝑛 , �̂�(2)𝑛 and �̂�(3)𝑛 are three mutually-orthogonal unit
vectors with purely real Cartesian components and the sym-
bol ⊗ denotes tensor product. It can be seen that

𝚁𝑛 =

⎡

⎢

⎢

⎢

⎣

𝑢(1)𝑛𝑥 𝑢(1)𝑛𝑦 𝑢(1)𝑛𝑧
𝑢(2)𝑛𝑥 𝑢(2)𝑛𝑦 𝑢(2)𝑛𝑧
𝑢(3)𝑛𝑥 𝑢(3)𝑛𝑦 𝑢(3)𝑛𝑧

⎤

⎥

⎥

⎥

⎦

. (4)

Equations (1) through (4) describe many particles that are
of interest in applications. Note however that the above
equations imply that the particles are reciprocal and non-
chiral. In fact, the assumptions of chirality and zero size are
at odds with each other and can not be easily reconciled. Here
we choose the assumption of zero size as fundamental. On
the other hand, it is possible to make a chiral object out of
non-chiral point particles, i.e., by placing them on a helix.
However, it is not possible to create a non-reciprocal object
out of a collection of reciprocal particles. In other words,
the T-matrix of any collection of interacting particles whose
polarizability tensors are symmetric is also symmetric.

Further, we work in frequency domain and the time
dependence of all quantities can be restored by writing, for
example,

𝐝𝑛(𝑡) = Re[𝐝𝑛𝑒−𝑖𝜔𝑡] , (5)

and similarly for other time-dependent quantities.
The central piece of the CDA is the assumptions of

linearity and locality of response, which is stated mathemat-
ically as

𝐝𝑛 ∝ 𝐞𝑛 , (6)

where 𝐞𝑛 is the electric field at the point 𝐫𝑛, which is
applied to the 𝑛-th dipole. Following the commonly-used
terminology, we will refer to 𝐞𝑛 as to the local field, but
see the remark in the beginning of Section 5. The local field
𝐞𝑛 is, obviously, different from the external field 𝐄𝑛 since
the former is a superposition of the latter and the scattered
field. The proportionality coefficient between 𝐞𝑛 and 𝐝𝑛 is
so far left out of consideration as it is different in the two
different approaches considered below; this coefficient will
be denoted by either α𝑛 or χ𝑛 depending on which approach
is used.

The above conventions are the same in both approaches.
Now we will focus on the differences.

2.1. First Approach
In the First Approach, the local field at 𝐫𝑛 is a superposi-

tion of the external field and the fields scattered by all dipoles
except for the 𝑛-th. That is,

𝐞𝑛 = 𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚 , (7)

where 𝙶𝑛𝑚 is the frequency-domain Green’s tensor for the
electric field acting between the points 𝐫𝑚 and 𝐫𝑛. The
expression for 𝙶𝑛𝑚 in free space is well known; for complete-
ness, we adduce the relevant formulas and a brief derivation
in Appendix A. However, we are by no means constrained
to the consideration of free space; the Green’s tensor in
(7) can be applicable to more complicated geometries with
boundaries or large objects present. A typical example of
such a physical setting is the presence of a planar substrate,
and this case is discussed in more detail in Section 4 below.
What is important for us now is that the diagonal terms 𝙶𝑛𝑛
do not appear in (7). Still, as we will see below, it would be
a mistake to assume that 𝙶𝑛𝑛 = 0. This term is not zero even
in free space and one can easily anticipate that it would not
be zero in more complicated geometries, i.e., in a cavity or
near a substrate.

The CDEs in the First Approach are obtained by com-
bining (6) and (7) and are of the form

𝐝𝑛 = α𝑛

[

𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚

]

. (8)

So, in the right-hand sides of (7) or (8), there is no self-action
of the dipole. Instead, the self-action, which includes the
radiative reaction, is accounted for in the expressions for the
polarizabilities α𝑛. The polarizability in this case is defined
as follows: it is the tensor coupling the dipole moment 𝐝𝑛 of
a small particle to the electric field at the particle location 𝐫𝑛
that is produced by the external sources [the term 𝐄𝑛] and
by all other dipoles [the term

∑

𝑚≠𝑛 𝙶𝑛𝑚𝐝𝑚]. A subtle point
here is that the actual electric field at 𝐫𝑛 can be different. This
fact will become especially transparent when we consider a
substrate in Section 4. However, it is true even in free space.
We will refer to the linear coefficient determined precisely
according to the above definition as to the “renormilized
polarizability”. The justification behind this terminology
will become apparent later.

We now state the following important fact. Energy con-
servation requires that all principal values of a renormal-
ized polarizability tensor α𝑛 satisfy some inequality. In
free space, this inequality can be obtained by requiring
that the absorption cross section of an isolated, optically-
passive particle be non-negative. If one also introduces the
extinction and scattering cross sections, the above condition
becomes equivalent to the requirement that the extinction
cross section be not smaller than the scattering cross sec-
tion. The latter condition is simpler mathematically and has
been used to find the constraint on α𝑛 [2, 31]. Indeed, the
extinction cross section of an isolated particle excited by a
monochromatic plane wave with a complex amplitude 𝐄0 is
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given by the well-known expression

𝜎𝑒 =
4𝜋𝑘

𝐄∗
0 ⋅ 𝐄0

Im[𝐄∗
0 ⋅ α𝐄0] , (9)

where 𝑘 = 𝜔∕𝑐. The scattering cross section is given by

𝜎𝑠 =
8𝜋𝑘

3𝐄∗
0 ⋅ 𝐄0

(α𝐄0)∗ ⋅ (α𝐄0) . (10)

Note that, in these expressions, α is the renormalized polar-
izability according to the definition given above. By requir-
ing that 𝜎𝑒 ≥ 𝜎𝑠 and allowing 𝐄0 to be arbitrary, we find that
the following inequality must hold for all principal values of
α:

Im 1
𝛼(𝑝)

≤ −2𝑘3
3

, 𝑘 = 𝜔
𝑐

(free space) . (11)

The term in the right-hand side of this inequality is known
as the radiative correction. In free space, this term is quite
simple. However, in geometries involving boundaries, inter-
faces or large objects, it can be of a more complicated form.
In fact, the modification of this term by the interaction of a
small particle (sometimes referred to as a point emitter or a
quantum emitter) with a surface or a relatively large object
can give rise to a modification of the characteristic time
of radiative decay (the radiative lifetime); the ratio of this
modified radiative lifetime to that in free space is known as
the Purcell’s factor [32]. In the literature, the Purcell’s factor
is more frequently associated with the imaginary part of the
Green’s tensor 𝙶𝑛𝑛. However, it is equally valid to associate
the Purcell’s factor with the renormalized polarizability. An
illustrative example of a calculation of the radiative lifetime
is given, for example, in [33].

One reason why the use of renormalized polarizabilities
can be viewed as natural is that (11) is consistent with the
Mie solution for spheres in free space. Indeed, the total
dipole moment of a dielectric sphere of permittivity 𝜖 =
𝜖′+𝑖𝜖′′ and radius 𝑎 excited by a plane wave of the amplitude
𝐄0 is given by 𝐝 = 𝛼Mie𝐄0, where

𝛼Mie =
3𝑖
2𝑘3

𝑚𝜓1(𝑚𝑘𝑎)𝜓 ′
1(𝑘𝑎) − 𝜓1(𝑘𝑎)𝜓 ′

1(𝑚𝑘𝑎)

𝑚𝜓1(𝑚𝑘𝑎)𝜉′1(𝑘𝑎) − 𝜉1(𝑘𝑎)𝜓
′
1(𝑚𝑘𝑎)

. (12)

Here 𝑚 =
√

𝜖 is the complex refractive index of the
sphere, 𝜓1(𝑥), 𝜉1(𝑥) are the Riccati-Bessel functions and
prime denoted derivative with respect to the argument in
the parenthesis. The result (12) is exact for all values of the
radius 𝑎. If we are interested in small particles, we can use
the Laurent expansion of Im(1∕𝛼Mie) in powers of 𝑎, which
reads

Im 1
𝛼Mie

= − 3𝜖′′

𝑎3|𝜖 − 1|2
− 3𝑘2𝜖′′

5𝑎|𝜖 − 1|2
− 2𝑘3

3

−
3𝑘4𝑎(8 + |𝜖|2 − 2𝜖′)𝜖′′

350|𝜖 − 1|2
+ 𝑂(𝑘6𝑎3) . (13)

The expansion contains only odd powers of 𝑎 (including
zero) and it can be verified that each term in the expansion

is non-positive. Thus we see that (11) holds for 𝛼Mie. The
equality in this condition is achieved only for non-absorbing
materials with 𝜖′′ = 0.

Of course, (12) gives the polarizability of a finite-size
sphere due to a very special form of excitation (a plane
wave). In an aggregate, each particle is not necessarily a
homogeneous sphere and it is not excited by a plane wave;
as a result, the expression (12) is not generally applicable.
The polarizability tensor α𝑛, as used in this article and in
the vast literature utilizing the dipole approximation, is a
more general and a more abstract mathematical object than
𝛼Mie. However, the third-order term −2𝑘3∕3 (the radiative
correction) in the expansion (13) is universal; it does not
depend on the type of excitation or the particle shape. This is
why the condition (11) is also universal. On the other hand,
the lower-order terms in the expansion are not universal;
they can depend on the the particle shape and form of
excitation. These lower-order terms (so-called non-radiative
corrections) are discussed in more detail in Section 3 below.

To summarize, the First Approach to the CDA makes
use of the renormalized polarizabilities, which satisfy the
inequality (11) in free space or its generalization in more
complicated geometries, but does not use explicitly the diag-
onal elements 𝙶𝑛𝑛 of the Green’s tensor. The First Approach
might be viewed as natural because the property (11) is
satisfied by exact solutions such as, for example, the Mie
solution.

2.2. Second Approach
In Second Approach, the diagonal terms 𝙶𝑛𝑛 are used

explicitly in the CDEs. In free space, the relevant terms are
independent of 𝑛 and given by

𝙶𝑛𝑛 = 𝑖2𝑘
3

3
𝙸 (free space) . (14)

This expression is derived in a semi-qualitative manner in
Appendix A; a more mathematically-rigorous derivation has
been recently presented by Moskalensky and Yurkin [34]
where it was pointed out that only the imaginary part of
𝙶𝑛𝑛, which is finite and given by (14) in free space, is
physically important. In more complicated geometries, 𝙶𝑛𝑛
can be tensorial and depend on 𝑛. What is important for us
now is that the local field 𝐞𝑛 in the Second Approach includes
the self-action of a dipole and is given by

𝐞𝑛 = 𝐄𝑛 +
∑

𝑚
𝙶𝑛𝑚𝐝𝑚 (15a)

= 𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚 + 𝙶𝑛𝑛𝐝𝑛 (15b)

= 𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚 + 𝑖2𝑘

3

3
𝐝𝑛 (free space) . (15c)

The second difference is that the Second Approach uti-
lizes the so-called “bare” polarizabilities, which we denote
here by χ𝑛. Simply stated, the bare polarizabilities are the
quasistatic polarizabilities; they can be obtained by comput-
ing the total dipole moment of a dielectric particle of known
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shape and composition subjected to a spatially-uniform ex-
ternal electric field. Mathematically, this is achieved by
solving the Laplace equation (rather than the full Maxwell’s
equations) with appropriate boundary conditions at the par-
ticle surface and at infinity. If the particle is a molecule or
a quantum dot, one would solve the appropriate frequency-
dependent density-matrix equations while assuming that the
external (driving) field is spatially uniform over the extent of
the particle. The bare polarizabilities therefore do not depend
on any external boundaries or the environment in which the
particle is placed. Consequently, bare polarizabilities convey
no information about the Purcell’s factor.

It is important to emphasize that the effects of frequency
dispersion, i.e., on the material properties are retained in the
quasistatic approximation, and the working frequency can
still be quite large. In particular, the frequency can be in the
visible spectral range. However, the characteristic size 𝑎 of
a particle under consideration should be vanishingly small
compared to the free-space wavelength 𝜆. More precisely, it
is required that 𝑘𝑎 = 2𝜋𝑎∕𝜆 ≪ 1. How strong this inequality
should be for the quasistatic to be accurate depends on the
material. If the permittivity is very large at the working
frequency, as could be the case in metals, the inequality
needs to be very strong. However, from a mathematical point
of view, a sufficiently small size for which the quasistatic
limit sets in always exists for any finite frequency, except,
perhaps, in superconductors 2. When this limit is achieved,
the particle polarizability does not depend on 𝑎 except for the
trivial overall factor 𝑎3. For example, the bare polarizability
of a small dielectric sphere of radius 𝑎 and permittivity 𝜖 is

𝜒 = 𝑎3 𝜖 − 1
𝜖 + 2

. (16)

This expression can be obtained by taking the limit 𝑎 → 0
of (12). It is obvious that (16) does not generally satisfy
the inequality (11). For example, if 𝜖 is purely real 3, then
𝜒 given by (16) is also purely real and does not satisfy
(11). One can come to the paradoxical conclusion that the
scattering cross section for such a particle is larger than the
extinction cross section and therefore absorption is negative.
This paradox is resolved if we account for the self-field of the
dipole – that is, if we either take the term 𝙶𝑛𝑛 into account
or use the renormalized polarizability instead of the bare
polarizability.

The CDEs in Second Approach are of the form

𝐝𝑛 = χ𝑛

[

𝐄𝑛 +
∑

𝑚
𝙶𝑛𝑚𝐝𝑚

]

. (17)

Here the summation is extended over all indexes 𝑚 and χ𝑛
are the bare polarizabilities. To see that (17) is equivalent to
(8), we consider the terms with 𝑚 = 𝑛 and 𝑚 ≠ 𝑛 in (17)

2It is a different matter whether this small size corresponds to a realistic
physical particle.

3This can be the case with very high precision for some transparent
materials such as water in the visible spectral range.

separately. That is, we write

𝐝𝑛 = χ𝑛

[

𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚 + 𝙶𝑛𝑛𝐝𝑛

]

. (18)

Moving the term 𝙶𝑛𝑛𝐝𝑛 to the left-hand side of the equation,
we obtain

[

𝙸 − χ𝑛𝙶𝑛𝑛
]

𝐝𝑛 = χ𝑛

[

𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚

]

. (19)

We then multiply both sides of the equation by the tensor
[𝙸 − 𝙶𝑛𝑛χ𝑛]−1, which is implicitly assumed to exist (and we
would run into trouble if it does not), to obtain

𝐝𝑛 =
[

𝙸 − χ𝑛𝙶𝑛𝑛
]−1

χ𝑛

[

𝐄𝑛 +
∑

𝑚≠𝑛
𝙶𝑛𝑚𝐝𝑚

]

. (20)

We then define the renormalized polarizability α𝑛 according
to

α𝑛 =
[

𝙸 − χ𝑛𝙶𝑛𝑛
]−1

χ𝑛 . (21)

The action of the operator [𝙸 − 𝙶𝑛𝑛χ𝑛]−1 can be seen as a
renormalization operation applied to the bare polarizabili-
ties. We can also write for the inverse polarizability tensors

α−1
𝑛 = χ−1𝑛 − 𝙶𝑛𝑛 (22a)

= χ−1𝑛 − 𝑖2𝑘
3

3
𝙸 (free space) . (22b)

Upon adoption of the definition (21), the set of equations
(20), which is equivalent to (17), becomes also equivalent
to (8). We conclude that (8) can be derived from (17)
and vice versa by using only invertible linear operations.
Therefore, the two sets of CDEs are equivalent and the two
approaches to the CDA are also equivalent. The relations
(21) or (22) allow one to switch easily between First and
Second Approaches and the corresponding sets of CDEs.

3. Non-radiative corrections
Unfortunately, the definitions of bare and renormalized

polarizabilities have been badly muddled by the so-called
non-radiative corrections. These corrections are of the or-
ders 𝑂(1∕𝑎2) and 𝑂(1∕𝑎) and primarily of interest in the
framework of DDA. The corrections in question are applied
to the bare polarizability; by using them, one goes beyond
the quasistatic limit 4 when computing χ. The main problem
with these corrections is that they are not universal and,
therefore, can not be introduced in a sufficiently general
manner. The discussion of non-radiative corrections is one
example wherein the physical setting of DDA (which is
rather specific) should be distinguished from the physical

4In the context of DDA, it is equally correct to say that the non-
radiative corrections are obtained by going beyond the Clausius-Mossotti
approximation [3].
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setting of the CDA and the multiple scattering theory (which
is much more general). We also note that the non-radiative
corrections discussed here should not be confused with the
terms in 𝙶𝑛𝑛 that are proportional to 𝑘 and 𝑘2 but do not
contain the particle size. Such terms can appear due to
interaction with a substrate, as is discussed in Section 4
below.

It is convenient to introduce the non-radiative correc-
tions by examining the Mie solution more closely. The
expansion (13) has been written for the imaginary part of
the inverse Mie polarizability, but we can write a similar
expansion in powers of 𝑎 for the complex quantity 1∕𝛼Mie:

1
𝛼Mie

= 1
𝑎3
𝜖 + 2
𝜖 − 1

− 3𝑘2
5𝑎

𝜖 − 2
𝜖 − 1

− 𝑖2𝑘
3

3

− 3𝑘4𝑎
350

𝜖2 − 24𝜖 + 16
𝜖 − 1

+ 𝑂(𝑘6𝑎3) . (23)

The first term in this expansion is the inverse of the qua-
sistatic polarizability of a sphere, which is given in (16).
Clearly, this term is shape-dependent. A similar expansion,
say, for a cube would have started with a different term.
For more complicated shapes, this term can be a tensor
with three different principal values. However, since this
term does not depend explicitly on the wave number 𝑘, it
is expected to be independent of the illuminating field. This
point is important and worth re-iterating.

Indeed, the expansion (23) has been obtained under the
assumption that the incident field is a plane wave with the
wave number 𝑘 or a superposition of such plane waves.
However, due to the effects of multiple scattering, the field
incident on any given particle in an aggregate can contain
comparatively large near-field or intermediate-field contri-
butions, unless the particles are very far apart. When ex-
panded in a spatial Fourier integral, such fields have non-
zero components with the wave numbers that are different
from 𝑘. The polarizability defined for such an incident field
would generally be different from 𝛼Mie. However, the first
term in expansion (23) would still be the same because it is
independent of the wave number 5.

Next consider the second term in the expansion. It de-
pends explicitly on the wave number 𝑘, the size of the sphere
𝑎 and its permittivity 𝜖. This term would change not only if
we change the size or shape of the particle but also if we
vary the form of the incident field. We say therefore that this
term is not universal; it depends on the minute details that
are difficult to control in any specific application. We note in
passing that the term proportional to 𝑘∕𝑎2 is identically zero
in (23), but it can be non-zero for other particle shapes.

We can now define what we mean by the non-radiative
corrections. These are the terms in the expansion of the exact
inverse polarizability in powers of the size 𝑎 (not necessarily

5One can still ask, what is the definition of the external field 𝐄0 if it is
not related to the amplitude of a plane wave and, moreover, the external field
can vary over the extent of the particle. The answer is that we can select any
value of the external field inside the particle, or its volume average, and the
differences will be small as at least 𝑘𝑎 [or (𝑘𝑎)2 for particles with a center
of symmetry]. So the first term in the expansion (23) is, in fact, independent
of the form of the external field.

a radius) that are proportional to 𝑘∕𝑎2 and 𝑘2∕𝑎. In (23), only
the ∝ 𝑘2∕𝑎 term is nonzero but, more generally, both terms
can be present. The non-radiative corrections are called so
because they can be introduced even in particles with zero
radiative decay rate or in an approximation wherein this
decay rate is zero. Thus, if we truncate expansion (23) at
the order 𝑘2∕𝑎, a particle with such a polarizability would
have infinite radiative lifetime. Therefore, the non-radiative
corrections are not caused by radiation. In the framework
of CDA and the multiple-scattering theory (as opposed to
the DDA), retaining the non-radiative corrections in the
definition of the bare polarizability does not make much
sense, as this is unlikely to improve the precision of the un-
derlying approximation. The reason is that these corrections
can be defined only by making some assumptions about the
variation of the external (with respect to a given particle)
electric field on the scale of 𝑎. This variation is usually not
known in advance, i.e., before the CDEs are solved.

The third term in (23) was previously referred to as the
radiative correction. Superficially, it appears to depend on
the wave number 𝑘. However, this term contains no other
physical scale to which 𝑘 can be compared. In fact, it is
more correct to say that this term depends on the frequency
𝜔 rather than on the wave number; the term is simply the
inverse of the pre-factor in (12). Since it does not contain
any physical scale related to the particle properties or size, it
is also independent of the form of incident field. We do not
give a rigorous proof of this statement but will see that this
is the case in several examples. For this reason, we say that
this term is universal.

We now briefly discuss the use of non-radiative correc-
tions in the theoretical framework of DDA. Since the DDA is
derived by a supposedly rigorous procedure of discretizing
the integral Maxwell’s equations, one can hope to derive the
voxel polarizabilities rigorously. However, the discretization
relies on some assumptions about the unknown solutions to
Maxwell’s equations. Different assumptions can be applica-
ble under different conditions. Considering the theoretical
uncertainty noted above, it is not surprising that the question
of computing the non-radiative corrections “correctly” has
a long history. A review of various approaches and further
references have been given by Draine and Flatau [8] and
Yurkin [10]. We mention here several frequently-used for-
mulas.

Thus, Lakhtakia and Mulholland [35] proposed to define
the renormalized polarizability (of an isotropic particle)
according to the equation

1
𝛼
= 1
𝜒

+ 2
𝑎3

[

1 + (𝑖𝑘𝑎 − 1)𝑒𝑖𝑘𝑎
]

. (24a)

The expression (24a) can be obtained by replacing the regu-
larized limit (67) in Appendix A with an integral over a finite
sphere of radius 𝑎 [36]. By expanding the right-hand side to
third order in 𝑎, we obtain

1
𝛼
= 1
𝜒

− 𝑘2

𝑎
− 𝑖2𝑘

3

3
. (24b)
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Therefore the right-hand side of (24a) contains both the non-
radiative correction to the bare polarizability (the term 𝑘2∕𝑎)
and the radiative correction that converts the inverse bare
polarizability into the inverse renormalized polarizability
according to (22) [the term −𝑖(2𝑘3∕3)]. However, being
non-universal, the non-radiative correction in (24b) is not
the same as in (23). The reason for the discrepancy is the
following: the derivation of (24a) assumes that the electric
field within the sphere is spatially-uniform while the Mie
solution does not rely on this assumption.

Draine and Goodman [8] proposed a different correction
based on matching the dispersion relation in an infinite
lattice of point dipoles and in the bulk material of the
permittivity 𝜖bulk . The renormalized polarizability given by
Draine and Goodman is of the form

1
𝛼
= 1
𝜒

− 𝑘2

𝑎
[

𝑏1 + 𝜖bulk(𝑏2 + 𝑏3𝑆)
]

− 𝑖2𝑘
3

3
. (24c)

Here 𝑏1 ≈ 1.73, 𝑏2 ≈ −0.102 and 𝑏3 ≈ 1.10 are dimen-
sionless lattice sums 6 and 𝑆 is related to the polarization
state and propagation direction of the incident wave. The
factor 𝑆 changes from 0 for propagation along one of the
crystallographic axes of the DDA lattice to 1∕2 for in-
plane propagation along one of the diagonals; the orientation
average of 𝑆 is 1∕5. By construction, (24c) applies only to
infinite lattices and therefore it can be expected to provide
a useful approximation for objects that possess a lattice
periodicity and then only locally (that is, for voxels not close
to a boundary of the bulk object), as is the case for the
digitized sphere in [8]. In the more general context of CDE,
one is interested in objects of more general geometry such
that the dipoles are not necessarily located in the nodes of a
lattice, and even if they do, are not required to fill the lattice
densely (an example of such an aggregate is considered in
Section 6 below). Apart from that, the dispersion equation on
an infinite lattice of point dipoles is not well-defined math-
ematically because the involved lattice sums are divergent.
As is typically done in such cases, the divergences can be
regularized. However, the regularization involves implicit
assumptions about the particles shape and size or about
the field variation near the nodes where the particles are
located [37]. Finally, we note that 𝜖bulk in (24c) refers to the
complex permittivity of the bulk object that is discretized by
the DDA, not to the material of interacting small particles
in the context of the multiple scattering theory. In the latter
case, it is not clear how to determine 𝜖bulk in (24c). For these
reasons, the result (24c) is also not universal and, in any
event, it can not be applied to the multiple scattering problem
involving arbitrarily located small particles.

Note that a generalization of (24c) to the case of a
rectangular lattice and a minor correction that applies to the
cubic lattice were given by Gutkowicz-Krusin and Draine

6Here we use a slightly different definition of 𝑏𝑘. In [8], these quantities
were defined as the coefficients in front of 𝑘2∕ℎ, where ℎ = (4𝜋∕3)1∕3𝑎 is
the DDA lattice step. Here we express the non-radiative corrections as 𝑘2∕𝑎
times some dimensionless coefficients. For this reason the numerical values
of 𝑏𝑘 in (24c) are different from those in [8].

in [38]. The above comments fully apply to this corrected
theory.

To sum up, accounting for the non-radiative corrections
to the bare polarizability can provide a better approximation
under the well-controlled conditions of the DDA [29]. How-
ever, in the context of multiple scattering by small particles,
these corrections are not well-defined. On the other hand, ac-
counting for the radiative correction is useful in all cases and
can even be necessary, i.e., to enforce energy conservation
and to guarantee that the CDEs have a physically-meaningful
solution. It can be remarked that the radiative correction
is the same in (23), (24b) and (24c) even though these
equations have been derived from different principles and
assumptions. This confirms the universality of the radiative
correction.

The effects of radiative and non-radiative corrections on
optical spectra of a collection of small particles is further
illustrated in Section 6 below.

4. Polarizability in the presence of a substrate
The CDA in the presence of a substrate has been exten-

sively studied in the literature [39, 40, 41]. A fundamental
question one faces in this setting is how to compute 𝙶𝑛𝑚.
Indeed, Green’s tensor is known analytically only in free
space. In the half-space geometry, a formally exact result
is given by the so-called Sommerfeld integral [42, 43].
However, the integral can be evaluated analytically only in
some asymptotic regimes. Correspondingly, a combination
of purely numerical and partially analytical approaches have
been used. In this Section, we focus on the case when the
dipoles are in the near-field zone of the substrate [33]. We
will adduce below the results for the diagonal elements
𝙶𝑛𝑛, which appear in the definition of the renormalized
polarizability (21). Similar results for the off-diagonal terms
𝙶𝑛𝑚 are given in [33]. However, the asymptotic formulas
of [33] should be used with caution in the framework of CDA
since they can lose accuracy for large lateral separations of
the dipoles.

Generally, in the presence of a substrate or of any other
large object, we can write

𝙶𝑛𝑚 = 𝙶𝐹𝑛𝑚 + 𝙶𝑅𝑛𝑚 , (25a)

where 𝙶𝐹𝑛𝑚 is the free-space Green’s tensor and 𝙶𝑅𝑛𝑚 is the
reflected part originating due to the presence of the object.
It is important to note that the reflected part of the Green’s
tensor has no singularity. That is, 𝐺𝑅(𝐫, 𝐫′) is well defined
when 𝐫 → 𝐫′. We can therefore define 𝙶𝑛𝑛 = 𝐺(𝐫𝑛, 𝐫𝑛)
without resorting to any regularizing procedure of the sort
that used in Appendix A for the free-space Green’s tensor.

Let a substrate of some complex dielectric permittivity
𝜖𝑠 (at the working frequency) occupy the half-space 𝑧 < 0.
The particles are located in the upper half-space 𝑧 > 0 but
not too far from the interface 𝑧 = 0. The directions of the 𝑋
and 𝑌 axes are mutually orthogonal but otherwise arbitrary.
Let 𝑧𝑛 be the height of the 𝑛-th dipole above the interface.
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Then we have the following expansion:

𝙶𝑅𝑛𝑛 =
1

(2𝑧𝑛)3

∞
∑

𝑙=0
(2𝑘𝑧𝑛)𝑙𝙺(𝑙) . (25b)

where

𝙺(0)𝑥𝑥 = 𝙺(0)𝑦𝑦 =
𝜖𝑠 − 1
𝜖𝑠 + 1

, (25c)

𝙺(0)𝑧𝑧 = 2
𝜖𝑠 − 1
𝜖𝑠 + 1

; (25d)

𝙺(2)𝑥𝑥 = 𝙺(2)𝑦𝑦 = 1
2
𝜖𝑠(𝜖𝑠 − 1)
(𝜖𝑠 + 1)2

, (25e)

𝙺(2)𝑧𝑧 =
(𝜖𝑠 − 1)(2𝜖𝑠 + 1)

(𝜖𝑠 + 1)2
, (25f)

𝙺(3)𝑥𝑥 = 𝙺(3)𝑦𝑦 =
𝑖𝜖𝑠

3(𝜖𝑠 + 1)2
[

Φ∥(𝜖𝑠) + 3Λ(𝜖𝑠)
]

, (25g)

𝙺(3)𝑧𝑧 = − 2𝑖
3(𝜖𝑠 + 1)2

[

Φ⟂(𝜖𝑠) + 3𝜖2𝑠Λ(𝜖𝑠)
]

, (25h)

and

Φ∥(𝜖𝑠) =
1 − 3𝜖1∕2𝑠 + 3𝜖𝑠 + 2𝜖2𝑠

𝜖1∕2𝑠 + 1
, (25i)

Φ⟂(𝜖𝑠) =
1 + 𝜖1∕2𝑠 + 2𝜖𝑠 + 2𝜖3∕2𝑠 − 2𝜖5∕2𝑠 − 𝜖3𝑠

𝜖1∕2𝑠 + 1
, (25j)

Λ(𝜖𝑠) =
𝜖𝑠

(𝜖𝑠 − 1)(𝜖𝑠 + 1)1∕2
ln

1 + (𝜖𝑠 + 1)1∕2

𝜖𝑠 + [𝜖𝑠(𝜖𝑠 + 1)]1∕2
. (25k)

Here we have listed only the non-zero matrix elements of
𝙺(𝑙). The first-order tensor 𝙺(1) is identically zero and the
off-diagonal tensor elements 𝙺

(𝑙)
𝑥𝑦, 𝙺

(𝑙)
𝑥𝑧 and 𝙺

(𝑙)
𝑦𝑧 are zero to

all orders due to symmetry. Also, the expansion coefficients
were listed only up to third order; in Ref. [33], the expansion
coefficients of Im𝙶𝑛𝑚 (for real-valued 𝜖𝑠) are computed up to
seventh order.

Combining all formulas in (25), we can write

(𝙶𝑛𝑛)𝑥𝑥 = (𝙶𝑛𝑛)𝑦𝑦 =
1
8𝑧3𝑛

𝜖𝑠 − 1
𝜖𝑠 + 1

+ 𝑘2

4𝑧𝑛

𝜖𝑠(𝜖𝑠 − 1)
(𝜖𝑠 + 1)2

+ 𝑖2𝑘
3

3
𝜉∥(𝜖𝑠) . (26a)

(𝙶𝑛𝑛)𝑧𝑧 =
1
4𝑧3𝑛

𝜖𝑠 − 1
𝜖𝑠 + 1

+ 𝑘2

2𝑧𝑛

(𝜖𝑠 − 1)(2𝜖𝑠 + 1)
(𝜖𝑠 + 1)2

+ 𝑖2𝑘
3

3
𝜉⟂(𝜖𝑠) . (26b)

Here

𝜉∥(𝜖𝑠) = 1 +
𝜖𝑠

2(𝜖𝑠 + 1)2
[

Φ∥(𝜖𝑠) + 3Λ(𝜖𝑠)
]

, (27a)

𝜉⟂(𝜖𝑠) = 1 − 1
(𝜖𝑠 + 1)2

[

Φ⟂(𝜖𝑠) + 3𝜖2𝑠Λ(𝜖𝑠)
]

(27b)

are the Purcell’s factors for parallel and orthogonal oscilla-
tions of an isolated point dipole in the vicinity of an interface.
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1.5

1

0.5

0

Figure 1: Purcell factors 𝜉 for a single dipole near a
dielectric interface with a purely-real permittivity 𝜖𝑠 and for
the polarization of oscillations parallel to the interface (𝜉∥)
and orthogonal to the interface (𝜉⟂).

The functions 𝜉∥(𝜖𝑠), 𝜉⟂(𝜖𝑠) are shown in Fig. 1 for real 𝜖𝑠.
It can be seen that, for realistic materials (𝜖𝑠 > 1), both
Purcell’s factors are greater than unity. This means that the
presence of the substrate makes the radiative lifetime shorter.
For 𝜖𝑠 < 1, both factors are less than unity, and 𝜉⟂ even
reaches zero at 𝜖𝑠 = 0. A hypothetical 𝜖𝑠 = 0 substrate
would make the radiative lifetime of the dipole oscillations
polarized in the 𝑋𝑌 -plane infinite since 𝜉⟂(𝜖𝑠) turns to zero
at 𝜖𝑠 = 0. This, however, is not an exact result. Rather,
the above expressions are valid asymptotically in the limit
𝑘𝑧𝑛 → 0. One should not expect truly infinite radiation
lifetimes in any realistic physical setting.

We now make several comments.
First, the zero-order terms 𝙺(0) in (25c) describe the

well-known contributions of the fictitious reflected (image)
dipole, which is located below the interface at 𝑧 = −𝑧𝑛. The
term 𝙺(2) is similar to the non-radiative corrections that were
discussed in Section 3 above. Indeed, the corresponding
contribution to 𝙶𝑛𝑛 in (26) is proportional to 𝑘2∕𝑧𝑛. However,
these terms do not depend on the particle size and shape
nor on the exact form of the local field in the vicinity of 𝐫𝑛.
Therefore, we do not classify such terms as non-radiative
corrections to the bare polarizability; rather, they are non-
radiative contributions to 𝙶𝑅𝑛𝑛. These terms are universal
and should generally be taken into account. The third-order
terms 𝙺(3) describe the first non-vanishing radiative contri-
bution to 𝙶𝑅𝑛𝑛; together with the similar term in 𝙶𝐹𝑛𝑛, they
define the Purcell’s factors for a dipole in the vicinity of a
substrate according to (27a).

Second, even if the bare polarizabilities are isotropic,
interaction with the substrate makes the renormalized po-
larizabilities tensorial.

Third, just as in the case of free space, we can use either
the First Approach to the CDA in which the renormalized po-
larizabilities are used but the diagonal elements 𝙶𝑛𝑛 are left
out of consideration or the Second Approach, in which only
the bare polarizabilities are used but 𝙶𝑛𝑛 appear explicitly in
the equations. The two approaches remain mathematically
equivalent in the presence of a substrate.
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Fourth, we should be careful to account for the presence
of the substrate in computing the off-diagonal elements 𝙶𝑛𝑚.
In a general setting, when none of the previously explored
asymptotic regimes are valid, this can be done only numeri-
cally.

Finally, the external fields 𝐄𝑛 in either (8) or (17) should
also account for the presence of a substrate. By definition,
these are the fields that would have existed in the points
𝐫𝑛 if the dipoles were removed to infinity. In particular, if
we consider a plane wave incident from above, the fields
𝐄𝑛 are superpositions of this plane wave and the reflected
plane wave; the latter can be computed according to the
usual Fresnel equations. If the excitation is performed in the
total internal reflection geometry, then 𝐄𝑛 are obtained by
sampling the evanescent wave that exists above the interface.

5. Energy relations
Energy relations for the CDA are well known, although

they are usually stated or derived in the context of DDA [2].
In particular, it is widely known that extinction is related to
the work of the external field (denoted by 𝐄𝑛 in this article)
on the oscillating dipoles while absorption is related to the
work of the local field (denoted by 𝐞𝑛). While the above
statements are generally correct, derivation of the result for
absorption is not straightforward. Indeed, one might ask,
what exactly is meant by the local field? From Joule’s heat
law, it should be the electric field acting on the moving
charges. But the latter field is generally different from 𝐞𝑛.
To compute the “true” local field one needs a specific model
for the particle.

This can be illustrated with an example. Let the particle
be a small dielectric sphere of the permittivity 𝜖 placed in
the local field 𝐞. Let us use the conventions of the Second
Approach to the CDA so that 𝐞 is determined with the
account of dipole self-action. Then the dipole moment of the
sphere is given by 𝐝 = 𝑎3[(𝜖−1)∕(𝜖+2)]𝐞. Here we have used
the bare polarizability of the sphere, as is required by Second
Approach. Now the field inside the sphere is 𝐞′ = 𝐞 − 𝐞dep,
where 𝐞dep = −[(𝜖 −1)∕(𝜖 +2)]𝐞 is the depolarizing field. It
can be seen now that the induced current inside the sphere,
𝐣 = −𝑖𝜔𝐝, and the depolarizing field, 𝐞dep, are always out
of phase (that is, the phase shift between the two oscillating
quantities is strictly 𝜋∕2). For this reason, the depolarizing
field does no work on the induced current; consequently,
the work exerted by 𝐞 and 𝐞′ on 𝐣 is the same. We can
compute the absorbed power as the work of the field 𝐞, just
as it was assumed above. The same can be demonstrated for
ellipsoids.

So the conventional formula for absorbed energy is cor-
rect for ellipsoids. But is it correct generally? If the particle is
not of ellipsoidal shape or not internally homogeneous or not
even a dielectric particle, the depolarizing field is not known
and not easily computable. The general result we wish to
prove is that, within the quasistatics, the depolarizing field
never does any work on the induced current. We will indeed
prove this but by considering the energy fluxes at infinity. A

more direct proof based on the analysis of the quasistatic
electric field inside a general particle can also be given,
but the far-field argument appears to be more general. We
will therefore present this argument below. We will follow
a calculation given in [44] and generalize it to the case of
tensorial polarizabilities.

We will perform all calculations in free space. However,
as soon as it will be shown that both extinction and absorp-
tion are, essentially, local quantities, one can easily gener-
alize the results to more complicated geometries including
that of a half-space.

In this Section, we start by working in time domain. So,
at least initially, all fields are assumed to depend on time and
position in a rather general way. Later on, we will convert
the fields to frequency domain and take the appropriate time
averages of all quantities that are quadratic in the fields.

5.1. General considerations
In a typical formulation of a scattering problem, the

electromagnetic fields everywhere in space are decomposed
into the incident (labeled by the subscript 𝑖) and scattered
(labeled by 𝑠) contributions, i.e.,

𝐄(𝐫, 𝑡) = 𝐄𝑖(𝐫, 𝑡) + 𝐄𝑠(𝐫, 𝑡) , (28a)
𝐁(𝐫, 𝑡) = 𝐁𝑖(𝐫, 𝑡) + 𝐁𝑠(𝐫, 𝑡) , (28b)

The extinguished, absorbed and scattered powers are defined
most fundamentally as certain energy fluxes. Let the scatter-
ing medium be supported in some region of space Ω with the
external boundary 𝜕Ω. Although this is not essential, we can
assume that 𝜕Ω is a sphere of sufficiently large radius. Then
the absorbed (𝑄𝑎) and the scattered (𝑄𝑠) powers are given
by the following surface integrals [14]:

𝑄𝑎(𝑡) = −∮𝜕Ω

[

𝐒(𝐫, 𝑡) ⋅ �̂�
]

𝑑2𝑟 , (29a)

𝑄𝑠(𝑡) = ∮𝜕Ω

[

𝐒𝑠(𝐫, 𝑡) ⋅ �̂�
]

𝑑2𝑟 . (29b)

Here �̂� is the outward unit normal to 𝜕Ω and 𝐒 and 𝐒𝑠 are
the Poynting vectors associated with the total field and the
scattered field (taken alone, as if it could exist in the absence
of the incident field), that is,

𝐒(𝐫, 𝑡) = 𝑐
4𝜋

𝐄(𝐫, 𝑡) × 𝐁(𝐫, 𝑡) , (30a)

𝐒𝑠(𝐫, 𝑡) =
𝑐
4𝜋

𝐄𝑠(𝐫, 𝑡) × 𝐁𝑠(𝐫, 𝑡) . (30b)

It can be seen that only the absorbed power has a well-
defined physical meaning in the sense that it is measurable.
The scattered power is not measurable directly because, in
any conceivable experiment, the incident and the scattered
fields are present simultaneously. The vector 𝐒𝑠 is there-
fore not observable, at least not everywhere on 𝜕Ω. We
can view the scattered and extinguished powers, as well as
the scattering and extinction cross sections 7 as auxiliary

7Cross sections can be introduced if the incident field is a plane
wave as the ratio of the time-averaged extinguished, scattered or absorbed
power fluxes to the incident power flux per unit surface. For more general
illuminations, optical cross sections can not be defined.
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quantities, which, under some approximations (but, perhaps,
never exactly), can be related to measurable quantities.

The extinguished power 𝑄𝑒 is simply the sum of 𝑄𝑎
and 𝑄𝑠. Adding the two equations in (29) together and
accounting for the expressions in (30), we obtain

𝑄𝑒(𝑡) = − 𝑐
4𝜋 ∮𝜕Ω

[

𝐄𝑖(𝐫, 𝑡) × 𝐁(𝐫, 𝑡)

+ 𝐄(𝐫, 𝑡) × 𝐁𝑖(𝐫, 𝑡)
]

⋅ �̂� 𝑑2𝑟 . (31)

We thus see that extinction is related to a rather peculiar
(and also unobservable) energy flux, which is created by
the “interference” between the incident and the total fields.
It should be noted that, in any stationary process, the total
fields in (31) can be replaced with the scattered fields since
the time-averaged energy flux created by the incident field
through any closed surface is in this case zero. Therefore,
it is often stated that extinction is given by the energy flux
created by the interference of the incident and the scattered
fields. This statement is valid only for stationary processes
or for total time-integrated quantities in transient processes.

We can use Maxwell’s equations to express 𝑄𝑎 and 𝑄𝑒
as volume integrals. The equations obeyed by the total and
incident fields are almost the same but differ by the presence
of the induced current in the former case:

∇ × 𝐁 = 1
𝑐
𝜕𝐄
𝜕𝑡

+ 4𝜋
𝑐
𝐉 , ∇ × 𝐄 = −1

𝑐
𝜕𝐁
𝜕𝑡

, (32a)

∇ × 𝐁𝑖 =
1
𝑐
𝜕𝐄𝑖
𝜕𝑡

, ∇ × 𝐄𝑖 = −1
𝑐
𝜕𝐁𝑖
𝜕𝑡

. (32b)

Here 𝐉(𝐫, 𝑡) is the induced electric current density. In a
medium, which can support electric polarization 𝐏 and mag-
netization 𝐌, the induced current is given by 𝐉 = 𝜕𝐏∕𝜕𝑡 +
𝑐∇ × 𝐌. However, the exact form of the induced current
or the constitutive relations that define the latter in terms of
the fields are not important for us now. Without specifying
the induced current in any detail, we can use the divergence
theorem and the equations in (32a) to convert (29a) and (31)
to volume integrals:

𝑄𝑎(𝑡) = ∫Ω

[

𝜕𝑈 (𝐫, 𝑡)
𝜕𝑡

+ 𝐉(𝐫, 𝑡) ⋅ 𝐄(𝐫, 𝑡)
]

𝑑3𝑟 , (33a)

𝑄𝑒(𝑡) = ∫Ω

[

𝜕𝑊 (𝐫, 𝑡)
𝜕𝑡

+ 𝐉(𝐫, 𝑡) ⋅ 𝐄𝑖(𝐫, 𝑡)
]

𝑑3𝑟 . (33b)

where

𝑈 (𝐫, 𝑡) = 𝐄(𝐫, 𝑡) ⋅ 𝐄(𝐫, 𝑡) + 𝐁(𝐫, 𝑡) ⋅ 𝐁(𝐫, 𝑡)
8𝜋

, (34a)

𝑊 (𝐫, 𝑡) =
𝐄(𝐫, 𝑡) ⋅ 𝐄𝑖(𝐫, 𝑡) + 𝐁(𝐫, 𝑡) ⋅ 𝐁𝑖(𝐫, 𝑡)

4𝜋
. (34b)

Equation (33a) is just the Poynting theorem; the field 𝑈 in
the right-hand side is commonly associated with the density
of electromagnetic energy. The relation (33b) is somewhat
less conventional. In particular, the field𝑊 can not be inter-
preted as energy density. However, an important observation
is that, in any stationary process,

⟨𝜕𝑈∕𝜕𝑡⟩𝑡 = ⟨𝜕𝑊 ∕𝜕𝑡⟩𝑡 = 0 , (35)

where ⟨…⟩𝑡 denotes time average. Conversely, in any tran-
sient process, we have

∫

∞

−∞
[𝜕𝑈∕𝜕𝑡]𝑑𝑡 = ∫

∞

−∞
[𝜕𝑊 ∕𝜕𝑡]𝑑𝑡 = 0 . (36)

It is the availability of the simple properties (35) and (36)
that makes the integral relations (33) useful.

We now assume that all fields are monochromatic and
introduce frequency-domain notations similarly to (5). Then
it is straightforward to derive for the time-averaged powers

⟨𝑄𝑎⟩𝑡 =
1
2
Re∫Ω

𝐉(𝐫) ⋅ 𝐄∗(𝐫)𝑑3𝑟 , (37a)

⟨𝑄𝑒⟩𝑡 =
1
2
Re∫Ω

𝐉(𝐫) ⋅ 𝐄∗
𝑖 (𝐫)𝑑

3𝑟 . (37b)

In addition, assuming that the radius of the sphere 𝜕Ω is
sufficiently large, we can write the scattered field on 𝜕Ω as

𝐄𝑠(𝐫) = 𝐟 (�̂�)𝑒
𝑖𝑘𝑟

𝑟
for 𝐫 ∈ 𝜕Ω ; 𝑘 = 𝜔

𝑐
. (38)

Here 𝐟 (�̂�) is the vector scattering amplitude. Since we have
not made any choices regarding the form of the incident field
and, in particular, we do not assume that it is a plane wave,
the scattering amplitude depends only on one unit vector �̂�,
which points from the center of the sphere Ω to the point
of observation on its surface 𝜕Ω. Of course, we keep in
mind that the scattering amplitude also depends on the form
of the incident field, but this dependence is implicit in the
notations. With this definition of the scattering amplitude,
we can write

⟨𝑄𝑠⟩𝑡 =
𝑐
8𝜋 ∫ [𝐟 (�̂�) ⋅ 𝐟∗(�̂�)]𝑑2�̂� . (39)

In summary, for a monochromatic field, the absorbed
power is given by the work of the total (local) electric field
exerted on the induced current; extinguished power is the
work exerted on the same current by the incident field and the
scattered power can be obtained by integrating the squared
scattering amplitude over all directions. We now proceed
to applying these general results to a collection of point
particles.

5.2. Application to a system of point particles
In the CDA, the shapes, internal structure and other

small-scale properties of the particles do not enter the equa-
tions; only the positions and the polarizabilities do. But the
knowledge of the polarizabilities or of the induced dipole
moments seems to be not enough to apply (37a). This
raises the question whether the CDA provides a complete
description of the important physical phenomena such as
absorption of energy. The answer to this question is positive
but, to see this, it is more convenient to start with computing
the extinguished and the scattered powers, and then define
the absorbed power as the difference between the former two
quantities. As we will see, the extinguished and the scattered
powers can be expressed in terms of the dipole moments
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𝐝𝑛 and do not require the knowledge of fields and current
distributions inside the particles.

We start with extinction. The integral in the right-hand
side can be decomposed as a sum of integral over each
particle, viz,

⟨𝑄𝑒⟩𝑡 =
1
2
Re

∑

𝑛 ∫𝑉𝑛
𝐉(𝐫) ⋅ 𝐄∗

𝑖 (𝐫)𝑑
3𝑟 , (40)

where 𝑉𝑛 is the spatial region occupied by the 𝑛-th particle.
Since the size of all particles is assumed to be vanishingly
small compared to the characteristic scale of the field varia-
tion in the vicinity of 𝐫𝑛 8, we can replace the function 𝐄∗

𝑖 (𝐫)
with 𝐄∗

𝑛, where 𝐄𝑛, as defined above in Section 2, is the
incident field at the position of 𝑛-th particle. Therefore,

⟨𝑄𝑒⟩𝑡 =
1
2
Re

∑

𝑛 ∫𝑉𝑛
𝐉(𝐫) ⋅ 𝐄∗

𝑛 𝑑
3𝑟 . (41)

Further, it is easy to see that, in the monochromatic case
considered here,

∫𝑉𝑛
𝐉(𝐫)𝑑3𝑟 = −𝑖𝜔𝐝𝑛 .

Therefore,

⟨𝑄𝑒⟩𝑡 =
𝜔
2
Im

∑

𝑛
𝐝𝑛 ⋅ 𝐄∗

𝑛 . (42)

Introducing 3𝑁-dimensional vectors |𝑑⟩ and |𝐸⟩, where

|𝑑⟩ =
(

𝑑1𝑥, 𝑑1𝑦, 𝑑1𝑧,… , 𝑑𝑁𝑥, 𝑑𝑁𝑦, 𝑑𝑁𝑧
)𝑇 ,

etc., we can re-write (42) compactly as

⟨𝑄𝑒⟩𝑡 =
𝜔
2
Im⟨𝐸|𝑑⟩ . (43)

This expression is independent of which approach to the
CDA is used since the vectors |𝑑⟩ and |𝐸⟩ are the same in
both approaches.

Now consider scattering. To proceed, we utilize the
expression for the scattering amplitude of a collection of
point dipoles, i.e., given in [44]:

𝐟 (�̂�) = 𝑘2
∑

𝑛

[

𝐝𝑛 − (𝐝𝑛 ⋅ �̂�)�̂�
]

𝑒−𝑖𝑘�̂�⋅𝐫𝑛 . (44)

Upon inserting this expression into (39), we obtain for the
scattered power:

⟨𝑄𝑠⟩𝑡 =
𝑐𝑘4

8𝜋
∑

𝑛,𝑚 ∫
[

𝐝𝑛 ⋅ 𝐝∗𝑚 − (𝐝𝑛 ⋅ �̂�)(𝐝∗𝑚 ⋅ �̂�)
]

× 𝑒𝑖𝑘(𝐫𝑚−𝐫𝑛)⋅�̂�𝑑2�̂� . (45)

The integrals can be computed directly and it turns out
that they are expressed in terms of the Green’s tensors 𝙶𝑛𝑚.

8Note that the condition 𝑎∕𝜆 ≪ 1 is insufficient; the field can contain
near-field terms due to scattering from the neighboring particles. See the
discussion on p. 2 and Refs. [15, 16].

Omitting tedious but straightforward integration 9, we obtain
the following result:

⟨𝑄𝑠⟩𝑡 =
𝜔
2
Im

∑

𝑛,𝑚
𝐝∗𝑛 ⋅ 𝙶𝑛𝑚𝐝𝑚 . (46)

We emphasize that the summation here is performed over all
values of 𝑛 and 𝑚 and the expression (46) contains the terms
𝙶𝑛𝑛. We can therefore use the CDEs as formulated in Second
Approach, (17), to express the sum over 𝑚 in the right-hand
side of (46) as

∑

𝑚
𝙶𝑛𝑚𝐝𝑚 = χ−1𝑛 𝐝𝑛 − 𝐄𝑛 .

Here χ𝑛 are the bare polarizabilities. Substituting this result
into (46), and upon some rearrangements, we arrive at the
result [34, 44]

⟨𝑄𝑠⟩𝑡 =
𝜔
2
Im

∑

𝑛

[

𝐝∗𝑛 ⋅ χ
−1
𝑛 𝐝𝑛 + 𝐝𝑛 ⋅ 𝐄∗

𝑛
]

. (47)

We now identify the last term in the right-hand side of (47)
as the extinguished power [compare to (42)]. From this it
immediately follows that the absorbed power, determined
as ⟨𝑄𝑎⟩𝑡 = ⟨𝑄𝑒⟩𝑡 − ⟨𝑄𝑠⟩𝑡, is given in terms of the dipole
moments by the expression

⟨𝑄𝑎⟩𝑡 = −𝜔
2
Im

∑

𝑛
𝐝∗𝑛 ⋅ χ

−1
𝑛 𝐝𝑛 , (48)

or, utilizing the 3𝑁-dimensional notations and defining the
3𝑁 × 3𝑁 matrix 𝑋, which contains the 3 × 3 blocks χ𝑛 on
the diagonal,

⟨𝑄𝑎⟩𝑡 = −𝜔
2
Im⟨𝑑|𝑋−1

|𝑑⟩ , (49)

Expressions (48),(49) are well-known for the case of scalar
bare polarizabilities in the DDA literature, i.e., see [7]. In the
special case when all polarizabilities are the same and scalar,
expression (49) simplifies to

⟨𝑄𝑎⟩𝑡 =
𝑞𝜔
2
⟨𝑑|𝑑⟩ , (50)

where

𝑞 = −Im(1∕𝜒) . (51)

is the parameter that characterizes the strength of absorption
by one particle. Another convenient expression for ⟨𝑄𝑎⟩𝑡 can
be obtained by noting that χ−1𝑛 𝐝𝑛 = 𝐞𝑛, where 𝐞𝑛 is the local
field as defined in the Second Approach to the CDA, i.e., in
(15a). Thus,

⟨𝑄𝑎⟩𝑡 =
𝜔
2
Im

∑

𝑛
𝐞∗𝑛 ⋅ 𝐝𝑛 =

𝜔
2
Im⟨𝑒|𝑑⟩ . (52)

9The diagonal and off-diagonal terms in the sum should be integrated
separately. For off-diagonal terms, it is convenient to choose a reference
frame in which 𝐫𝑚 − 𝐫𝑛 coincides with the direction of the 𝑍-axis, and one
should keep in mind that 𝐝𝑛 are complex and do not necessarily possess a
direction.
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This expression shows that the absorbed power is the work
exerted by the local fields 𝐞𝑛 on the oscillating dipole mo-
ments 𝐝𝑛. However, it is important to keep in mind that we
must use the definition of the Second Approach for the local
fields.

We thus come to the following conclusion: absorbed
power is the work of the local fields 𝐞𝑛 on the oscillating
dipoles, but the local fields must be defined according to the
Second Approach, that is, with the account of dipole self-
action. For this reason, absorbed power is more conveniently
expressed in the Second Approach. We can, of course,
convert all relevant formulas to First Approach. For example,
we can compute all 𝐝𝑛’s using the First Approach and renor-
malized polarizabilities, etc., and then apply (50) to com-
pute absorbed power. However, (50) contains the absorption
strength 𝑞, which is computed from the bare polarizabilities
according to (51). In a sense, the bare polarizability and
the absorption strength are the intrinsic properties of the
particles while the renormalized polarizabilities take into
account all kinds of extrinsic factors such as the presence
of a substrate.

Thus, we have obtained the absorbed, extinguished and
scattered powers in terms of the dipole moments 𝐝𝑛 and the
bare polarizabilities χ𝑛. It is significant that these results are
quite general. In particular, they apply to tensorial polariz-
abilities of the rather general form as defined in Section 2.
The particles can be non-ellipsoidal and intrinsically inho-
mogeneous, or not even describable as dielectric bodies. All
that is required for the expressions derived in this section
to hold are the underlying assumptions of the CDA itself. It
is also significant that all expressions derived here are local
and interpretable in terms of work exerted on the oscillating
dipoles. We can therefore generalize these formulas to more
general geometries, other than free space.

6. Radiative and non-radiative corrections in
energy relations
Above, we have discussed at length the radiative and

non-radiative corrections. However, one might think that this
discussion is not truly relevant because the corrections in
question are small under the typical experimental conditions.
This is indeed so in many cases but not in the physically
interesting case of strong multiple scattering and pronounced
optical resonances. By optical resonances we mean the oc-
currences when α−1

𝑛 in (8) or χ−1𝑛 in (17) are close to one of
the generalized eigenvalues of the respective equation. We
can define the generalized eigenvalues as the set of tensors
λ𝑛 for which the equation

∑

𝑚 𝙶𝑛𝑚𝐱𝑚 = λ𝑛𝐱𝑛 [assuming
(17) is used] has a non-trivial solution {𝐱1, 𝐱2,… , 𝐱𝑁}. We
emphasize that the equalityχ−1𝑛 = λ𝑛 is unphysical and never
holds in a correctly constructed model. If such an equality
could hold, the collection of dipoles would support infinite
non-decaying oscillations in the absence of any external
field.

Therefore, we expect on physical grounds that χ−1𝑛 ≠ λ𝑛.
However, nothing prevents the above equality from holding

approximately. If this happens, the dipole fields experience
strong multiple scattering and the optical spectra exhibit
pronounced resonance peaks. Under the circumstances, ac-
counting for the radiative correction to the inverse polar-
izability can become important. Essentially, this correction
prevents the equality χ−1𝑛 = λ𝑛 from holding exactly or,
more precisely, it prevents the inverse polarizabilities from
crossing into the region of unphysical parameters. On the
other hand, the non-radiative corrections, being primarily
the corrections to the real part of χ−1𝑛 , do not have the same
dramatic effect. Rather, accounting (or not accounting) for
the non-radiative corrections usually results in small spec-
tral shifts; that is, the extinction, absorption and scattering
spectra are slightly shifted along the frequency axis without
changing their shape.

Of course, the significance of radiative corrections is best
revealed when the particles are not too absorbing and not
too small 10. For dielectric or metallic macroscopic spherical
particles, these conditions can be formulated in terms if the
imaginary part of the complex permittivity 𝜖 and the particle
radius 𝑎. The condition under which the radiative corrections
become important is 3Im𝜖∕|𝜖 − 1|2 ≲ 2(𝑘𝑎)3∕3. If the
equality holds, not accounting for the radiative correction
can result in singular matrices and diverging solutions. If
a strict inequality holds and the radiative correction is not
accounted for, a solution may exist but be unphysical: in
particular, it can violate energy conservation. Steady state
(i.e., monochromatic) solutions of this sort can mathemati-
cally satisfy the CDEs but be physically unreachable. That
is, such solutions can not be attained by starting from any
reasonable initial conditions and turning the external field
slowly on.

In the forthcoming subsections, we illustrate the above
qualitative arguments with a few numerical examples. We
will compute the conventional optical spectra of a three-
dimensional collection of dipoles whose positions are il-
lustrated in Fig. 2. The spatial distribution of particles was
obtained by the process of so-called diffusion-limited ag-
gregation [45], but the physical nature of the aggregate is
not important for us here. What is important is that the
centers of all particles are located in the nodes of a simple
cubic lattice of the pitch ℎ and the particle polarizabilities
are computed (with or without the corrections in question)
for identical spheres with the radius 𝑎 = 0.25ℎ. Therefore,
no two particles come closer (center-to-center) than two
particle diameters. Equivalently, the minimum surface-to-
surface separation is equal to one particle diameter (2𝑎).
Under these conditions, the dipole approximation is usually
considered to be accurate. Although the ratio ℎ∕𝑎 was fixed
in all simulations, the ratio of ℎ to other physical length
scales of the problem such as the resonance wavelength was
varied.

10The two conditions are actually inter-related but it is not always clear
how to extrapolate them beyond the applicability range of the classical
macroscopic electrodynamics.
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Figure 2: Geometry of the aggregate of small particles used in the simulation of Section 6. The aggregate consists of 𝑁 = 300
particles whose centers are located in the nodes of a simple cubic lattice. The particles are positioned rather sparsely but connected
into one aggregate so that one can travel between any two particles by making jumps that are no longer than one lattice step. In the
simulations, it was assumed that the particles are spheres of the radius equal to 1∕4 of the lattice step and the surface-to-surface
separation of any two neighboring particles is equal to the particle diameter. In the above drawing, the particle sizes are not
shown to scale. Also, since the particles mask each other in each projection, the number of visible particles is smaller than 300.

In the plots below, we show the dimensionless efficien-
cies of extinction, scattering and absorption defined as

𝜂𝑒 =
⟨𝑄𝑒⟩𝑡

𝑐
8𝜋 |𝐄0|

2𝑁𝜋𝑎2
(53)

for extinction, and similarly for scattering and absorption.
Thus, the total extinguished (or scattered, or absorbed)
power is divided by the incident energy flux of a plane wave
of amplitude 𝐄0 and then by the total geometrical cross
section of all particles. A linearly polarized plane wave was
used for excitation, so that the incident energy flux was well
defined. The plane wave was polarized along the𝑋-axis (the
horizontal direction in the left and center images in Fig. 2)
and propagated along the 𝑍-axis (the vertical direction in
the center and right images in Fig. 2). The extinguished
power was computed according to (42), which is a valid
expression in both approaches to the CDA. The absorbed
power was computed according to (50), which is also valid
in both approaches, albeit we need to keep in mind that the
coefficient 𝑞 in (50) is defined through the bare polarizability
according to (51). It is important for us that 𝑞 is independent
of any corrections to the bare polarizability, as long as the
non-radiative correction is purely real. We have used (24b)
to define both the radiative and the non-radiative corrections,
so that the above condition is satisfied. The scattered power
was computed as the difference between the extinguished
and the absorbed powers. This can yield a negative result
if the model is constructed incorrectly, i.e., if the radiative
corrections are not accounted for.

In the simulations, we have used the First Approach
to the CDA and, correspondingly, the set of equations (8).
Accounting or not accounting for the corrections in question
affected only the polarizabilities 𝛼𝑛 that appear in (8) and,
consequently, the computed dipole moments 𝐝𝑛, but not
the form of the equations (42) or (50). In all cases, we
assumed that 𝜒𝑛 are given by the quasistatic expression
(16) and independent of 𝑛. The renormalized polarizabilities

were determined according to (24b). If none of the terms
𝑂(𝑘2∕𝑎) and 𝑂(𝑘3) were retained in this expression (so that,
trivially, 𝛼𝑛 = 𝜒𝑛), we say that no corrections were used.
If only the 𝑂(𝑘3) term was retained, we say that only the
radiative correction was used. If only the 𝑂(𝑘2∕𝑎) term was
retained, we say that only the non-radiative correction was
used. If both terms were retained, then both corrections were
accounted for.

Note that we used (24b) rather than (23) to compute the
non-radiative corrections. The difference is however rather
minor.

6.1. Particles with Lorentz-type permittivity in the
anamalous dispersion region

We start with the case when the particle material can be
described by the Lorentz formula

𝜖(𝜔) = 1 +
𝜔2
0(𝜖0 − 1)

𝜔2
0 − 𝜔

2 − 𝑖𝛾𝜔
. (54)

Here 𝜖0 = 𝜖(0) is the static limit of the dielectric function,𝜔0
is the resonance frequency and 𝛾 is the relaxation constant.
Let 𝜆0 = 2𝜋𝑐∕𝜔0 be the wavelength at the resonance fre-
quency. Then, we can characterize the system completely by
the five dimensionless parameters 𝑎∕ℎ, 𝑎∕𝜆0, 𝜔∕𝜔0, 𝛾∕𝜔0
and 𝜖0.

For the simulations, we have fixed 𝑎∕ℎ = 0.25 and
𝜖0 = 4.0. In this case, the optical resonances of the system
occur when 1.32 ≲ 𝜔∕𝜔0 ≲ 1.48. As could be expected,
this spectral window is located in the anomalous dispersion
region whereRe[𝜖(𝜔)] < 0. Further, we have considered two
possible ratios 𝑎∕𝜆0 = 0.01 and 𝑎∕𝜆0 = 0.02 and two pos-
sible attenuation strengths, 𝛾∕𝜔0 = 0.01 and 𝛾∕𝜔0 = 0.001.
The above parameters are typical for transparent dielectrics.
Also, the selected values of 𝑎∕ℎ and 𝑎∕𝜆0 guarantee that the
dipole approximation is reasonably accurate.

In Figs. 3,4 and 5, we plot the extinction, scattering,
and absorption efficiencies for the parameter set described
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Figure 3: Extinction efficiency as a function of frequency for the particle geometry shown in Fig. 2. The particle material is
described by the Lorentz formula (54). The ratio 𝑎∕ℎ = 0.25 is fixed while 𝑎∕𝜆0 and 𝛾∕𝜔𝑜 vary as labeled. Here 𝜆0 = 2𝜋𝑐∕𝜔0.
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Figure 4: Same as in Fig. 3 but for the scattering efficiency.

above. In these three figures, we compare the case when the
radiative correction was accounted for (the curves labeled as
“Rad Corr”) to the case when no corrections were used at all
so that𝜒𝑛 = 𝛼𝑛 (the curves labeled “No Corr”). It can be seen
that, for relatively small particles and relatively large losses

[the case when 𝑎∕𝜆0 = 𝛾∕𝜔0 = 0.01 is shown in Panels (a)
of all three Figures], the radiative correction is indeed not
important. However, if we decrease losses by the factor of
10 [Panels (b)] or increase the particle size by the factor of 2
[Panels (c)], the effects of the radiative correction become
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Figure 5: Same as in Fig. 3 but for the absorption efficiency.
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Figure 6: Same as in Fig. 5 but four different cases are compared: no corrections are included (“No Corr”), only radiative corrections
are included (“Rad Corr”), only non-radiative corrections are included (“NRad Corr”), and both corrections are included (“Both”).

quite noticeable, especially on absorption and scattering
(extinction is not as affected). If we do both, that is, reduce
losses and increase the particle size, as shown in Panels
(d), the effect of the radiative correction becomes dramatic.

Without the correction, the absorption efficiency is grossly
overestimated and the scattering efficiency is negative.

We now turn to the role of the non-radiative corrections.
In Fig. 6, we compare the absorption efficiency for four
different cases. First, we show the case where no corrections
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are taken into account. Second, we show the case where only
the radiative correction is accounted for. Third, we show the
case where only the non-radiative correction is accounted
for. Finally, we show the case when both the radiative and the
non-radiative corrections are included according to (24b).
It can be seen that, in the case 𝑎∕𝜆0 = 𝛾∕𝜔0 = 0.01
[Panel (a)], all corrections are rather insignificant. One can
account or not account for any of these corrections, and the
variation of the results is likely to be within the precision of
any experimental measurement. However, the cases shown
in Panels (b),(c) and (d) are affected by the corrections. It
can be seen that accounting for the non-radiative correction
results only in spectral shifts but does not fix the anomalies
that can appear in the spectra if the radiative correction
is ignored. It is difficult to tell how significant the above-
mentioned spectral shifts are. This depends on the overall
precision of the model, the degree to which the geometry of
the aggregate is known, etc. We can only mention here that
there exist other mechanisms that can result in spectral shifts
such as the higher-order multipole interactions, and it may be
impossible to disentangle all these contributions.

6.2. Particles with Drude permittivity
The importance of radiative corrections is most easily

illustrated for metallic particles. In this Subsection, we con-
sider exactly the same geometry of the aggregate as above,
including the fixed ratio 𝑎∕ℎ = 0.25, but assume that the
particles permittivity is given by the Drude formula

𝜖(𝜔) = 1 −
𝜔2
𝑝

𝜔(𝜔 + 𝑖𝛾)
, (55)

where 𝜔𝑝 is the plasma frequency and 𝛾 is the relaxation
constant. The optical resonances in this case are located in
the frequency range 0.50 ≲ 𝜔∕𝜔𝑝 ≲ 0.65. In the simula-
tions, we have assumed that 𝛾∕𝜔𝑝 = 0.002. Further, we have
considered particles of two different physical radiuses: 𝑎 =
5nm and 𝑎 = 10nm and defined 𝜔𝑝 so that the wavelength
at the plasma frequency is 𝜆𝑝 = 2𝜋𝑐∕𝜔𝑝 ≈ 136nm. These
parameters are characteristic of silver. We therefore have in
the resonance spectral region 𝑎∕𝜆 ≈ 0.02 for 𝑎 = 5nm and
𝑎∕𝜆 ≈ 0.04 for 𝑎 = 10nm.

In Fig. 7, we plot the absorption efficiency as a function
of 𝜔∕𝜔𝑝. All four cases are displayed (no corrections used,
only radiative corrections used, only non-radiative correc-
tions used, both corrections used). It can be seen that, for
𝑎 = 5nm, not accounting for the radiative corrections over-
estimates the absorption efficiency by approximately 50%.
This can result in negative values for the scattering efficiency
at some frequencies (data not shown). At the same time,
not accounting for the non-radiative correction results in a
small spectral shift. In the case 𝑎 = 10nm, which is typical
in plasmonics, the effect of not accounting for the radia-
tive corrections is quite dramatic. The absorption efficiency
becomes grossly over-estimated and unrealistically large;
the scattering efficiency is negative in the whole resonance
spectral range. However, the non-radiative corrections still

result only in a spectral shift, although, in this case, the shift
is more pronounced.

In the above simulations, we assumed that the ratio 𝛾∕𝜔𝑝
is fixed and did not account for the so-called finite-size
effects, which are believed to increase 𝛾 when 𝑎 → 0.
Although introduction of such size dependence of 𝛾 has a
theoretical justification [46, 47, 48], the relevant theory has
several ad hoc elements and becomes rather complicated
for particles smaller than ∼ 5nm. In particular, the relax-
ation constant is not reduced to the conventional expression
𝛾(𝑎) = 𝛾∞ + 𝐴𝑣𝐹 ∕𝑎 for such very small particles [48].
Here 𝛾∞ is the bulk value of the relaxation constant, 𝐴 is
a numerical parameter, and 𝑣𝐹 is the Fermi velocity for
the degenerate electron gas. The homogeneous line-width
of gold nanocylinders of the length ∼ 50nm and radius
∼ 8nm, and the corresponding values of the parameter 𝐴,
were investigated experimentally in [49]. It was found that
the homogeneous spectral lines of isolated nanoparticles
do not differ significantly from the theoretical predictions
in which the bulk value 𝛾∞ was used. We have mentioned
all this in order to argue that accounting for the finite-
size effects is unlikely to change the conclusion that the
radiative corrections are important in plasmonics and should
be included in the model for most experimentally-relevant
parameter sets.

6.3. Beyond the dipole approximation
Above, it was shown that not accounting for the radiative

corrections can result in anomalous results in the spectral re-
gions where the optical resonances occur. If the corrections
are taken into account, the results appear to be “normal” but
still there is a question whether these results are correct. The
question boils down to determining the limits of applicability
of the CDA and also to determining which changes one can
expect when going beyond the CDA. The only way to answer
these questions is to compare the CDA to exact solutions.

For aggregated spheres, exact solutions to the electro-
magnetic boundary-value problem can be obtained by con-
sidering higher-order multipoles of each sphere and solving
the corresponding coupled-multipole equations (CMEs) [50,
51]. Obviosly, the CDEs is a truncation of the CMEs in
which all higher multipole moments of the particles are
assumed to be zero. However, there exists a more funda-
mental difference. Namely, the various corrections to the
dipole polarizability do not play a significant role in the
more precise setting of the CMEs. Indeed, in the CMEs, the
particles are no longer considered to be points, and one does
not need to be concerned with the physical problems that the
above assumption can cause.

In the simplified quasistatic version of the CMEs, when
one assumes that the aggregate is small considered to the
wavelength and (for the sake of simplicity) that all particles
are made of the same material [52, 53, 54], the solutions
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Figure 7: Absorption efficiency for the case when the particle permittivity is described by the Drude formula (55).

depend on the spectral parameter 11

𝑧(𝜔) = 4𝜋
3
𝜖(𝜔) + 2
𝜖(𝜔) − 1

, (56)

and the optical resonances occur when 𝑧(𝜔) is close to one
of the (purely real) eigenvalues𝑤𝑛 of the coupled-multipole
equations. If, in addition to the quasistatic approximation,
the dipole approximation is used, there are exactly 3𝑁
eigenvalues 𝑤𝑛, some of which can be degenerate or have
very small or zero oscillator strengths (squared projections
of the corresponding eigenvector onto the incident field).
If we now remove the dipole approximation but still stay
within the quasistatics, the number of linear equations in the
CMEs would become formally infinite, and the same is true
for the number of eigenvalues. However, the sum of all the
oscillator strengths remains constant and finite (this is known
as the sum rule). Nevertheless, it should be clear that account
of higher-order multipoles can shift the optical resonances
or give rise to new resonances that are not present in the
dipole approximation. If the particles are allowed to touch,
the surfaces of discontinuity in the boundary-value problem
are no differentiable and the spectrum of 𝑤𝑛 becomes a
continuous distribution.

A convenient theoretical framework for investigating
these effects (within the quasistatics) is based on the density
of states formalism [57]. The density of states Γ(𝑤) defines
a generalized spectrum of the aggregate. If the particles in
the aggregate are only weakly absorbing and one can write
𝑧(𝑤) ≈ 𝑥(𝑤) − 𝑖𝛿(𝜔) and 𝛿(𝜔) is in some sense small,
we have, for example, 𝜎𝑒 ∝ Γ[𝑥(𝜔)]. More generally, the
extinction cross section is given by a Hilbert transform of
Γ(𝑤). In [57], examples are given of the changes in Γ(𝑤)
for aggregates of touching spheres due to accounting for
the higher-order multipole moments. The changes can be
dramatic, i.e., two narrow spectral lines can be broadened
into a relatively wide continuous spectrum (for the external
field parallel to the axis of two touching spheres), or modest,
when a resonance is spectrally shifted but remains of ap-
proximately the same shape (when the external polarization

11Or just 1∕[𝜖(𝜔) − 1], which differs from (56) only by a real shift
and scaling and is known as the Bergman-Milton spectral parameter and
originally introduced in the theory of composites [55, 56].

is orthogonal to the above axis). Of course, these examples
were given for the case of touching spheres when the CDA is
not applicable. As the spheres move apart, the exact spectra
approach those of the CDA, as expected.

More recently, a number of investigations of the CMEs
for periodic two-dimensional arrangements of high-conduc-
tivity metal spheres have been carried out without the use of
the quasistatic approximation [18, 58] (in these references,
the higher-order multipoles are restricted to the magnetic
dipole, electric and magnetic quadrupoles). The geometrical
parameters in [18, 58] were somewhat similar to those used
in the previous subsections: the particles were not touching
and separated by approximately one particle diameter. It was
found that the coupling of higher-order multipoles can give
rise in such systems to additional sharp resonances. The
resonances occur due to diffractive coupling in infinite (or
just very large) periodic arrays. Spectral shifts of the dipole
spectral lines were also observed. Note however that the
particle size in [58, 18] was rather large compared to the
wavelength (near the spectral features of interest); the typical
ratio ranged from ∼ 1∕4 to ∼ 1∕7, which is significantly
larger than in the simulations reported in this section.

In summary, we can hope that the red curves in Figs. 3-7
have been computed with a reasonable accuracy. Account of
higher-order multipoles will of course change these curves
but not in a significant way. The changes will be limited
to emergence of new comparatively weak spectral lines and
to spectral shifts of the lines that are already present in the
dipole approximation. The spectral region where optical res-
onances are present can be moderately broadened. However,
if we consider large periodic arrays, new interesting spectral
features resulting from the diffractive coupling of the higher-
order multipoles can emerge.

7. Paradoxes involving extinction
7.1. Classical extinction paradox

The classical extinction paradox is based on the obser-
vation that the extinction cross section of a large sphere of
radius 𝑎 is approximately twice its geometrical cross section,
𝜋𝑎2. The paradox was stated for a sphere mainly because
Maxwell’s equations are exactly solvable in this geometry,
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so that the paradox can be demonstrated in computations.
However, a similar mismatch can be obtained for a cube or
any other shape. The paradox occurs for absorbing or non-
absorbing objects and can be stated for the scattering or the
extinction cross sections.

The extinction paradox was explained by Brillouin in
1949 [59]. Modern expositions including extensive numeri-
cal demonstrations and detailed theoretical reasoning can be
found in [60] (in 2D geometry) and in [61] (for the full 3D
problem). However, the very fact that the mismatch between
the optical and the geometrical cross sections was viewed
as a paradox, and that numerous attempts to explain it by
edge diffraction effects have been made, is very indicative.
All this activity is based on the erroneous assumption that
the extinguished energy is somehow “removed” from the
incident beam. In fact, as was discussed in the previous
Section, neither the extinguished nor the scattered powers
can be associated with a measurable power flux.

In fact, the extinction paradox is easily explained within
elementary geometrical optics. This is illustrated in Fig. 8.
Here a wide beam of rays is incident on a mirror of some area
𝑆, which is slightly tilted for convenience of measurements.
The total power incident on the mirror is 𝑊 and all of it is
reflected back at a small angle to the original propagation
direction. Due to this non-zero angle, the incident and the
reflected beams can be spatially separated and the back-
reflected power can be measured. But this is not all of the
scattered field. Since there is a geometrical shadow behind
the mirror, and accounting for the fundamental superposition
principle, we must conclude that the mirror also produces
a forward-scattered radiation, which cancels the incident
radiation to produce the shadow. This field was referred to
as the Ewald-Oseen field in [61]; it was also remarked in
that reference that the Ewald-Oseen field (and the theorem
that explains the formation of the shadow) is seemingly
unrelated to the scattering experiments that are considered in
conjunction with the classical extinction paradox. However,
the Ewald-Oseen field is just some part of the scattered
field that can not be separated spatially from the incident
field. Therefore the Ewald-Oseen field can not be measured.
The counter-intuitive fact here is that a large fraction of the
scattered power is not measurable; correspondingly, the total
scattered power is also not measurable.

The example of Fig. 8 illustrates the basic explanation of
the extinction paradox: the scattered and the incident field
can not be spatially separated. The scattered field for this
reason is not physically related to any measurable power
flux and, in particular, it is not required to be equal to the
power flux incident on the mirror. Of course, the actual
wave phenomena involved in the scattering process are much
more complicated. The extinction paradox can be observed
even in the case of large transparent objects when no well-
defined geometrical shadow is formed, or in small objects
with a large permittivity. This is discussed in more detail
in Ref. [61]. Here we emphasize the basic principle of the
extinction paradox can be easily demonstrated with the use
of the CDA.

  

W

(a) An incident energy flux is blocked by a slightly tilted mirror.

(b) The light actually scattered by the mirror. The right-going flux cancels the 
incident flux to create the geometrical shadow shown in Panel (a).

W

W

Figure 8: Illustration of the classical extinction paradox. Power
flux 𝑊 is incident on a slightly tilted mirror, which reflects the
flux back at some small angle where the reflected beam can
be detected and measured. The reflected power is 𝑊 for an
ideal mirror. The mirror also scatters the energy flux 𝑊 in the
forward direction to cancel the incident light and create the
shadow area. The total power scattered by the mirror is 2𝑊
and the total extinction cross section is twice its geometrical
cross section.

In Fig. 9, we show two examples of computing the ex-
tinction cross section for a collection of polarizable dipoles.
In all cases, the incident field was assumed to be a plane
wave propagating in the 𝑍-direction. The dipoles formed
four equidistant layers in the planes 𝑧 = (𝑛 − 1)ℎ, where
𝑛 = 1, 2, 3, 4 and ℎ is the separation between the layers.
Each layer consisted of a square 𝐿 × 𝐿 lattice of step ℎ, so
that the frontal geometrical cross section of the structure is
a square of the area 𝜎𝑔 = (𝐿 − 1)2ℎ2. This expression is
approximate because the edge effects are difficult to account
for. In one modification, the four layers formed a simple
cubic lattice of period ℎ. In another modification, the 𝑛 = 2
and 𝑛 = 4 lattices were shifted by ℎ∕2 in both 𝑋 and 𝑌
directions relative to the planes 𝑛 = 1 and 𝑛 = 2. In this
way, a distorted (extended in the 𝑍-direction by the factor
of 2) BCC lattice was formed. In all cases, the wavelength
of the incident radiation was taken to be 𝜆 = 10ℎ. The bare
polarizabilities of all particles were computed according to
(16) where 𝜖 = −2 + 0.002𝑖 and 𝑎 = ℎ∕4. This corresponds
to some high-conductivity metal particles.

It can be seen that, indeed, the ratio of the geometric
and the extinction cross sections approaches the value of
2 as the size of the square is increased. The result is not
much affected by the choice of the simple cubic lattice or
the distorted BCC lattice, which can be naively expected to
better block the incident rays. This confirms that the extinc-
tion paradox is a wave phenomenon. Moreover, we see that
the extinction cross section can be more than twice larger
than the geometrical cross section. This occurs when the
size of the square is relatively small and the edge diffraction
effects still play a significant role. However, as the size of
the square is increased, the edge diffraction effects become
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Figure 9: The ratio of the extinction and geometrical cross
sections of the arrays of dipoles described in the text. 𝐿 is the
linear dimension of a square that is oriented perpendicularly
to the direction of propagation. C denotes simple cubic lattice
and DBCC denotes distorted body-centered cubic lattice.

progressively less important and the simple geometrical
optics picture emerges, similar to the one illustrated in Fig. 8.
The collection of metal particles act effectively as perfect
mirror.

7.2. Non-additivity of extinction
Consider a scattering experiment in which two orthogo-

nally-propagating beams are scattered by a system of dipoles
or by just one single dipole. Let ⟨𝑊 (1)

𝑒 ⟩𝑡 be the extinguished
power for the case when only one of the two beams is on and
similarly for ⟨𝑊 (2)

𝑒 ⟩𝑡. However, the total extinguished power
when both beams are on simultaneously is not a direct sum of
the two quantities. We have for the total extinguished power
(for just one dipole):

⟨𝑊 (tot)
𝑒 ⟩𝑡 =

𝜔
2
Im

[

(𝐄∗
1 + 𝐄∗

2) ⋅ α(𝐄1 + 𝐄2)
]

= ⟨𝑊 (1)
𝑒 ⟩𝑡 + ⟨𝑊 (2)

𝑒 ⟩𝑡

+ 𝜔
2
Im

(

𝐄∗
1 ⋅ α𝐄2 + 𝐄∗

2 ⋅ α𝐄1
)

. (57)

Here 𝐄1 and 𝐄2 are the complex amplitudes of the electric
field of beam 1 and beam 2, respectively, at the location of
the dipole. Also recall that the renormalized polarizability
must be used in (57) since 𝐄𝑛 do not include the dipole self-
action.

Thus, the total extinguished power is generally not a
sum of the extinguished powers for each beam. Of course,
this much could be easily anticipated, since extinction is a
quadratic quantity (in the fields). However, what exactly does
this mean for the physical interpretation of extinction? How
the interference terms in (57) can be measured?

Let us assume that only one beam, say, the first, is
initially on. Then, according to the common interpretation,
the power ⟨𝑊 (1)

𝑒 ⟩𝑡 is removed from this beam. If we measure
the total beam power before it encounters the scatterer and
after it encounters the scatterer, the difference should be
equal to ⟨𝑊 (1)

𝑒 ⟩𝑡. But this consideration is independent of
the presence of the second beam. Indeed, even though the

second beam creates some additional scattered field, this
scattered field can be arbitrarily small at the small apertures
where the intensity of beam 1 is measured. Moreover, one
can ask, if (57) gives the total extinguished power when both
beams are on, which of the two beams is this power removed
from?

The non-additivity of extinction suggests that character-
izing particles by their extinction cross sections is not always
useful for monochromatic fields. However, we said nothing
so far about the more practical situation when the fields are
partially coherent. One can hope, for example, that in the
latter case the cross-terms in (57) will average out to zero.

Consideration of partially-coherent fields is beyond the
scope of this article, but it is indeed reasonable to expect that
extinguished powers become additive in some limit, just like
the intensities of incoherent sources are additive. However,
in the case of extinction, there is one additional complica-
tion. So far, we have left the spectral dependence of α(𝜔) out
of consideration. In many practical cases, i.e., for particles
in the atmosphere, α(𝜔) does not have very sharp spectral
peaks. In this case incoherent addition of intensities can
be expected. However, if sharp spectral peaks are present,
the cross-terms in (57) will not average to zero even for
completely incoherent incident beams. This is already clear
for the case whenα(𝜔) ∝ 𝛿(𝜔−𝜔0). Indeed, in this case only
monochromatic components of each beam (at the frequency
𝜔0) are important, and strictly monochromatic fields are
perfectly coherent. Therefore, additivity of extinction in a
practical setting depends on a complex interplay between
the mutual coherence properties of the two beams and the
spectral properties of α(𝜔). In the case when many interact-
ing dipoles are present, spectral properties of solutions to the
CDEs come into play, which can also have sharp resonances.

7.3. Extinction for a collimated beam
This paradox is a variant of the paradox discussed in the

previous subsection. Consider just one incident beam and
one dipole. We assume however that the incident beam is
very tightly collimated. The situation seems to be simple yet
it involves an apparent paradox as is illustrated in Fig. 10.

Indeed, let us draw a spherical surface of radius𝑅 around
the scatterer. This surface is denoted by 𝜕Ω in Fig. 10. We
assume that 𝑅 is large and at any rate 𝑅 ≫ 𝜆. The two areas
where the incident beam crosses 𝜕Ω are denoted by 𝑆1 and
𝑆2. We first note that the incident and the scattered fields do
not overlap on 𝜕Ω(−) ≡ 𝜕Ω ⧵ (𝑆1

⋃

𝑆2). The only parts of
the big surface 𝜕Ω where the two fields overlap are 𝑆1 and
𝑆2 (according to the assumption of a non-divergent beam).
Then, the outward power flux through 𝜕Ω(−) is very close
to ⟨𝑊𝑠⟩𝑡, which is the power scattered by the small particle.
Now let us estimate the power flux through the areas 𝑆1 and
𝑆2. In these areas, the total field is the superposition of the
incident and the scattered fields. The total flux of incident
power through 𝑆1 and 𝑆2 is obviously zero (the power of the
beam is preserved with propagation). The power flux of the
scattered field through 𝑆1 and 𝑆2 approaches zero as 1∕𝑅2.
Indeed, the areas of 𝑆1 and 𝑆2 are independent of 𝑅 while
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Figure 10: Illustration of the extinction paradox involving a
perfectly collimated beam. The power flux through the large
spherical surface minus two small areas 𝑆1 and 𝑆2, 𝜕Ω(−) ≡
𝜕Ω ⧵ (𝑆1

⋃

𝑆2), is, approximately, the scattered power ⟨𝑊𝑠⟩𝑡.
At the small areas 𝑆1 and 𝑆2 the incident field is dominating
so that the total power flux through 𝑆1

⋃

𝑆2 is zero. The total
outward flux through 𝜕Ω appears to be equal to ⟨𝑊𝑠⟩𝑡 as if
this energy is generated inside the sphere.

the scattered field decays as 1∕𝑅. Finally, the cross terms
involving the incident and the scattered field decay as 1∕𝑅
for the same reason as above. So, in the limit 𝑅 → ∞, we
obtain the following result: the outward power flux through
𝜕Ω is ⟨𝑊𝑠⟩𝑡 > 0. But this contradicts conservation of energy.
The flux must be negative or zero (for a non-absorbing
particle).

We have obtained the above paradox due to the unrealis-
tic assumption about the incident beam, which is equivalent
to the assumption that the total scattered energy can be mea-
sured precisely. The paradox shows that this is never truly the
case. It is not possible to make a beam so tightly collimated
that the scattered and the incident fields are entirely spatially
separated. Such a possibility would entail a violation of
energy conservation. Therefore, measurement of the integral
scattering and extinction cross sections is a surprisingly non-
trivial problem. Various approaches have been considered in
the literature [62, 63] (these references consider a wide-front
incident plane wave), but a general measurement scheme that
does not rely on approximations or is applicable to all forms
of the incident field is surprisingly difficult to find. We note
that one possible explanation of the above paradox is that
Gaussian beams are not as simple as commonly thought. The
familiar expression that is super-exponentially localized near
the optical axis is usually obtained in the scalar wave and
paraxial approximations. Once these two approximations
are relaxed, the form of a Gaussian beam is anything but
simple [64]; in particular, energy considerations are affected
by this complex mathematical structure.

To gain a further insight into the paradox, consider the
small sphere denoted in Fig. 10 as 𝜕Σ. The sphere is drawn
so that everywhere on 𝜕Σ the scattered and the incident fields
overlap. A sphere of this sort, or perhaps a more complicated

surface, can always be drawn. All the energy considerations
developed by us previously in Section 5 apply to this surface.
Now consider the space between 𝜕Σ and 𝜕Ω. Since this
region is empty, the total flux of power that enters it in
any stationary process is zero. So if a negative outward flux
through 𝜕Σ exists, exactly the same negative flux must exist
through 𝜕Ω, as long as Maxwell’s equations in free space
hold. The paradox of this subsection was obtained because
we have made an assumption about the incident beam that is
inconsistent with Maxwell’s equations.

The resolution of this paradox has, in fact, far reaching
consequences. What we have shown is that it is not pos-
sible to separate the scattered and the incident fields. All
paradoxes of extinction are based on the incorrect implicit
assumption that this is possible, as well as on the traditional
interpretations of the scattered and extinguished powers. The
fundamental impossibility to separate the incident and the
scattered fields indicates that these interpretations should be
used with caution.

8. Summary
The article was written with several goals in mind. First,

we have clarified several confusing or contradictory points
that related to the widely-used coupled-dipole approxima-
tion (CDA). An effort was made to keep the discussion
as general and at the same time as simple as possible.
Two different but equivalent variants of the coupled-dipole
equations (CDEs) were described in detail. Fundamental to
understanding these two variants of CDEs is the distinction
between the bare and the renormalized polarizabilities. We
have introduced this distinction for the most general case
of tensorial polarizabilities, and illustrated it further with
the example of CDEs in the vicinity of a substrate. An-
other important goal was to provide a general and rigorous
derivation of the energy relations that are applicable within
the framework of CDA. Here, however, one is encountered
with some long-standing difficulties, which are not really
specific to the CDA. The difficulties stem from the fun-
damental impossibility to separate spatially the scattered
and the incident fields. Correspondingly, the scattered and
the extinguished power fluxes are generally not measurable
directly and assuming that they are can lead to various
paradoxes, the most well-known of which is the classical
extinction paradox. In the concluding parts of this article, we
have discussed several such paradoxes within the theoretical
framework of CDA and multiple scattering.

Data availability
All research data are for this paper are available from

Mendeley Data, V1, doi: 10.17632/277jsr32md.1.
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A. Green’s tensor in free space
Here we follow the notations of [37], see Eqs. 35 through

42. Note that some of the symbols used below such as 𝙺

should be interpreted only within this Appendix; in other
sections, they have different meaning or use.

The free-space, frequency-domain Green’s tensor is de-
fined as the solution to the following equation

[

(∇ × ∇×) − 𝑘2
]

𝙶(𝐫, 𝐫′) = 4𝜋𝑘2𝙸𝛿(𝐫 − 𝐫′) , (58)

where 𝑘 = 𝜔∕𝑐 and 𝙸 is the identity tensor. The Green’s
tensor thus defined describes the radiation produced by an
oscillating electric polarization in a physically-small vol-
ume. More specifically, for a general spatial distribution of
polarization 𝐏(𝐫), the electric field 𝐄s(𝐫) that is radiated or
produced by this polarization is given by

𝐄s(𝐫) = ∫ 𝙶(𝐫, 𝐫′)𝐏(𝐫′)𝑑3𝑟′ . (59)

We can use the Fourier transform technique and the transla-
tional invariance of free space to compute 𝙶(𝐫, 𝐫′). To this
end, we start with the Fourier expansion of the form

𝙶(𝐫, 𝐫′) = ∫ 𝙺(𝐩)𝑒𝑖𝐩⋅(𝐫−𝐫′) 𝑑
3𝑝

(2𝜋)3
(60)

and substitute this expression into (58). This results in the
momentum-space equation

[

(𝐩 × 𝐩×) + 𝑘2𝙸
]

𝙺(𝐩) = −4𝜋𝑘2𝙸 , (61)

where we have referred to the Fourier variable 𝐩 as to the
“momentum”, although the analogy here is loose.We can
solve the algebraic equation (61) directly with the result

𝙺(𝐩) = 4𝜋
𝑘2𝙸 − 𝐩⊗ 𝐩
𝑝2 − 𝑘2

, (62)

where⊗ denotes tensor product. Note that Tr[𝙺(𝐩)] does not
approach zero when |𝐩| → ∞. This means that the integral
(60) is singular. We can however extract the singular part
analytically by re-writing (62) identically as

𝙺(𝐩) = −4𝜋
3
𝙸 + 𝙺𝑅(𝐩) , (63a)

where

𝙺𝑅(𝐩) =
4𝜋
3

(2𝑘2 + 𝑝2)𝙸 − 3𝐩⊗ 𝐩
𝑝2 − 𝑘2

. (63b)

It can be seen that Tr[𝙺𝑅(𝐩)] → 0 when |𝐩| → ∞; therefore,
𝙺𝑅(𝐩) is the Fourier transform of the regular part of the
Green’s tensor. Substituting (63) into (60) and integrating,
we find the real-space representation of the Green’s tensor:

𝙶(𝐫, 𝐫′) = −4𝜋
3
𝙸𝛿(𝐫 − 𝐫′) + 𝙶𝑅(𝐫, 𝐫′) , (64a)

𝙶𝑅(𝐫, 𝐫′) =
[(

𝑘2

|𝐫 − 𝐫′|
+ 𝑖𝑘

|𝐫 − 𝐫′|2
− 1

|𝐫 − 𝐫′|3

)

𝙸

+
(

− 𝑘2

|𝐫 − 𝐫′|
− 3𝑖𝑘

|𝐫 − 𝐫′|2
+ 3

|𝐫 − 𝐫′|3

)

×
(𝐫 − 𝐫′)⊗ (𝐫 − 𝐫′)

|𝐫 − 𝐫′|2

]

𝑒𝑖𝑘|𝐫−𝐫
′
| . (64b)

Here 𝙶𝑅(𝐫, 𝐫′) is the regular part of the Green’s tensor, which
is used in the CDEs. In particular, the quantities 𝙶𝑛𝑚 (for
𝑛 ≠ 𝑚) in (8) and (17) are defined as

𝙶𝑛𝑚 = 𝙶𝑅(𝐫𝑛, 𝐫𝑚) (for 𝑛 ≠ 𝑚) . (65)

To determine the diagonal terms 𝙶𝑛𝑛, we still use the regular
part of the Green’s tensor defined in (64b) and consider the
small-distance expansions of the form

Re[𝙶𝑅(0, 𝐫)] =
(

− 1
𝑟3

+ 𝑘2

2𝑟

)

𝙸

+
(

3
𝑟3

+ 𝑘2

2𝑟

)

𝐫 ⊗ 𝐫
𝑟2

+ 𝑂(𝑟) , (66a)

Im[𝙶𝑅(0, 𝐫)] =
(

2𝑘3
3

− 2𝑘5𝑟2
15

)

𝙸

+ 𝑘5𝑟2

15
𝐫 ⊗ 𝐫
𝑟2

+ 𝑂(𝑟4) . (66b)
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Extinction, scattering and absorption

Using the expansion (66), we can define 𝙶𝑛𝑛 as the regular-
ized limit

𝙶𝑛𝑛 = lim
𝑎→0

3
4𝜋𝑎3 ∫

|𝐫−𝐫𝑛|<𝑎
𝙶(𝐫, 𝐫𝑛)𝑑3𝑟 = 𝑖2𝑘

3

3
𝙸 . (67)

This result is applicable to free space and is typically used
in the Second Approach to CDA. Note that a more rigorous
derivation of (67) has been given in [34].
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