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Abstract

The effects of averaging of the enhancement factor for absorption of light by car-
bon particles inside water microdroplets are investigated numerically. A uniform
distribution of carbon inclusions inside the water droplets is assumed. We perform
the averaging over the size parameter of the droplet x = 2πR/λ (R - radius of the
droplet, λ - the incident wavelength) with different resolution in x.

1 Introduction

The absorption of electromagnetic radiation by carbonaceous soot aerosol is of
considerable interest for climate and radiation energy transfer modeling [1–4].
The optical properties of free soot have been extensively studied [5–18]. In the
visible and near IR, the first Born approximation [19] or the mean-field the-
ory [20] provide accurate results for the absorptive properties of atmospheric
soot. However, it is known that the soot often forms agglomerates with water
microdroplets, especially in the clouds [1,21–24]. When a soot cluster is placed
inside a water droplet, it is no longer excited by plane waves, but rather by in-
ternal modes of a high-quality optical resonator. To complicate things further,
the resonator modes can effectively couple to the modes of clusters themselves.
As a result, the absorption spectra of soot particles inside the microdroplets
are very different from those of free soot.

The above fact stimulated a lot of interest in scattering and absorption by
inhomogeneous spheres [25–39]. A brief review of theoretical results relevant
to the topic of this paper can be found in [40]. The references [25–39] focus on
a given incident light wavelength λ and the sphere radius R and, therefore, on
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a fixed size parameter x = kR = 2πR/λ. However, in most practical cases the
microdroplets are polydisperse and excited by a broad-band radiation. This
leads to a broad distribution of size parameters. In a recent paper [40] we have
performed an averaging over the size parameter of microdroplets and studied
the effects of narrow morphology-dependent resonances on the absorption en-
hancement factor. In particular, it was shown that the integral effect of these
resonances is not small, and they should be accounted for in order to calculate
the enhancement factor accurately. It was also shown that the enhancement
factor averaged over a wide range of the droplet size parameters is a few times
larger than for an off-resonant value of x. This increase was attributed to the
integral effect of the morphology-dependent resonances.

However, the previous publication [40] lacked a systematic study of the depen-
dence of the averaged enhancement factor on the resolution in x. This question
is important since the averaging over size parameters is expected to yield the
“true” result only for a sufficiently small step in x. In this paper, the results
of such study are reported. It is shown that the averaged enhancement factor,
calculated with fine resolution in x, is close to 25, which is even larger than
previously reported in Ref. [40] (∼ 14).

2 The enhancement factor

In this section we briefly summarize the results for the enhancement factor
G and introduce relevant notations. Details of the derivations can be found
in [18,40].

Our approach is based on a perturbation expansion which is mathematically
similar to the approach used in [25,38]. The dielectric function of an inhomo-
geneous sphere is represented as a sum of a constant (unperturbed) value and
a coordinate-dependent perturbation. The small parameter of the problem is
the ratio of the volume of carbon inclusions, v, to the volume of the water
droplet, V = 4πR3/3. The absorption cross section of carbon inclusions inside
the water droplet of radius R is given, to the first order in v/V , by

〈σa〉 =
kImǫc
|E0|2

∫

V

〈ρ(r)〉 |Es(r)|2 d3r , (1)

where 〈. . .〉 denotes averaging over the random realizations of carbon inclusions
inside the water droplets, E0 is the amplitude of an incident plane wave, ǫc
is the dielectric function of carbon, 〈ρ(r)〉 is the average density of carbon
inclusions normalized by the condition

∫

V

〈ρ(r)〉d3r = v (2)
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and Es(r) is the unperturbed internal field inside the sphere given by the
expansion in terms of the vector spherical harmonics [41]:

Es =
∞
∑

n=1

in
|E0|(2n+ 1)

n(n + 1)
(cnMo1n − idnNe1n) . (3)

Here cn and dn are the internal field Mie coefficients defined by

cn =
jn(x)

[

xh(1)
n
(x)
]

′ − h(1)
n
(x) [xjn(x)]

′

jn(x1)
[

xh
(1)
n (x)

]

′ − h
(1)
n (x) [x1jn(x1)]

′

; (4)

dn =
jn(x)

[

xh(1)
n
(x)
]

′ − h(1)
n
(x) [xjn(x)]

′

(x1/x)jn(x1)
[

xh
(1)
n (x)

]

′

− (x/x1)h
(1)
n (x) [x1jn(x1)]

′

; (5)

x = kR ; x1 =
√
ǫwkR , (6)

where ǫw is the dielectric function of water, jn(x) and h(1)(x) are the spherical
Bessel and Hankel functions of the first kind, respectively, and the prime
denotes differentiation with respect to the argument in parenthesis.

A few notes need to be made about formulas (1)-(6). First, the result (1) was
obtained for a fixed wavelength λ and radius of the sphere R. However, it
is averaged over random realizations of carbon inclusions. Thus the quantity
〈ρ(r)〉 is defined as the average volume density and can be interpreted as the
probability to find the point r inside the sphere to be occupied by carbon.
It is natural to assume that this function is radially symmetrical: 〈ρ(r)〉 =
〈ρ(r)〉, while each individual realization ρ(r) may not possess this property.
Next, the water was assumed to be very weakly absorbing compared to carbon
(Imǫw ≪ Imǫc). This is a very accurate approximation in the visible and near-
IR spectral regions. Apart from this assumption, and the requirement that
the expansion parameter v/V is small, no other approximations were made.
In particular, the size parameter of the sphere can be arbitrary.

Next we define the enhancement factor G as the ratio of the absorption cross
section of carbon particles inside the water droplet and in vacuum :

G =
〈σa〉
〈σ(0)

a 〉
, (7)

where 〈σ(0)
a
〉 = kvImǫc is the average absorption cross section of carbon soot

in vacuum in the first Born approximation. It can be easily obtained from (1)
by replacing the internal field Es with a plane wave E0 exp(ik · r). Applying
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this definition to (1) we obtain

G =
1

v|E0|2
∫

V

〈ρ(r)〉 |Es(r)|2 d3r . (8)

Since the average density of carbon inclusions must be spherically symmetrical,
we can write

G =
1

v|E0|2
∫

R

0
r2〈ρ(r)〉dr

∫

|Es(r)|2 dΩ . (9)

Further, we use expansion (3) for Es and, taking into account the mutual
orthogonality of the VSHs, write the angular part of integral (9) as

∫

|Es(r)|2 dΩ =
∞
∑

n=1

|E0|2(2n+ 1)2

n2(n+ 1)2

×
[

|cn|2
∫

|Mo1n|2dΩ+ |dn|2
∫

|Ne1n|2dΩ
]

. (10)

The angular integration can be performed directly using the normalization
formulas for the VSHs, which yields

∫

|Es(r)|2dΩ = 2π|E0|2
∞
∑

n=1

(2n+ 1)







|cn|2j2n(k1r)

+ |dn|2


n(n + 1)

(

jn(k1r)

k1r

)2

+

(

jn(k1r)

k1r
+ j′

n
(k1r)

)2










. (11)

Further calculations require specifying the form of 〈ρ(r)〉. In general, the dis-
tribution of carbon inclusions inside the microdroplets can be influenced by
many factors such as the chemical composition of soot particles, surface ten-
sion forces, temperature, etc [42,43]. However, the average density of inclusions
must be spherically symmetrical if there is no distinguished direction inside
the sphere (we neglect gravity at this point). In this paper we consider the
simplest case of a homogeneous distribution

〈ρ(r)〉 = v/V if r < R . (12)

The case of a more general power-law distribution was considered in [18,40].
With the simple form (12) of 〈ρ(r)〉, the radial integrals in (9) can be calculated
analytically. Then the final result for G becomes

G =
3

2x3
1

∞
∑

n=1

[(

|cn|2 + |dn|2
)

I(x1) + |dn|2x1jn(x1) (jn(x1) + x1j
′

n
(x1))

]

, (13)
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Fig. 1. Enhancement factor G(x) as a function of x calculated with different reso-
lution. Each plot contains 10, 001 points in x.

where

I(x1) =
∫

x1

0
x2j2

n
(x)dx =

x1

2

×
[

(x1j
′

n
(x1))

2
+ x1jn(x1)j

′

n
(x1) +

(

x2
1 − n(n+ 1)

)

j2
n
(x1)

]

. (14)

3 Results and discussion

We have calculated the function G(x) in different intervals of x with different
resolution. The results are shown in Fig. 1. Each plot contains N = 104 points
in x. The first important feature that can be seen in these plots is the apparent
absence of a systematic dependence on x (similar behavior was also observed in
the interval 10 < x < 1000 [40]). This leads to the conclusion that the results
of averaging of G(x) over x should not depend significuntly on the actual
distribution over size parameters p(x) which is determined by the distribution
of droplets radiuses and by the spectrum of the incident light.

Second, as can be seen in Figs. 1c and 1d, the typical off-resonance value of

5



Lorentzian
Numerical

G(x)

x

240.167604240.167600240.167596

106

105

104

103

102

101

Fig. 2. Sharp resonance seen in Fig. 1c near x = 240.17 completely resolved. Approx-
imation by a Lorentzian of the form f(x) = w(γ/x0)/((x − x0)

2 + γ2) is shown by
the dashed line; the values of the parameters are x0 = 240.167599842, γ = 5 · 10−8,
w = 2.

G is approximately 5, which is close to the values previously reported [4,44].
However, the resonance values ofG are extremely large. Some of the resonances
are very narrow while the others are not. A completely resolved resonance with
the half width ∼ 5 · 10−8 is shown in Fig. 2. (The same resonance can be seen
in Fig. 1d near x = 240.17 as a vertical line.) We also show in Fig. 2 an
approximation of this peak by a Lorentzian.

Now we turn to averaging of G(x) over x. The averaging was performed in
different intervals x ∈ [xmin, xmax] under the assumption that the distribution
of droplets over size parameters is uniform in this interval. Therefore, the
averaged value 〈G〉 is given by

〈G〉 = 1

N

N
∑

i=1

G(xi) , (15)

xi = xmin +∆x(i − 1) , ∆x = (xmax − xmin)/(N − 1) . (16)

The results of such averaging are illustrated in Fig. 3 for different intervals
[xmin, xmax]. It can be seen that, in all cases, the quantity 〈G〉 converges to
well-defined constant value for sufficiently small ∆x. This limiting value of
〈G〉 varies in the range 20 < 〈G〉 < 25, except in the interval x ∈ [450, 550]
(Fig. 3b), where 〈G〉 ≈ 40. The reason why 〈G〉 is anomalously high in this
interval of size parameters is not clear; it can be attributed to appearance of a
very strong resonance. In all cases, the averaged values of 〈G〉 can be seen to
increase systematically (except for some very narrow peaks) as ∆x decreases.
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Fig. 3. 〈G〉 as a function of ∆x for different averaging intervals [xmin, xmax].

The most challenging numerical task is calculating 〈G〉 in a wide range of
x. Similar to Ref. [40], we intend to average the enhancement factor for x ∈
[10, 1000]. For example, for λ = 0.4µm, this corresponds to the droplet radiuses
in the range 0.64µm < R < 640µm. (Study of smaller size parameters must
be carried out separately, since there can be found a pronounced systematic
dependence of G(x) on x for x < 10.) The numerical complexity arises from the
fact that G(x) must be calculated at an extremely large number of points in
this case. Note also that when x grows, calculation of G(x) is more numerically
complex, since the number of terms necessary for convergence of the series (13)
grows approximately as x.

The results of the averaging of G(x) in the interval x ∈ [10, 1000] are shown
in Fig. 4. Again, it can be seen that the averaged value of the enhancement
factor converges to 〈G〉 ≈ 25 for ∆x ≈ 10−6. However, this convergence is
manifested not as strongly as in the smaller ranges of the size parameter (see
Fig. 3). Continuing calculations for ∆x < 10−6 was numerically not feasible.
Nevertheless, it appears evident that 〈G〉 is not smaller than at least 24, since
〈G〉 does not decrease below this value starting from ∆x < 10−4. Note also
that in Ref. [40] we have calculated 〈G〉 for ∆x = 0.1 and found 〈G〉 ≈ 14. As
can be seen from Fig. 4, this value is, indeed, typical for ∆x ≈ 0.1. However, a
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Fig. 4. 〈G〉 as a function of ∆x for x ∈ [10, 1000].

well manifested systematic increase of 〈G〉 can be seen as ∆x decreases from
0.1 to 10−4 (apart from several high narrow peaks).

To conclude, we have found that the integral effect of the narrow morphology-
dependent resonances on the enhancement factor G is not small. It leads to
the increase of the averaged enhancement factor 〈G〉 by the factor of ∼ 5
compared to the typical off-resonant value of G(x).
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