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Absorption cross section of carbon soot clusters inside water microdroplets is calculated. Fractal
geometry of carbon inclusions is considered with the fractal dimension D in the interval 1 ≤ D ≤ 3,
which includes the trivial geometry (D = 3) as a limiting case. It is found that the absorption cross
section of a soot cluster inside a water droplet is increased, compared to that in vacuum, by the
factor of ≈ 16 for the practically important case of D = 1.8. This result is obtained by averaging
of the enhancement factor over the diffraction parameter of the microdroplets x = ka (k = 2π/λ,
a - radius of the microdroplet) with a fine resolution. It is shown that the narrow resonances in
the enhancement factor as a function of x play important role and should be taken into account for
the purpose of averaging over x. The absorption enhancement factor increases, on average, when D
decreases, and reaches the value of ≈ 22 for D = 1.
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1. Introduction

The effects of radiation absorbing carbonaceous atmospheric pollutants on the global climate and radiation energy
transfer attracted much attention recently1–4. It is, generally, believed that such pollutants act oppositely to the
green house effect (for the “nuclear winter” effect, see, for example, Ref. 5). While this general tendency is more or
less obvious, obtaining reliable quantitative results is complicated by the following two factors. First, small carbon
particles that form in the process of incomplete combustion of carbohydrates, typically, aggregate and stick to each
other to form large random clusters with complex fractal morphology6–11. The second important factor is that these
soot clusters often form agglomerates with water microdroplets, especially in the clouds1,12–15. The goal of this
paper is to obtain quantitative results for absorption characteristics of such composite microdroplets with account of
the fractal morphology of carbon soot clusters. Our consideration includes the non-fractal homogeneous distribution
of carbon inclusions as the limiting case.
Foundations of the theory of scattering and absorption of plain electromagnetic waves by fractal smoke clusters

were built by Berry and Percival16 and Martin and Hurd17. The theory was developed in many detail in the past few
years10,11,18–25. In these papers, scattering is considered either in the first Born approximation17, or in the mean-field
approximation16. The main physical assumption leading to applicability of the first Born approximation is that the
frequency of the incident wave is far from any of the collective dipole resonances of the scattering system. This
assumption is accurate for scattering of visible light by clusters built from black carbon particles. In the mean-field
approximation, one assumes that all the collective dipole resonances are degenerate (have the same frequency), while
the frequency of the incident wave can be arbitrary. Mathematically, these approximations are similar (in fact, they
give the same expression for the scattering amplitude, differing by a multiplicative factor). It is important that in
both approximations the incident electromagnetic field is given by a plane wave and is not coupled to the scattered
waves.
When a cluster is placed inside a water droplet, it is no longer exited by a plane wave, but rather by internal

modes of a high-quality optical resonator. To complicate things further, the resonator modes can effectively couple to
the modes of clusters themselves. There have been a considerable number of experimental26–31 and theoretical32–40

studies of scattering and absorbing properties of inhomogeneous spheres carried out. Below, we briefly review the
theoretical approaches to the problem.
The simplest model for a water droplet with an inclusion inside is a spherical dielectric particle with an eccentric

spherical inclusion. An exact formal solution to the problem of light scattering and absorption by such composite
spheres was obtained by Borghese et al.33 and generalized for the case of multiple arbitrarily positioned spherical
inclusions by Borghese et al.36 and Fuller37,38,41,42 The solutions were obtained by the vector spherical harmonic
(VSH) expansion of electrical fields inside the homogeneous spherical regions and satisfying the boundary conditions
at all the discontinuity surfaces. Even in the case of one spherical inclusion, the solution must be obtained from a
system of linear equations that is, theoretically, infinite-order. Practically, the VSH expansion is truncated at some
maximum order, L, and then the system contains ∼ L2 equations33. When multiple inclusions are considered, the
number of equations is further increased, which makes the problem very complicated numerically. Also, the approach
based on the exact boundary conditions consideration requires knowledge of the exact geometry of the problem before
the time-extensive calculations. This fact complicates averaging of solutions over random distribution of inclusions
inside water droplets.
An alternative approach based on the perturbation theory was developed by Kerker et al.32 and Hill et al.39.

According to this method, the dielectric function of an inhomogeneous sphere is represented as a sum of a constant
(unperturbed) value and a small coordinate-dependent perturbation. In the zero approximation, the field inside the
droplet is calculated in the assumption that the perturbation of the dielectric function is equal to zero. This field is
given by the Mie expansion in terms of the VSH. In the next iteration, the zero-approximation field induces some
additional polarization (or, equivalently, current) in the volume, proportional to the perturbation of the dielectric
function. This additional polarization can be used to calculate changes of scattering and absorbing characteristics of
the inhomogeneous sphere as compared to the homogeneous (unperturbed) one. A big advantage of this method is
that it allows one to perform averaging over random perturbations. However, it has a drawback. As was pointed out
by Hill et al.39, the internal field must be computed iteratively. That is, the additional polarization calculated in the
first iteration described above should produce some additional internal electrical field, which, in turn, gives rise to
additional polarization (now proportional to the unperturbed dielectric function), and so on. Physically, this means
that the modes of a homogeneous spherical resonator are coupled to the modes of the inhomogeneous perturbation of
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the dielectric function. In order for a finite-order approximation to be accurate, it is necessary that the perturbation
expansion of any physical quantity under consideration converges. In section 2B we show that, in general, it is not
the case. More specifically, this expansion always diverges for physical quantities related to scattering (such as the
differential scattering cross section). However, the perturbation expansion converges for the absorption cross-section
when the imaginary part of the unperturbed dielectric function is zero (or sufficiently small).
In this paper, we use the above fact to calculate absorption cross sections of carbon smoke particles inside spherical

water droplets in the first order of the perturbation theory. The perturbation expansion is mathematically similar to
that of Kerker et al.32 and Hill et al.39. The water itself is assumed to be non-absorbing. We perform calculations for
fractal distribution of carbon inclusions with a power-law dependence of density on the distance from the center of
a water droplet; the case of trivial (non-fractal) geometry is considered as a limiting case when D = 3. We calculate
enhancement factor for the absorption cross sections of carbon smoke inside a water droplet as compared to that
of free carbon smoke. We show that the absorption enhancement factor shows little systematic dependence on the
diffraction parameter of the host sphere x = 2π/λ, apart from quasi-random resonances which are very narrow. This
fact allowed us to average the enhancement factor over x with a fine resolution in x, so that most resonances were
resolved. Physically, this averaging corresponds to either a polydisperse ensemble of water droplets or probing by a
broad-band radiation. Because of the presence of narrow resonances, our averaged absorption factor turned out to
be larger by the factor of ∼ 4− 5 than that calculated for a randomly selected value of x. For the trivial distribution
of carbon inclusions (D = 3), we obtain the averaged enhancement factor of 14, while for a randomly selected value
of x the typical (most probable) enhancement factor is from 2 to 4. This suggests that, although the resonances in
x are very narrow, they are not small in the integral sense, and should be taken into account.
The averaging procedure involved in our calculations might explain why our estimates of the enhancement factor

are significantly larger than those reported earlier4,41–43. Fuller calculated the specific absorption cross section for
a single spherical carbon grain located near the surface of a water droplet41 and inside the water droplet42 as a
function of the grain’s position. Although Fuller’s data are not averaged over the whole volume of the microdroplet,
they indicate that the volume-averaged absorption enhancement factor is smaller than 14. Chylek et al. averaged
the same quantity for the carbon inclusion location distributed evenly within a spherical cone with the axis collinear
to the incident wave propagation direction4 and over the whole volume43. In the first case the authors estimate44

the enhancement factor to be ≈ 4, and in the second ≈ 2. However all of the above calculations were performed for
a fixed value of the diffraction parameter x. Because the resonances are very narrow, it is unlikely that a randomly
selected value of x will lie within a resonance. Our calculations indicate that if x is chosen exactly in resonance, the
volume-averaged enhancement factor can be as large as 104.
The approach developed in this paper applies to any spherical highly transparent microcavities doped with strongly

absorbing inclusions with the fractal dimension from 1 to 3, not just to carbon soot inside water droplets. However,
the numerical results are strongly dependent on the refractive index of the host. The difference between microdroplets
with refractive index of water (∼ 1.33) and of sulfate (∼ 1.52) was demonstrated by Fuller41,42.
In section 2 we review the general formulation of the scattering problem, integral equation formalism and the

perturbation expansion. In this section we also introduce definition for the absorption enhancement factor. In
section 3 we take account of the fact that any density distribution of inclusions inside a spherical volume must be
spherically symmetrical on average (provided there is no selected direction) and perform averaging over spatial angles.
In section 4 we consider the fractal geometry of carbon inclusions and corresponding radial integrals. In section 5
we present results of numerical calculations of the absorption enhancement factor for different fractal dimensions.
Lastly, section 6 contains a summary.

2. Basic theory

A. Formulation of the model

Consider a plane monochromatic wave of the form

Einc(r, t) = E0 exp(ik · r − ωt) (1)

incident on a spherical water droplet of a radius a containing a carbon soot cluster inside. The time dependence,
exp(−iωt), is the same for all time-varying fields and, therefore, will be omitted below.
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The physical system under consideration can be characterized by a dielectric function of the form

ε(r) =

{

ε1 + (ε2 − ε1)ρ(r) , r ≤ a
1, r > a .

(2)

Here ε1 and ε2 are the dielectric constants of water and carbon, respectively, and ρ(r) is the density of carbon
inclusions inside the droplet, normalized by the condition

∫

V

ρ(r)d3r = v , (3)

where v is the total volume occupied by carbon and V = 4πa3/3 is the volume of the droplet;
∫

V
denotes integration

over the spatial area defined by r ≤ a (
∫

V
d3r = V ). We assume that the volume fraction of carbon is small, so

that the small parameter of the problem is v/V . We also assume that ρ(r) = 0 for r > a, i.e. the soot cluster is
completely covered by water.
In our notations, ρ(r) denotes the exact density of carbon inclusions for some given random realization of a soot

cluster. As such, ρ(r) = 1 if the radius-vector r lies in the area occupied by carbon, and ρ(r) = 0 otherwise. We will
see that for calculation of some average physical characteristics, such as absorption, one needs to average ρ(r) over
random realizations of carbon soot clusters. We denote the average density by 〈ρ(r)〉; it can be interpreted as the
probability to find some given point r inside a droplet occupied by carbon. If 〈ρ(r)〉 is bounded everywhere inside
the sphere, the condition v/V ¿ 1 implies that 〈ρ(r)〉 ¿ 1 ∀ r.

B. Integral equations formalism

The vector wave equation for the monochromatic electrical field E(r) reads
[

∇2 + k2ε(r)
]

E(r) = 0 ; ∇ · E(r) = 0 , (4)

where k = ω/c is the wave vector in the free space and ε(r) is the dielectric function (at the given frequency ω),
defined by formula (2).

Using the free-space dyadic Green’s function Ĝ(r) for the vector wave equation, we can rewrite (4) in the integral
form:

E(r) = Einc(r) +

∫

V

Ĝ(r − r′)
ε(r′)− 1
4π

E(r′)d3r′ . (5)

The Green’s function, Ĝ, is given by general formulas for dipole radiation of a point source (for derivation of the
Green’s function, see Ref. 45, Chapter 9 or Ref. 46 , Chapter 6; an explicit coordinate system-independent expression
for the regular part of the Green’s function is given, for example, by Markel47). For our analysis, we do not need to

specify Ĝ here.
The free term in the right hand side of Eq. (5) was chosen to satisfy the boundary conditions at the infinity,

and the integral was extended only over the volume occupied by the droplet, because ε(r) = 1 outside. The radius
vector r can, in principle, lie both inside and outside the sphere. However, all the physically measurable quantities,
such as absorption and scattering cross sections, are completely defined by the polarization function which is zero in
vacuum. Therefore, it is generally sufficient to restrict our consideration to the class of functions E(r) defined inside
the spherical volume r < a, while the boundary conditions are satisfied automatically due to the proper choice of
the free term in (5).
At the next step, we represent the electrical field inside the sphere as a sum of two contributions:

E(r) = Es(r) + Ec(r) , (6)

where Es(r) is the solution to the equation (5) with ε2 = ε1, i.e.,

Es(r) = Einc(r) +
ε1 − 1
4π

∫

V

Ĝ(r − r′)Es(r
′)d3r′ , (7)
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and Ec(r) is the additional term which originates because of the presence of a carbon cluster. Es(r) is given by the
Mie solution for a dielectric sphere and we assume that it is known. Substituting E(r) in the form (6) into (5), we
find the equation for Ec(r):

Ec(r) =
ε2 − ε1
4π

∫

V

ρ(r′)Ĝ(r− r′)Es(r
′)d3r′ +

∫

V

ε1 − 1 + (ε2 − ε1)ρ(r
′)

4π
Ĝ(r− r′)Ec(r

′)d3r′ . (8)

The first term in (8) with the known function Es(r) serves as a free term for the integral equation (8).
For many practical problems knowledge of the ensemble-averaged internal field is sufficient. (Evidently, this class

of problems does not include the problems of nonlinear optics that require consideration of fluctuations of the
local field.) We cannot perform direct averaging of equation (8) over random realization of inclusions, because such
averaging would add an additional unknown term 〈ρ(r)Ec(r)〉. In the general case, we cannot factorize this correlator
as 〈ρ(r)Ec(r)〉 = 〈ρ(r)〉〈Ec(r)〉. However, in the linear (in v/V ) approximation we can neglect the above term as a
higher-order correction. Then it becomes possible to write an equation for the ensemble-average value 〈Ec(r)〉:

〈Ec(r)〉 =
ε2 − ε1
4π

∫

V

〈ρ(r′)〉Ĝ(r − r′)Es(r
′)d3r′ +

ε1 − 1
4π

∫

V

Ĝ(r − r′)〈Ec(r
′)〉d3r′ . (9)

We can make two important conclusions from the general form of (9). First, the ratio of |〈Ec〉|/|Es| is of the same
order of magnitude as v/V . This can be seen by multiplying 〈ρ(r′)〉 in (9) by some arbitrary constant α. The average
field 〈Ec(r)〉 is also multiplied by the same factor α. This means, that, on average, |〈Ec(r)〉|/|Es(r)| ∼ 〈ρ(r)〉 ∼ v/V .
A similar result is readily obtained for the exact field Ec(r) (before the averaging).
The second conclusion is that it is, generally, impossible to apply the Born expansion or similar perturbation

expansion for calculation of 〈Ec(r)〉. Indeed, both terms in the right-hand side of (9) are of the same order of
magnitude (proportional to v/V ). Suppose, we start from the zero-order approximation 〈E(0)

c (r)〉 = 0, and substitute
it into (9) to obtain the first order approximation, and so on. It is easy to see that all the terms in the generated
expansion will be of the same order of magnitude in terms of v/V , and, therefore, convergence cannot be reached.
The above fact makes the general scattering problem for a water droplet containing a cluster inside very compli-

cated. Indeed, the only small parameter of the problem, v/V , cannot be used to generate a converging expansion
for Ec(r). However, as we show below, we can use the fact that |Ec(r)|/|Es(r)| ∼ v/V to calculate the absorption
cross-section when water itself is weakly absorbing.

C. Absorption

The absorption cross-section, σa, is completely defined by the polarization function, P(r) = [(ε(r)−1)/4π]E(r). This
is a consequence of the fact that the absorbed energy is equal to the total work of the local field in the material (as
opposed to the extinction energy, which is equal to the work of the external field). The formula for the absorption
cross section in terms of the polarization function can be obtained from the optical theorem and direct integration
of the scattering amplitude47,48:

σa =
16π2k

|E0|2
∫

V

Imε(r)

|ε(r)− 1|2 |P(r)|
2
d3r =

k

|E0|2
∫

V

Im[ε(r)] |E(r)|2 d3r . (10)

Using formulas (2) for ε(r) and (6) for E(r), we can rewrite the above expression for the absorption cross section as

σa =
kImε1
|E0|2

∫

V

|Es(r)|2 d3r +
kIm(ε2 − ε1)

|E0|2
∫

V

ρ(r) |Es(r)|2 d3r +

kImε1
|E0|2

∫

V

{

2Re [Es(r) ·E∗
c(r)] + |Ec(r)|2

}

d3r+

kIm(ε2 − ε1)

|E0|2
∫

V

ρ(r)
{

2Re [Es(r) ·E∗
c(r)] + |Ec(r)|2

}

d3r . (11)

Now we analyze the terms in the right-hand side of (11). The first term gives the absorption cross section by a
water droplet without inclusions. It is given by the well-known Mie solution and, consequently, is of no interest for
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us. Taking into account that 〈ρ(r)〉 ∼ |Ec|/|Es| ∼ v/V , we find that the second and the third terms are of the same
order of magnitude and give the first correction of of the order of v/V to the absorption cross sections. Finally, the
fourth term is of the order of (v/V )2, and can be neglected in the first approximation.
Even in the first approximation, the expression for the absorption cross section contains the unknown field Ec(r)

in the third term of (11). However, for the particular case of carbon and water, Imε2 À Imε1. This additional factor
allows one to neglect the third term in expansion (11). In principle, the first term can be still large or comparable
to the second one due to the large factor V/v, but this fact does not complicate further derivations.
Finally, we can represent the absorption cross section as σa = σa,water + σa,carbon where σa,water is given by the

first term in (11), and

σa,carbon =
kImε2
|E0|2

∫

V

ρ(r) |Es(r)|2 d3r . (12)

The above formula gives the absorption cross section associated with carbon inclusions in the first order in v/V ; the
higher corrections are of the order of (v/V )2. In the ideal case of Imε1 = 0, this formula gives the total absorption
of a composite droplet. Below, we will assume for simplicity that ε1 is a real number.
Since ρ and Es are statistically independent, we can perform direct averaging of (12) over random realizations of

carbon soot inclusions:

〈σa,carbon〉 =
kImε2
|E0|2

∫

V

〈ρ(r)〉 |Es(r)|2 d3r . (13)

Note that in the above averaging the radius of a water droplet is fixed.

D. Enhancement factor

We define the enhancement factor G as the ratio of the absorption cross section of a carbon soot cluster in a water
micro-droplet, defined by (13) to that in vacuum:

G =
〈σa,carbon〉
〈σ(0)
a,carbon〉

, (14)

where 〈σ(0)
a,carbon〉 is the average absorption cross section of carbon soot in vacuum. The latter can be easily calculated

using equation (10) and replacing E(r) by Einc(r). Taking into account that |Einc(r)|2 = |E0|2 and ε(r) = 1+ (ε2 −
1)ρ(r) for carbon soot in vacuum, we find that 〈σ(0)

a,carbon〉 = kvImε2 and

G =
1

v|E0|2
∫

V

〈ρ(r)〉 |Es(r)|2 d3r . (15)

3. Angular integration

The average density of carbon inclusions 〈ρ(r)〉 must be spherically symmetrical: 〈ρ(r)〉 = 〈ρ(r)〉. Therefore, the
angular integration in (15) can be done in the most general form, without specifying 〈ρ〉:

G =
1

|E0|2v

∫ a

0

r2〈ρ(r)〉dr
∫

|Es(r)|2 dΩ . (16)

The internal field Es is given by the expansion in terms of the VSH’s, Momn, Memn, Nomn and Nemn (for a
detailed description of the VSH expansion see Ref. 49 ). For a plane incident wave, only the VSH’s with m = 1 are
left in this expansion. Further, if the incident wave is polarized along the x-axis, Me1n and No1n are not excited.
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For the linear absorption, it is sufficient to consider a linear polarization of the incident wave. An elliptical
polarization can be described as a superposition of two linearly polarized waves; the absorbed power due to these
two waves is added up because of the linear nature of the interaction. Below, we will adopt the linear polarization
of the incident wave along the x-axis (E0 = exE0), and will use the following simplified notations for the VSH’s that
can be excited in this particular case: Mn ≡Mo1n and Nn ≡ Ne1n. Then the expansion for the Es field takes the
form

Es =
∞
∑

n=1

in
E0(2n+ 1)

n(n+ 1)
(cnMn − idnNn) . (17)

Here cn and dn are the internal field coefficients
49 defined by

cn =
jn(x)

[

xh
(1)
n (x)

]′

− h
(1)
n (x) [xjn(x)]

′

jn(x1)
[

xh
(1)
n (x)

]′

− h
(1)
n (x) [x1jn(x1)]

′
; (18)

dn =
jn(x)

[

xh
(1)
n (x)

]′

− h
(1)
n (x) [xjn(x)]

′

(x1/x)jn(x1)
[

xh
(1)
n (x)

]′

− (x/x1)h
(1)
n (x) [x1jn(x1)]

′
; (19)

x = ka ; x1 = k1a ; k1 =
√
ε1k , (20)

where jn(x) and h(1)(x) are the spherical Bessel and Hankel functions of the first kind, respectively, and prime
denotes differentiation with respect to the argument in parenthesis.
The VSH’s are mutually orthogonal in the sense that

∫

Mn ·Mm dΩ = 0 , if n 6= m ; (21)

∫

Nn ·Nm dΩ = 0 , if n 6= m ; (22)

∫

Mn ·Nm dΩ = 0 , ∀n and m . (23)

Consequently, the angular integral in (16) can be written as

∫

|Es(r)|2 dΩ =
∞
∑

n=1

|E0|2(2n+ 1)2
n2(n+ 1)2

[

|cn|2
∫

M2
ndΩ+ |dn|2

∫

N2
ndΩ

]

(24)

Note that for a purely real dielectric constant ε1 the VSH’s are also real (see equations (25) and (26) below); this is
why |Mn|2 and |Nn|2 were replaced by M2

n and N2
n in (24).

Expressions for the VSH’s are usually written49 in the spherical coordinate system with z-axis coinciding with the
direction of propagation of the incident wave, and x-axis — with the polarization vector, and using the local basis
er, eθ, eφ . However, such representation is not convenient for the angular integration according to (24) because the
basis vectors er, eθ, eφ depend themselves on coordinates. Instead, we adduce below expressions for the VSH’s as
functions of spherical coordinates (r, θ, φ), but spanned by the position-independent Cartesian unit vectors ex, ey, ez:

Mn(r, θ, φ) = jn(k1r){ex
[

cos2 φ cos θπn(θ) + sin
2 φτn(θ)

]

+

ey cosφ sinφ[ cos θπn(θ)− τn(θ)]− ez cosφ sin θπn(θ)} ; (25)
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Nn(r, θ, φ) =

ex cos
2 φ

{

n(n+ 1)
jn(k1r)

k1r
sin2 θπn(θ) +

[

jn(k1r)

k1r
+ j′n(k1r)

]

[

cos θτn(θ) + tan
2 φπn(θ)

]

}

+

ey cosφ sinφ

{

n(n+ 1)
jn(k1r)

k1r
sin2 θπn(θ) +

[

jn(k1r)

k1r
+ j′n(k1r)

]

[cos θτn(θ)− πn(θ)]

}

+

ez cosφ sin θ

{

n(n+ 1)
jn(k1r)

k1r
cos θπn(θ)−

[

jn(k1r)

k1r
+ j′n(k1r)

]

τn(θ)

}

; (26)

πn(θ) =
P

(1)
n [cos θ]

sin θ
, τn(θ) =

dP
(1)
n [cos θ]

dθ
, (27)

where P
(m)
n (ξ) is the associated Legendre polynomial of the first kind of degree n and order m.

Integration according to (24) with Mn and Nn given by (25),(26) and dΩ = sin θdθdφ can be performed directly
(see Appendix 6 for details of calculation of particular integrals), and the result is

∫

|Es(r)|2 dΩ =

2π|E0|2
∞
∑

n=1

(2n+ 1)

{

|cn|2j2n(k1r) + |dn|2
[

(

jn(k1r)

k1r

)2

+

(

jn(k1r)

k1r
+ j′n(k1r)

)2
]}

. (28)

Further calculations require specifying the form of 〈ρ(r)〉. Below, we consider two cases: fractal distribution of the
inclusion density and homogeneous distribution.

4. Fractal geometry of inclusions

An important characteristic of fractal clusters is the density-density correlation function, 〈ρ(r′)ρ(r)〉, which is pro-
portional to |r′ − r|D−3 in the so-called intermediate asymptote region R0 ¿ |r′ − r| ¿ Rc, where D is the fractal
dimension, R0 is the minimum resolution scale and Rc is the characteristic size of the object (for example, the
gyration radius Rg). If we set r′ = 0, the same scaling behavior should be true for the average density function,
〈ρ(r)〉, measured from the center of symmetry: 〈ρ(r)〉 ∝ rD−3. For trivial objects, D = 3 and there is no long-range
correlation in the system. For fractal clusters, D is, generally, less than 3. Specifically, for soot clusters D ≈ 1.86.
The above scaling behavior of the density-density correlation function is only approximate. A number of studies50,25,
based on numerical simulations, showed that D itself can depend on |r′ − r|/Rc. This phenomenon is known as
multiscaling. However, the effects of multiscaling are, typically, small.
For our simplified consideration, we assume that D is a constant satisfying 1 ≤ D ≤ 3. The case D = 1 corresponds

to inclusions in the form of long linear sticks, while the case D = 3 corresponds to a homogeneous distribution of
inclusions. If D = 3 (trivial geometry), the problem becomes mathematicaly equivalent to the Mie problem for a
homogeneous dielectric sphere with some effective dielectric constant εeff . A nonperturbative analytic solution can
be obtained in this case. However, this method has certain difficulties. First, the form of εeff is not obvious. For
carbon inclusions of spherical shape and small concentration, one can use εeff = ε1 + (3v/V )(ε2 − ε1)/(ε2 + 2ε1)

51.
But this formula is not applicable when the inclusions are not of spherical shape or form clusters of touching particles.
An approach based on determining the effective dielectric function was used by Chowdhury et al.35,40 who suggested
averaging of the ε with the weight that includes the local intensity of the unperturbed electric field inside the sphere.
Chowdhury et al. define two different averaged dielectric constants, one of which is used for computation of the
internal (or external) field coefficients and the other - for the effective absorption (or gain). This method is somewhat
similar to the perturbative approach used here in that it uses the unperturbed electric field to compute the effective
ε. Different effective medium approximation were also used by Videen and Chylek43. The second difficulty is that
the extinction and scattering cross sections in the analytical Mie solution are expressed as infinite series involving
the scattering coefficient an, cn; the absorption cross section must be calculated as the difference between these two
values. When absorption is small, such calculation involves a numerical procedure of finding small difference between
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two large numbers, and the round-off errors become very significant. Also, the direct Mie calculations in the case
of a complex εeff involve spherical Bessel functions of a complex argument, which further complicates numerical
procedures. Instead of finding an analytical solution based on some definition of εeff , we use in this paper the
perturbative approach developed above for the D = 3 case. This approach is also valid for D < 3 (fractal geometry),
when analytical solution can not be obtained, thus allowing us to maintain self-consistency of results.
An important question is how the fractal inclusions are located inside the microdroplets. This can be influenced

by many factors such as chemical composition of soot particles, surface tension forces, temperature, etc. Formation
of agglomerates of soot clusters and water can change the geometrical properties of the clusters due to the action of
surface tension forces52,53. All these factors should be taken into account in further investigation. As was already
discussed, the average density of inclusions must be spherically symmetrical if there is no distinguished direction in
space. We also assume that, in accordance with the fractal density distribution, it obeys a power law with the scaling
parameter D according to

〈ρ(r)〉 = vD

4πaD
rD−3 if r < a . (29)

Here the radius of the microdroplet, a, serves as the cut-off, and the density function (29) satisfies the normalization
(3). Note that the validity of approximations developed above does not depend on the relation between a and λ.
Note that, according to its physical meaning as the probability to find a spot at the distance r from the droplet

center occupied by carbon, 〈ρ(r)〉 cannot be greater than unity. In fact, the perturbation expansion used above relies
on the assumption that 〈ρ(r)〉 ¿ 1. Formula (29) may seem to contradict this assumption when r → 0. However, the
divergence of 〈ρ(r)〉 at small r is not significant since all the physically important radial integrals converge fast enough
at this limit (see below); thus the actual value of 〈ρ(0)〉 is not important. The small parameter of the perturbation
expansion is v which is obviously present in the definition (29).
We will be interested in the numerical value of the absorption enhancement parameter G and its dependence of

the fractal dimension D. When D = 3, the density of inclusions is homogeneous inside the water droplets, while
when D < 3, it decreases from the center to the surface.
By using the average density function (29) and the result of angular integration of |Es(r)|2 (28), one can express the

absorption enhancement factor (16) in terms of simple radial integrals involving spherical Bessel functions. Inserting
expressions (28),(29) into (16) and taking the integrals containing derivatives of spherical Bessel functions by parts,
we arrive, after some rearrangement of terms, at the following result:

G =
D

2(k1a)D

∞
∑

n=1

(2n+ 1)

{

|cn|2In(1) + |dn|2
[

5−D

2
xD−2

1 j2n(x1) +

xD−1
1 j′n(x1)jn(x1) + In(1) +

(

4−D +
(2−D)(3−D)

2
− n(n+ 1)

)

In(3)

]}

, (30)

In(α) =

∫ x1

0

xD−αj2n(x)dx . (31)

The integrals In(α) converge for all physically interesting values of parameters (as discussed above) at both limits
and must be evaluated numerically.

5. Numerical calculations

As was pointed out by Bohren and Huffmen49, the diffraction parameter x = ka (or x1 =
√
εx) cannot be, in general,

viewed as the only independent variable of the problem, although it may seem so from the mathematical form of
equations (15) and (30). Indeed, when ε1 depends on λ, x1/x 6= const. Instead, there are two physically independent
parameters that define completely solution to the scattering problem, a and λ. However, when ε1 does not depend
on λ, x1/x = ε1 = const, and the diffraction parameter x becomes the only independent variable. Note that, in this
case, we do not need to know whether x changes due to a change in a or in λ.
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For the particular case of water, the assumption x1/x = const is a good approximation in the spectral range
from 0.3µm to 2.0µm. For the constant room temperature T = 20◦C and pressure P = 1atm, ε1 is accurately
approximated in the spectral region 0.182µm < λ < 2.770µm by the following expression54:

ε1 =
a1

λ2 − λ2
a

+ a2 + a3λ
2 + a4λ

4 + a5λ
6 , (32)

λa = 0.134µm ,

a1 = 5.743 · 10−3 , a2 = 1.769 , a3 = −2.797 · 10−2 , a4 = 8.715 · 10−3 , a5 = −1.414 · 10−3 .

The imaginary part of the refractive index of water is very small in the optical spectral range, and following other
authors (see, for example, Refs. 4, 41–43), we set it to zero. The spectral dependence of the refractive index of water,√
ε1, is illustrated in Fig. 1. We have set

√
ε1 = 1.33 = const which allowed us to perform numerical calculation of

the enhancement factor G as a function of one independent variable, x = ka. We allowed x to change from 0 to 1000.
This range of x includes most of the practical values of a and λ. Thus, for λ = 0.4µm, a can vary from 0 to ≈ 60µm.

√
ε1

λ, µm

32.521.510.50

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

Fig. 1. Refraction index
√
ε1 of water as a function of the wavelength λ (analytical approximation).

Now we turn to calculation of the internal field coefficients, cn and dn. We calculated the Bessel functions and their
first derivatives that are used in the definitions (18) and (19) of the internal field coefficients, using the three-point
recursion relation55:

jn+1(ξ) =
2n+ 1

ξ
jn(ξ) − jn−1(ξ) , (33)

(2n + 1)j′n(ξ) = njn−1(ξ) − (n + 1)jn+1(ξ) . (34)

The same recursion relations are valid for the spherical Hankel functions. Since we calculated the spherical functions
of only real arguments, the numerical stability of the recursions was good, and the round-off errors were well within
the required limits.
It is well known that the VSH maximum order n that gives significant contribution to the optical cross sections

can be roughly estimated49 as nmax ≈ x = ka. The internal field coefficients |cn|2 and |dn|2 decrease dramatically for
n > nmax, as illustrated in Fig. 2. In Fig. 2a, we plot the internal field coefficients for

√
ε1 = 1.33 and x = 259.664.

The specific value of x was chosen from the condition that the absorption cross-section has a resonance. In terms of
VSH’s, the resonance occurs for the order n = 131, when |cn|2 reaches the value of ≈ 3.23 · 107; there is also a big

10



number of weaker resonances of |cn|2. (Note that |dn|2 has no resonances.) Since the total number of VSH’s that
contribute to the absorption is of the order of 300, and |c131|2 is more than 5 orders of magnitude larger than the
average background, we can conclude that the resonant VSH gives the prevailing input to the optical cross sections.
For comparison, we plot in Fig. 2b the internal field coefficients for the same refraction index, but for an off-resonant
value of x = 260.400. Both pictures look very similar, apart from the resonance order n = 131 in Fig. 2a.

|dn|2
|cn|2

n

300250200150100500

108

104

1

10−4

10−8

10−12

(a)

|dn|2
|cn|2

n

300250200150100500

108

104

1

10−4

10−8

10−12

(b)
Fig. 2. Internal field coefficients, |cn|2 and |dn|2, as functions of the VSH order, n. a) x = 259.664 (the resonance order

n = 131); b) x = 260.400 (no pronounced resonances).

The numerical results for the absorption enhancement factor G(x) are shown in Fig. 3 for D = 1.1 (Fig. 3a) and
D = 3.0 (Fig. 3b). As can be seen in Fig. 3, G(x) has a large number of quasi-random morphology-dependent
resonances (due to the presence of resonances in internal field coefficients illustrated in Fig. 2), but only a very slight
systematic dependence of G(x) on x can be seen in the interval 10 < x < 1000. The slight systematic increase of
G(x) can be attributed to an increase in average resonance quality with the size parameter x. It can be also seen
from comparison of Figs. 3a and 3b that the enhancement factor is larger, on average, for D = 1.1 than for D = 3.0.
It is plausible to assume that in a polydisperse ensemble of microdroplets with size parameters in the wide range

10 < x < 1000 the individual resonances are smoothed out and the average absorption enhancement factor, 〈G〉,
which is practically important, is given by averaging of G(x) over x. We performed such averaging in the interval of
x specified above for different D (1 ≤ D ≤ 3) and the results are shown in Fig. 4. The averaging was performed with
the step in x equal to 0.1. This step was small enough so that most resonances were visually resolved. Averaging
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with a larger resolution resulted in a smaller value of 〈G〉 because the resonances in G(x) are very narrow. It is
important to emphasize the significance of the averaging process. For a randomly chosen x, G(x) is, with a large
probability, smaller than 〈G〉 by the factor of 4 or 5. Thus the resonances of G(x) play an important role and should
not be ignored. It should be noted that the averaging was performed in the region of 10 < x < 1000 where there is
no pronounced systematic dependence of G(x) on x. For x < 10, the averaged G is considerably smaller.

D = 1.1G

x

10008006004002000

104

103

102

10

1

(a)

D = 3.0G

x

10008006004002000

104

103

102

10

1

(b)
Fig. 3. Absorption enhancement factor G as a function of the diffraction parameter x = ka for different fractal dimensions

D. a) D = 1.1; b) D = 3.0.

As can be seen in Fig. 4, 〈G〉 is maximum for D = 1 and decreases towards D = 3. For the practically important
value D = 1.8, 〈G〉 ≈ 16, and the maximum variation of 〈G〉 with D does not exceed ±6. The dependence of 〈G〉
on D can be explained by an interference between the fractal density function 〈ρ(r)〉 and the modes of a spherical
resonator. It was shown by Berry and Percival that such interference can result in a significant increase of the
scattering cross section for plane waves scattered by fractal clusters16. However, the absorption cross section was
shown16 to be independent of the fractal geometry (and, in fact, of any possible rearrangement of particles) in the
case of the plane waves scattering. Consequently, in absorption, there is no positive interference between the fractal
density function and plane waves. This follows from the simple fact that the amplitude of a plane wave is constant
in space. Our results demonstrate that, for highly inhomogeneous modes of a spherical resonator, such interference
can be significant for the absorption as well, resulting, in particular, in a stronger enhancement of absorption for the
fractal distribution of inclusions than for the trivial one.
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〈G(D)〉

D 32.62.21.81.41

22

20

18

16

14

Fig. 4. Average absorption enhancement factor 〈G〉 as a function of the fractal dimension, D.

6. Summary

As the main result of this paper, we calculated the average absorption enhancement factor for carbon soot clusters
placed inside water droplets, compared to free soot clusters, as a function of the fractal dimension D. Both fractal
and trivial (homogeneous) geometries of carbon inclusions were considered in a uniform way. We found that, in both
cases, absorption is significantly increased when soot is placed inside water droplets. This is explained by the fact
that spherical water droplets act like high-quality optical resonators and the intensity of electromagnetic fields inside
the droplets can be much larger than that of an incident wave. From the point of view of the geometrical optics,
the increase in absorption can be explained by the fact that light rays travel many times inside a spherical droplet
reflecting from its boundary, and are absorbed by the inclusions during each pass (the total number of passes of a
ray is roughly equal to the resonance quality). The absorption factor is larger for smaller fractal dimension of carbon
inclusions, and changes from 〈G〉 ≈ 14 for D = 3 to 〈G〉 ≈ 22 for D = 1.
The enhancement factor G, defined as the ratio of the absorption cross sections of a soot cluster inside a water

droplet to that in vacuum (or, more generally, in any transparent medium with refractive index close to unity,
such as the atmosphere) shows no pronounced systematic dependence on the diffraction parameter x = 2πa/λ for
10 < x < 1000, where a is the droplet radius, apart from strong modulations associated with morphology-dependent
resonances of the sphere which are smoothed out for an ensemble of droplets with different radiuses. This smoothing,
or averaging, is essential for numerical estimate of the absorption enhancement. The averaging must be performed
with a sufficiently high resolution in x in order to resolve all the morphology-dependent resonances which are very
narrow. The averaged value 〈G〉 is 4 to 5 times larger than the typical off-resonance value G(x) (calculated for a
non-resonant x). Thus, the input of these narrow resonances is significant and should not be disregarded. This
explains why our estimates of the absorption enhancement are considerably larger than those based on calculations
for isolated values of x (Refs. 4, 43).
In the conclusion, we note that within the framework of the first Born approximation that was used throughout

the article, the absorption cross section of a free carbon soot cluster excited by a plane wave is proportional to the
total volume of carbon and does not depend on the cluster’s geometrical configuration. However, this is not the case
when the cluster is excited by the inhomogeneous modes of a spherical resonator instead of plane waves. In this case,
the absorption is stronger, on average, if the inclusions tend to concentrate in the spatial regions where the intensity
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of local fields is higher.
This work was supported in part by the U.S. Environmental Protection Agency under Grant No. R822658-01-0,

and by the National Science Foundation under Grants No. DMR-9623663 and DMR-9500258; the computational
facilities were provided by the National Center for Supercomputing Applications under Grant No. PHY980006N.

Appendix: Calculation of angular integrals

In spherical coordinates, the element of solid angle is dΩ = dφ sin(θ)dθ. Integration over φ according to (24) with
the VSH’s defined by (25),(26) poses no difficulty since the only types of integrals over φ are

∫ 2π

0

cos4 φdφ =

∫ 2π

0

sin4 φdφ =
3π

4
;

∫ 2π

0

sin2 φ cos2 φdφ =
π

4
;

∫ 2π

0

sin2 φdφ =

∫ 2π

0

cos2 φdφ = π .

After performing integration over φ, we find that

∫ 2π

0

M2
ndφ = πj2n(k1r)

[

π2
n(θ) + τ2

n(θ)
]

, (A1)

∫ 2π

0

N2
ndφ = π

{

[

n(n+ 1)
jn(k1r)

k1r

]2

sin2 θπ2
n(θ) +

[

jn(k1r)

k1r
+ j′n(k1r)

]2
[

π2
n(θ) + τ2

n(θ)
]

}

. (A2)

The angular functions that are left after integration over φ are sin2 θπ2
n(θ) and π

2
n(θ) + τ

2
n(θ), where πn(θ) and τn(θ)

are defined by (27). In the integration (24), these functions must be multiplied by sin θdθ.

With the standard substitution cos θ = ξ, and using the expression P
(1)
n (ξ) =

√

1− ξ2dPn(ξ)/dξ that relates the

Legendre polynomials Pn to the associated Legendre polynomials of the first order P
(1)
n , we find for the first integral:

I1 =

∫ π

0

sin2 θπ2
n(θ) sin θdθ =

∫ 1

−1

(1 − ξ2)
dPn
dξ

dPn . (A3)

Performing integration by parts, we find that

I1 =

∫ 1

−1

Pn

[

2ξ
dPn
dξ
− (1− ξ2)

d2Pn
dξ2

]

dξ . (A4)

Because the Legendre polynomials satisfy the differential equation

(1 − ξ2)
d2Pn
dξ2

− 2ξ dPn
dξ

+ n(n + 1)Pn = 0 , (A5)

the expression in the square brackets in (A4) can be simplified and

I1 = n(n + 1)

∫ 1

−1

P 2
n(ξ)dξ . (A6)

The integral
∫ 1

−1
P 2
n(ξ)dξ is well-known (see, for example, Ref. 56, formula 2.17.14.10) and is equal to 2/(2n + 1).

Finally, we find

I1 =
2n(n+ 1)

2n+ 1
. (A7)
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Calculation of the angular integral of π2
n(θ) + τ2

n(θ) is more lengthy. Again, we use substitution cos θ = ξ and find

I2 =

∫ π

0

[

π2(θ) + τ2(θ)
]

sin θdθ =

∫ 1

−1

{

(

dPn
dξ

)2

+

[

(1− ξ2)
d2Pn
dξ2

− ξ
dPn
dξ

]2
}

dξ . (A8)

Next we express the second derivative of Pn with the use of differential equation (A5) and obtain the following
expression for I2:

I2 =

∫ 1

−1

[

(ξ2 + 1)
dPn
dξ

dPn − 2n(n+ 1)ξPndPn + n2(n+ 1)2P 2
ndξ

]

. (A9)

The first term in (A9) can be integrated with the use of the equality

∫ 1

−1

(ξ2 + 1)
dPn
dξ

dPn = −I1 + 2
∫ 1

−1

(

dPn
dξ

)2

dξ , (A10)

where the integral I1 is defined by (A3), and its value was calculated above (formula (A7)). The second integral in
(A10) can be found in tables (see Ref. 56 , formula 2.17.14.24)) and is equal to n(n+ 1). Therefore,

∫ 1

−1

(ξ2 + 1)
dPn
dξ

dPn =
4n2(n+ 1)

2n+ 1
. (A11)

The second term in (A9) is easily integrated by parts with the use of
∫ 1

−1
P 2
n(ξ)dξ = 2/(n + 1) and is equal exactly

to the value in the right-hand side of Eq. (A11) with the opposite sign. Therefore, the first and the second terms in

(A9) cancel each other. The third term in (A9) is also proportional to
∫ 1

−1
P 2
n(ξ)dξ, so that the final result for I2 is:

I2 =
2n2(n+ 1)2

2n+ 1
. (A12)

Finally, for the angular integrals, we find

∫ 2π

0

M2
ndΩ =

2πn2(n+ 1)2

2n+ 1
j2n(k1r) , (A13)

∫ 2π

0

N2
ndΩ =

2πn2(n+ 1)2

2n+ 1

{

[

jn(k1r)

k1r

]2

+

[

jn(k1r)

k1r
+ j′n(k1r)

]2
}

. (A14)

Substitution of these expressions into (24) results in (28).

?. Also with the Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Science, 630090
Novosibirsk, Russia.

†. Also with the L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk,
Russia.

1. P. Chylek, V. Ramaswamy, and R. J. Cheng, “Effect of graphitic carbon on the albedo of clouds,” J. Atmospheric Sci.
41, 3076–3084 (1984).

2. J. E. Penna, R. E. Dickinson, and C. A. O’Neil, “Effects of aerosol from biomass burning on the global radiation budget,”
Science 256, 1432–? (1992).

15



3. P. Chylek and J. Wong, “Effect of absorbing aerosols on global radiation budget,” Geophys. Res. Lett. 22, 929–931
(1995).

4. P. Chylek, G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett, “Black carbon and absorption
of solar radiation by clouds,” J. Geophys. Res. 101, 23365–23371 (1996).

5. R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pillack, and C. Sagan, “Nuclear winter: Global consequences of multiple
nuclear explosions,” Science 222, 1283–? (1983).

6. S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. A 12, L109–L117 (1979).
7. C. W. Bruce, T. F. Stromberg, K. P. Gurton, and J. B. Mozer, “Trans-spectral absorption and scattering of electromag-
netic radiation by disel soot,” Appl. Opt. 30, 1537–1546 (1991).

8. N. Lu and C. M. Sorensen, “Depolarized light scattering from fractal soot aggregates,” Phys. Rev. E 50, 3109–3115
(1994).

9. J. Cai, N. Lu, and C. M. Sorensen, “Analysis of fractal cluster morphology parameters: structural coefficient and density
autocorrelation function cutoff,” J. Colloid Interface Sci. 171, 470–473 (1995).

10. E. F. Mikhailov and S. S. Vlasenko, “The generation of fractal structures in gaseous phase,” Physics-Uspekhi 165,

253–271 (1995).
11. S. D. Andreev and E. F. Mikhailov, “Fractal systems and studies of atmospheric aerosols,” Bulletin of the Russian Acad.

Sci. 32, 743–750 (1996).
12. R. E. Danielson, D. R. Moore, and H. C. Van Hulst, “The transfer of visible radiation through clouds,” J. Atmospheric

Sci. 26, 1078–1087 (1969).
13. H. Grassl, “Albedo reduction and radiative heating of clouds by absorbing aerosol particles,” Contrib. Atmos. Phys. 48,

199–210 (1975).
14. S. Twomey, “Computations of the absorption of solar radiation in clouds,” J. Atmospheric Sci. 33, 1087–1091 (1976).
15. K. Y. Kondratyev, V. I. Binenko, and O. P. Petrenchuk, “Radiative properties of clouds influenced by a city,” Izvestia

Akademii Nauk (USSR)- Fizika Atmosfery i Okeana 17, 122–127 (1981).
16. M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Optica Acta 33, 577–591 (1986).
17. J. E. Martin and A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987).
18. V. M. Shalaev, R. Botet, and R. Jullien, “Resonant light scattering by fractal clusters,” Phys. Rev. B 44, 12216–12225

(1991).
19. N. G. Khlebtsov and A. G. Mel’nikov, “Depolarization of light scattered by fractal smoke clusters: an approximate

anisotropic model,” Opt. Spectrosc. (USSR) 79, 656–661 (1995).
20. N. G. Khlebtsov, “Spectroturbidimetrical analysis of the correlation function of fractal clusters density,” Colloid J. 58,

100–108 (1996).
21. F. Sciortino, A. Belloni, and P. Tartaglia, “Irreversible difusion-limited cluster aggregation: The behavior of the scattered

intensity,” Phys. Rev. E 52, 4068–4079 (1995).
22. D. Asnaghi, M. Carpiteti, M. Giglio, and A. Vailati, “Light scattering studies of aggregation phenomena,” Physica A

213, 148–158 (1995).
23. P. Aymard, D. Durand, T. Nicolai, and J. C. Gimel, “A study of the fractal structure of aggregates formed after heat-

induced denaturation of β-lactoglobulin,” In Fractal frontiers, M. M. Novak and T. G. Dewey, eds., pp. 11–22 (World
Scientific, Singapore, 1997).

24. V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Fluctuations of light scattered by fractal clusters,” J.
Opt. Soc. Am. A 14, 60–69 (1997).

25. V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second- and fourth-order correlation
functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).

26. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, and P. Chylek, “Internal scattering effects on microdroplet
resonant emission structure,” Opt. Lett. 17, 970–972 (1992).

27. P. Chylek, D. Ngo, and R. G. Pinnik, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc.
Am. A 9, 775–780 (1992).

28. R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, J. Gu, and R. G. Pinnik, “Effects of submicrometer-sized particles on
microdroplet lasing,” Opt. Lett. 18, 119–121 (1993).

29. J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, and R. G. Pinnik, “Suppression of stimulated Raman scattering from
microdroplets by seeding with nanometer-sized latex particles,” Opt. Lett. 18, 340–342 (1993).

30. J. Gu, T. E. Ruekgauer, J.-G. Xie, and R. L. Armstrong, “Effect of particulate seeding on microdroplet angular scatter-
ing,” Opt. Lett. 18, 1293–1295 (1993).

31. D. Ngo and R. G. Pinnik, “Supression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A
11, 1352–1359 (1994).

32. M. Kerker, D. D. Cooke, H. Chew, and P. J. McNulty, “Light scattering by structured spheres,” J. Opt. Soc. Am. 68,

16



592–601 (1978).
33. F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,”

J. Opt. Soc. Am. A 9, 1327–1335 (1992).
34. M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: compar-

ison of the layered,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).
35. D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, “Quality factors and effective-average modal gain or loss in inho-

mogeneous spherical resonators,” IEEE J. Quantum Electron. 29, 2553–2561 (1993).
36. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt.

33, 484–493 (1994).
37. K. A. Fuller, “Morpology-dependent resonances in eccentrically stratified spheres,” Opt. Lett. 19, 1272–1274 (1994).
38. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J.

Opt. Soc. Am. A 11, 3251–3260 (1994).
39. S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modelling light scattering by inhomogeneously

perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
40. D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, “Absorptive bistability in a dielectric sphere,” Opt. Comm. 131,

343–346 (1996).
41. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. calculations for external aggregation,”

J. Opt. Soc. Am. A 12, 881–892 (1995).
42. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located

spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995).
43. G. Videen and P. Chylek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approxi-

mations,” Opt. Comm. 158, 1–6 (1998).
44. P. Chylek, private communication (unpublished).
45. H. C. Chen, Theory of electromagnetic waves (McGraw-Hill Book Co., New York, 1983).
46. J. A. Kong, Theory of electromagnetic waves (John Wiley & Sons, New York, 1975).
47. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12, 1783–1791 (1995).
48. V. A. Markel and E. Y. Poliakov, “Radiative relaxation time of quasi-normal optical modes in small dielectric particles,”

Phil. Mag. B 76, 895–909 (1997).
49. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York,

1983).
50. C. Amitrano, A. Coniglio, P. Meakin, and M. Zannetti, “Multiscaling in diffusion-limited aggregation,” Phys. Rev. B 44,

4974–4977 (1991).
51. L. D. Landau and L. P. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Oxford, 1984).
52. E. F. Mikhailov, S. S. Vlasenko, T. I. Ryshkevitch, and A. A. Kiselev, “Soot structure investigation: Adsorbtional

properties,” J. Aerosol Sci. 27, S709–S710 (1996), suppl. 1.
53. E. F. Mikhailov, S. S. Vlasenko, A. A. Kiselev, and T. I. Ryshkevich, “Modification of carbon cluster fractal structure due

to capillary forces,” In Fractal frontiers, M. M. Novak and T. G. Dewey, eds., pp. 393–402 (World Scientific, Singapore,
1997).

54. I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and
density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).

55. H. Bateman, Higher transcendental functions (McGraw-Hill Book Co., New York, 1953), Vol. 2.
56. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and series. Special functions (Gordon and Breach Science

Pub., New York, 1986), Vol. 2.

17


