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Abstract
The current-driven model in which a continuous medium is excited by a pre-determined current
which overlaps with the medium in all points in space but is not subject to constitutive relations
is critically analyzed.

1. Introduction

Recently, significant attention has been drawn to the theory
of electromagnetic homogenization of periodic media [1–4].
The interest is motivated by the proposals to create
artificial electromagnetic materials (metamaterials) with
exotic properties not encountered in Nature. Suggested
applications of the metamaterials range from high-resolution
microscopy [5] to creating novel efficient antennas [6]. In
all cases I am aware of, the homogenization theories which
are considered in the metamaterial community are, essentially,
macroscopic. That is, one starts from the macroscopic
Maxwell’s equations for a nonmagnetic periodic medium
characterized by a spatially varying permittivity ε(r) (and
μ(r) = 1) and seeks to approximate it by a medium of
the same overall shape but characterized by spatially uniform
effective parameters εeff and μeff �= 1. It has been suggested
that a mixture of two intrinsically nonmagnetic substances
can have a nontrivial magnetic response at certain resonance
frequencies [7].

In spite of a large body of literature published on the
subject, the theory of homogenization continues to attract
attention [8]. Recently, a new approach to homogenization
has emerged which is based on the so-called current-driven
model and is exemplified by [4, 9]. The current-driven model is
deeply rooted in the theory of low-frequency electromagnetic
devices. When such devices are considered, it is customary
to view the electric current running in one or several wires
or antennas as the source of electromagnetic fields in the
surrounding space. This source current is frequently referred to
as the free or the external current. When Maxwell’s equations

are solved, it is assumed that the external current is fully
controlled by the experimentalist. The problem then consists
in finding the distribution of electromagnetic fields and induced
currents everywhere outside of the wires which carry the pre-
determined external current. For instance, the current in a
receiver antenna is considered to be induced; it is not directly
controlled by the experimentalist and must be determined by
solving the appropriate scattering problem.

The above approach is physically and mathematically
sound and has been used in electrical engineering with great
success. However, in [4, 9], the current-driven model is
used far outside of its area of applicability. In particular,
it is assumed that the external current is a plane wave of
infinite extent which directly overlaps with a macroscopically
large sample of a continuous medium. The overlap occurs
not just along several wires (which one can hope to insert
into the medium) but in the whole space. Moreover, the
wavevector of this plane wave is viewed as a mathematically
independent variable which is unrelated to the medium
properties. Moreover, the medium in question is assumed to be
unbounded and of infinite extent. Apart from the fact that such
media do not exist in Nature, the electromagnetic processes
which occur at a medium boundary are important and should
not be left out of consideration. More specifically, every
medium, in addition to a dispersion relation and a refractive
index, is also characterized by an impedance.

The present paper contains a critical analysis of the
current-driven model of [4, 9]. Such analysis is particularly
important because the model is being promoted not only
as a means to homogenization but also as a general,
first principle approach to solving electromagnetic problems.
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Fundamentally, there are two questions to ponder. The first
question is whether the excitation model of [4, 9] is physically
realizable in principle. The second question is the following:
even if the external current of the form proposed in [4, 9]
cannot be realized experimentally, would introduction of such
a current serve, perhaps, as a convenient mathematical tool
for computing certain physically measurable quantities? My
answer to both questions is no. Correspondingly, I find that the
physical conclusions that have been drawn from the current-
driven model are all incorrect.

2. Mathematical formulation of the current-driven
model

In the current-driven model of [4, 9], it is assumed that the
electromagnetic fields in a passive medium (either spatially
uniform or not) are excited by an external current which
overlaps with the medium but is not subject to constitutive
relations. This external current appears as a source term in the
macroscopic Maxwell’s equations, namely,

∇ × H = 1

c

∂D

∂ t
+ 4π

c
Je,

∇ × E = −1

c

∂B
∂ t

− 4π

c
Ie,

(1)

where the Gaussian units have been used. In (1), Je and
Ie are the external currents of electric and magnetic charges,
respectively. In [9], only the electric current Je was used
while in [4] both currents were used. It should be clarified
that the physical existence of magnetic monopoles was not
assumed in [4]; the magnetic current was introduced only as
a mathematical manipulation.

It is further accepted that the medium also supports the
induced electric current Jd = ∂P/∂ t + c∇ × M, where P
and M are the vector fields of polarization and magnetization.
In the conventional electrodynamics, only the induced current
of electric charge exists. For this reason, the field Id is not
introduced. Unlike the external current, the induced current
obeys the constitutive relations. With the usual definitions
D = E+4πP, B = H+4πM, the system of equations (1) can
be equivalently re-written as

∇ × B = 1

c

∂E

∂ t
+ 4π

c
(Jd + Je),

∇ × E = −1

c

∂B
∂ t

− 4π

c
Ie.

(2)

Equations (1) or (2) form a perfectly valid mathematical
formulation of the electromagnetic problem as long as the
spatial support of the functions Je(r, t) and Ie(r, t) does
not overlap with the continuous medium. If the above
condition is satisfied, the terms Je(r, t) and Ie(r, t) describe
external sources of radiation which can be directly controlled
by the experimentalist. This approach, although valid,
is rarely used for solving electromagnetic boundary-value
problems involving reflection and refraction of waves in bulk
samples. For example, in the case of laser irradiation, it is
more convenient to define the source of the electromagnetic

fields as an incident wave whose properties are known and
well characterized rather than by complicated currents inside
the laser. Still, these two approaches are mathematically
equivalent.

However, in [4, 9], the external currents have been taken
in the form of plane waves:

Je(r, t) = Re[J0 exp(ik · r − iωt)],
Ie(r, t) = Re[I0 exp(ik · r − iωt)]. (3)

The support of the functions defined in (3) is infinite and
necessarily overlaps with the medium. In section 3, we
will consider the question of whether this excitation model is
physically realizable.

3. Is the current-driven model physical?

The authors of [4, 9] have expressed the opinion that the
external current of the form (3) can be physically realized in
some experiments. Thus, Fietz and Shvets suggested that such
experiments may be encountered in ‘applications such as novel
antennas embedded in metamaterial shells’ [4]. Similarly,
Silveirinha has stated that it might be challenging but not
impossible to place a generator within each unit cell of a
periodic composite medium to create the external current of
the form (3) with an arbitrary wavevector k [10].

In reality, it is not challenging to create an external
source current of the type (3) but plainly impossible. Any
generator running a pre-determined current must occupy a
finite volume of space which can no longer be considered as
part of the medium. Inside this volume, constitutive relations
characteristic of the medium no longer hold. The volume is
enclosed by a surface at which the usual Maxwell’s boundary
conditions are applicable. Thus, Silveirinha proposes,
essentially, to take out a piece of the medium and to place an
externally controlled current generator in the created void. This
is illustrated in figure 1. Of course, in both cases shown in this
figure, the source cannot be considered as part of the medium
and the usual Maxwell’s boundary conditions must be applied
at all interfaces. In the case B, the boundary conditions must
be applied not only at the outer boundary of the medium, but
also at the surface enclosing the source. Further, there must
be many such generators in order to mimic a smooth plane
wave. Therefore, in order to create the external current of the
form (3), the whole medium must be replaced by the ‘excluded
volumes’ such as the one shown in figure 1(B). Doing so
would surely destroy the medium. Here I do not even raise
the question of how the proposed current generators would be
supplied with energy.

A similar consideration applies to a ‘novel antenna’
surrounded by a metamaterial nanoshell. The current running
in the antenna is drastically different from an infinite smooth
plane wave and the material of the antenna cannot overlap with
the metamaterial shell.

From a purely practical point of view, it should suffice to
say that the excitation scheme with multiple current generators
placed inside the medium is simply not the way experiments
are done. Therefore, this exotic excitation scheme is
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Figure 1. Illustration of the concept of placing a source ‘inside’ a continuous medium. In reality, in both cases shown, the source occupies a
region of space which is not part of the medium. Maxwell’s boundary conditions must be applied on all surfaces of discontinuity (the
blue–white interfaces).

(This figure is in colour only in the electronic version)

introduced not to describe the experiments more faithfully but
to simplify analytical derivations. Indeed, the current-driven
model effectively replaces an eigenproblem of determining
the complex Bloch wavevector and the complex impedance
of a periodic medium by the much simpler problem of driven
oscillations in an unbounded medium. However, the overriding
consideration of any physical theory is not convenience but
correctness. In section 4, we will consider the soundness of
the current-driven model from a more mathematical point of
view.

4. Is the current-driven model a useful mathematical
tool?

Even if one accepts that the excitation model described by
equation (3) cannot be realized experimentally, there is still
a possibility that the introduction of this excitation scheme
is a convenient mathematical manipulation which can be
used to compute certain measurable quantities. In support
of this proposition, Silveirinha has noted that any localized
monochromatic current whose support does not overlap with
the medium (which is an experimentally realizable excitation
scheme) can be expanded into the spatial Fourier integral and,
therefore, represented by a superposition of plane waves with
real wavevectors. From this, Silveirinha concludes that ‘the
response to a plane-wave-like excitation is full of physical
meaning, and even if such external sources may be challenging
to realize in practice, the response to any given practical source
may be obtained from the response of the material to plane-
wave-like excitations’ [10].

The statements quoted above can be rebutted by noting the
following.

(i) Even though all fields and currents can be expanded into
Fourier integrals, the individual modes in these expansions
cannot be mathematically related to measurable quantities.

All computations must be done for the actual field which
exists in the medium.

(ii) Boundary-value problems in the electromagnetic theory
cannot be solved or reduced to quadratures by spatial
Fourier transform because finite objects are not transla-
tionally invariant.

(iii) Physical quantities which are quadratic in the fields do
not satisfy the superposition principle and, therefore,
cannot be computed by summing up the contributions of
individual modes. In other words, interference effects
must be taken into account.

We now discuss these points and their relation to the
current-driven model of [4, 9] in more detail.

4.1. A toy-problem example

The claim that an individual mode in the Fourier expansion
of various fields can be invested with an independent physical
meaning is conceptually similar to the following mathematical
fallacy. Consider a set of functions f (x) defined in the
interval x ∈ (0,∞), and let a certain physical quantity P(x)

be determined by the formula P(x) = − f −1(x) d f (x)/dx .
The correct form of f (x) must be obtained by solving some
equations which are not stated here. Assume now that we have
solved these equations and have found that f (x) = exp(−px),
where p is a positive constant. From this, we find that
P(x) = p. Now let us compute P(x) differently. Namely, let
us first expand the function exp(−px) into a Fourier integral
by writing

exp(−px) =
∫ ∞

−∞
exp(ikx)

p + ik

dk

2π
, x > 0. (4)

We now compute P(x) for one of the plane-wave modes used
in the above expansion and find that P(x) = −ik, where k is
real and otherwise arbitrary. This result is obviously incorrect.

3
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Similarly, even though any field propagating in an
absorbing medium can be expanded into a basis of non-
decaying plane waves, it is incorrect to compute any
measurable quantity by retaining only one of the expansion
modes. The computation must be done for the actual field
which exists in the medium. Some quantities obey the
superposition principle and others do not; however, none can
be computed correctly by using a single arbitrarily chosen
mode.

4.2. Maxwell’s equations by the spatial Fourier transform

Consider a spatially uniform nonmagnetic medium which
occupies the region V . The source of all electromagnetic fields
is the external current Je whose support does not overlap with
V . All fields and currents are monochromatic so that we can
write

Je(r, t) = Re[Je(r) exp(−iωt)], (5)

and similarly for other fields. Now let us expand, as was
suggested by Silveirinha, Je(r) into the Fourier integral. The
forward and inverse expansions read

J̃e(k) =
∫

Je(r) exp(−ik · r) d3r,

Je(r) =
∫

J̃e(k) exp(ik · r)
d3k

(2π)3
.

(6)

Here the tilde denotes the Fourier transform and similar
expansions can be written for the electric field E, the
displacement D, and for all other fields. Note that the integrals
in (6) are evaluated over the whole space.

The next step is to state the Maxwell’s equations. Since
we have assumed that the medium is nonmagnetic, B = H.
In this case, the Maxwell’s equations in the frequency domain
read

∇ × H(r) = −i
ω

c
D(r) + 4π

c
Je(r),

∇ × E(r) = i
ω

c
H(r).

(7)

We can exclude the field H from the above equations to obtain

∇ × ∇ × E(r) =
(

ω

c

)2

D(r) + 4π iω

c2
Je(r). (8)

We now substitute the expansion (6) and similar expansions for
E and D into (8). This results in

−k × k × Ẽ(k) =
(

ω

c

)2

D̃(k) + 4π iω

c2
J̃e(k). (9)

To proceed, we need to relate D̃(k) to Ẽ(k). If a simple
linear relation between D̃(k) to Ẽ(k) could be established,
then equation (9) would be reduced to an analytically solvable
algebraic equation. The real-space solution would then be
obtainable by the inverse Fourier transform and, thus, the
solution to an arbitrary boundary-value problem would be
reduced to a quadrature. This is, of course, too good to be
true. In reality, a simple linear proportionality between D̃(k)

and Ẽ(k) results only in infinite unbounded media; in finite
samples, the proportionality is replaced by a more general
integral transform. Indeed, consider the simple case of a local
dielectric response given by the function

ε(ω, r) =
{

εm(ω) �= 1, if r ∈ V

1, if r /∈ V .
(10)

Here εm(ω) �= 1 is the permittivity of the medium at the
working frequency. From the definition of the displacement,
D(r) = ε(ω, r)E(r), and from the Fourier transformation
rules, we find that

D̃(k) = Ẽ(k) + [εm(ω) − 1]
∫

S(k − k′)Ẽ(k′) d3k ′, (11)

where

S(k) = 1

(2π)3

∫
V

e−ik·r d3r (12)

is a function which depends explicitly on the shape of the
boundaries. In an infinite unbounded medium, S(k) = δ(k)

and the simple proportionality of the form D̃(k) = εm(ω)Ẽ(k)

results. In this case, equation (9) can be solved algebraically.
Applying the inverse Fourier transform to the solution, we
would obtain the real-space solution in quadratures, namely,

E(r) = 4π iω

c2

∫
J̃e(k) exp(ik · r)

k2 − (ω/c)2εm(ω)

d3k

(2π)3
. (13)

This equation is mathematically similar to the transform (4)
which appeared in the discussion of the toy problem of
section 4.1. It can be seen that the real-space solution in an
infinite absorbing medium is, necessarily, a decaying wave
because the poles of the integrand in (13) are complex. These
poles are obtained as the solutions to the dispersion equation
k2 = (ω/c)2εm(ω). The individual non-decaying modes
exp(ik · r) in the transform (13) cannot be used to compute any
physical quantity of interest. Certainly, these modes cannot be
used to compute any quantity which is related to absorption, as
was done in [9].

Of course, the Fourier expansion technique is superfluous
in the case of an unbounded medium—one could have
obtained the same result (a plane wave with the complex wave
number (ω/c)

√
εm) immediately by considering the Maxwell’s

equations in real space. Similarly, in the case of a spatially
non-uniform periodic infinite medium, the solution is a Bloch
wave with a complex wavevector which must be computed by
solving a suitable eigenproblem, as is well known in the theory
of photonic crystals [11].

However, in the case of a finite sample of characteristic
size L, the boundary-value problem is not reducible to
quadratures. While the equality S(k) = δ(k) holds, albeit
approximately, for |k| � 1/L, the delta-function behavior
is lost for |k| � 1/L. In order to solve the boundary-value
problem correctly, we need to capture the spatial distribution of
all fields in the sample on spatial scales of the order of L, and
for that we need to know the spatial Fourier harmonics of the
fields with |k| � 1/L. Hence, we must use equation (11) with
the correct kernel S(k). In this case, (9) becomes an integral
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equation which cannot be solved algebraically. It can be seen
that the Maxwell’s equations for a finite object are differential
in the real space but integral in the k-space. The equations
become algebraic in the k-space only in an infinite unbounded
medium.

If we now consider a spatially nonlocal response of the
medium εm(ω, k), the results would be qualitatively similar.
It is apparent that the Maxwell’s equations can be solved by
spatial Fourier transform only in the case of infinite unbounded
media. In samples of characteristic size L, a plane wave
can propagate with the wavevector k such that |k| � 1/L
under the condition that k satisfies the dispersion relation
k2 = (ω/c)2εm(ω, k). In any absorbing medium, only
complex wavevectors can satisfy this equation. Therefore, the
quantity ε(ω, k) is physically meaningful only when ω and k
are on the dispersion curve.

The conclusion that can be drawn is the following. It is
not incorrect to consider a plane wave propagating in a sample
of characteristic size L, provided that its wavevector satisfies
|k| � 1/L. Nor is it incorrect to compute various physical
quantities for this wave. However, the vector k must satisfy
the dispersion equation and is not arbitrary. It is, in fact,
incorrect to choose an arbitrary purely real vector k (as is done
in the current-driven model) and to use the plane-wave mode
exp(ik · r) thus obtained to compute any observable quantity.
This is especially evident for the quantities which are quadratic
in the fields and, therefore, do not satisfy the superposition
principle. An example of a logically flawed calculation which
is based on the current-driven model (from [9]) is given in
section 5.

5. Current-driven model and the heating rate

In [9], Silveirinha applies the current-driven model to compute
the Poynting vector and the rate at which the medium is
heated by electromagnetic radiation (the heating rate) in a
periodic composite. Silveirinha claims that his derivations are
completely general and first principle and uses the obtained
results to criticize the earlier papers [12, 13]. In particular,
Silveirinha writes that the conclusions of [12, 13] ‘are founded
on fundamental misconceptions and mistakes’. These claims
have been contested recently on rather general grounds [14].
However [14], did not consider the technical details of
Silveirinha’s derivations. This will be done in this section.

All derivations of [9] which lead to results of any practical
significance are carried out for Bloch waves with purely real
wavevectors k. This assumption contradicts the well-known
fact that Bloch waves in media with some amount of absorption
are, necessarily, decaying and that the rate of this decay is
mathematically related to the imaginary part of k. Thus, if k
is taken to be purely real, the medium is, by definition, non-
absorbing. Calculation of the heating rate in such a medium is
meaningless: under the condition Im k = 0, any reasonable
calculation must yield zero. Silveirinha, however, suggests
that a real-valued Bloch wavevector k is not incompatible
with losses. He argues that one can use the current-driven
model to force k to be real, even in a lossy medium. The
deficiencies of the current-driven model have been discussed

above. In what follows, I will show that, if one abandons
the current-driven model assumed by Silveirinha in favor of
the conventional excitation scheme in which the wavevector
k satisfies the proper dispersion equation, then Silveirinha’s
formulas for the heating rate yield the very result he wanted
to disprove.

First, consider the method Silveirinha uses to compute the
heating rate. According to equation (60) of [9], the heating
rate q for a plane wave with the wavevector k propagating in
the medium is given by the following formula:

q = ω

8π
Im

[
E∗ · ε̂E+

(
c

ω

)2

E∗ · k × (μ̂−1− Î )k×E
]
. (14)

Here I have re-written equation (60) of [9] in Gaussian units
and omitted all subscripts. Tensors (dyadics) are denoted by
a hat and Î is the identity operator. The quantities ε̂ and μ̂

are the tensors of effective permittivity and permeability of
the medium. All fields are assumed to be monochromatic
and the common exponential factor exp(−iωt) is suppressed.
Equation (14) is rather general and I believe that it is
correct in the limit in which the medium can be viewed as
electromagnetically homogeneous.

Silveirinha evaluates (14) as follows. He uses the vector
identity a · (b × c) = (a × b) · c to re-write the second term in
the square brackets as

(
c

ω

)2

(E∗ × k) · [(μ̂−1 − Î )k × E]. (15)

He then uses the Maxwell’s equation k × E = (ω/c)B. It can
be seen that the factor k × E in the end of expression (15) can
be replaced by (ω/c)B. However, the expression E∗ × k in
the beginning of this expression can be replaced by −(ω/c)B∗
only if k is purely real. Silveirinha makes this assumption
about k and transforms (15) to the form

−B∗ · (μ̂−1 − Î )B. (16)

The term proportional to Î is then omitted since its imaginary
part evaluates to zero, the field B is expressed in terms of the
field H using the constitutive relation B = μ̂H, and Silveirinha
arrives at the expression

q = ω

8π
Im[E∗ · ε̂E + H∗ · μ̂H], (17)

which is, indeed, consistent with the Landau and Lifshitz
textbook formula [15]. However, the transition from (14)
to (17) explicitly requires that Im k = 0. As was shown above,
k here is not a mathematically independent variable but must
be computed from the dispersion relation which is specific to
the medium. The equality Im k = 0 is only possible in non-
absorbing media. Clearly, (17) evaluates to zero under the
assumption that was used by Silveirinha to derive it. Therefore,
Silveirinha cannot claim that he has confirmed the textbook
result by using a more first principle or fundamental approach
than the approach used by Landau and Lifshitz [15].

On the other hand, it is possible to evaluate (14) without
making any assumptions about k. If we assume that all

5
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currents inside the medium are induced and thus abandon
the unphysical current-driven model, we can use the two
Maxwell’s equations

k × E = ω

c
μ̂H, k × H = −ω

c
ε̂E. (18)

From (18), we can also obtain

k × μ̂−1k × E = −
(

ω

c

)2

ε̂E. (19)

Substitute this expression into (14). The term proportional to ε̂

will cancel to yield

q = − ω

8π

(
c

ω

)2

Im(E∗ · k × k × E). (20)

Next, use the identity k × k × E = k(k · E) − k2E to obtain

q = ω

8π

(
c

ω

)2

Im[|E|2k2 − (E · k)(E∗ · k)]. (21)

This expression is equivalent to the one derived by me earlier
in [12] (equation (54) of that reference). If the medium is
isotropic, it can support only transverse waves whose wave
number is k2 = (ω/c)2εμ with ε and μ being scalars.
Then (21) is simplified to

q = ω|E|2
8π

Im(εμ). (22)

Again, this result was derived by me in [12]. The results (21)
and (22) are different from the textbook expression but follow
mathematically from equation (14).

Thus, it can be seen that Silveirinha’s equation (14)
contains the very results he wanted to disprove. The only
reason Silveirinha has obtained a formula which is different
from (21) or (22) is because he has used a method to
evaluate (14) which is only valid when Im k = 0. Silveirinha’s
claim that the condition Im k = 0 is not incompatible with
losses is erroneous because it is based on an excitation model
which can be justified neither from the physical nor from the
mathematical points of view. My method of evaluating (14)

makes no assumptions about k. It is applicable, in particular,
when Im k = 0. In this case, (21) and (22), as well
as Silveirinha’s result (17), all evaluate to zero and are,
in this sense, equivalent. But, unlike Silveirinha’s result,
formulas (21) and (22) can be used in the physically interesting
case of a complex wavevector k and nonzero absorption.

6. Summary

In this paper, I have shown that the current-driven model
of [4, 9] is not a useful mathematical tool. Its application
is in some instances problematic and in others misleading
or incorrect. In particular, I have shown that Silveirinha’s
criticism of [12, 13] is based on an error which stems directly
from the use of the current-driven model. Of course, this, per
se, does not prove the correctness of [12, 13]. However, if
equation (14) (equation (60) of [9] authored by Silveirinha) is
correct, then it follows with mathematical certainty that so are
the results of [12, 13].
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