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Abstract
A possibility of tuning the phase of the third-order Kerr-type nonlinear
susceptibility in a system consisting of two interacting metal nanospheres and a
nonlinearly polarizable molecule is investigated theoretically and numerically.
It is shown that by varying the relative inter-sphere separation, it is possible
to tune the phase of the effective nonlinear susceptibility χ(3)(ω;ω,ω,−ω) in
the whole range from 0 to 2π .

Optical and, more generally, electromagnetic properties of nanostructures have been of great
interest in the past decade [1–5]. In particular, physical effects due to the local field
enhancement have recently attracted significant attention [5–8]. In this respect, nanoparticles
of noble metals, especially silver, proved to be very useful. Recent dramatic advances in
nanofabrication made it possible to design, arrange and assemble such nanoparticles with
great precision. The remarkable optical properties of silver nanostructures are explained by
the strong, resonant interaction with electromagnetic fields in the visible and near-IR spectral
range and by very small Ohmic losses.

The strong enhancement of local fields in small spatial areas is a consequence of two
factors: the heterogeneity of a nanostructure on a subwavelength scale and the resonant
character of interaction of the electromagnetic field with the nanostructure. Both features are,
in principle, present even in the case of a single isolated nanosphere. However, the effect
becomes much stronger in aggregated nanospheres due to the effect of plasmon hybridization
[9]. In this case, amplification of the local field can become sufficiently large to make possible
detection of Raman radiation from a single molecule, as was demonstrated experimentally
in [10]. The Raman enhancement factor (|E|/|E0|)4 in the centre of a junction between two
nanospheres (E and E0—the local and the external fields in the junction, respectively) was
calculated to be 5.5 × 109 for a 1 nm gap between two silver spheres of 60 nm radius each
at λ = 497 nm [11]. Even larger enhancement, up to 1013, was predicted in the so-called
nanolens—a linear chain of several nanospheres of different sizes [6].
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Figure 1. Schematic illustration of the physical system considered in this letter.

The primary focus of research in single-molecule spectroscopy has been on non-coherent
optical processes such as Raman scattering. In this letter, I consider a coherent nonlinear
effect, namely, degenerate third-order nonlinearity, and demonstrate that, by changing the
geometry of a nanostructure, it is possible to control not only the amplitude of a nonlinear
response but also its phase (relative to the phase of the incident field). The optical Kerr
effect described by the third-order susceptibility χ(3)(ω;ω,ω,−ω) gives rise to nonlinear
corrections to absorption and refraction indices. The ability to control the phase and tensor
structure of χ(3) can have numerous applications. For example, in quantum non-demolition
measurements via the optical Kerr effect, it is typically assumed that the nonlinear refractive
index n2 is purely positive (although this assumption is usually not stated explicitly) [12–14].
However, most nonlinear molecules with relatively large values of third-order polarizability
exhibit both nonlinear refraction and nonlinear absorption. For example, the figure of merit
T = βλ/Re(n2) (β = 2π Im(n2) being the two-photon absorption coefficient) of ultrafast
third-order optical nonlinearity of a conjugated 3,3′-bipyridine derivative was measured to be
1.05 and 1.59 at λ = 750 nm and λ = 1200 nm, respectively [15]. (The value of T smaller
than unity was obtained in this work at a somewhat larger wavelength, λ = 1550 nm.) The
effect described in this letter would allow one to make T arbitrarily small in a certain range of
wavelengths, typically, in the visible and near-IR. Apart from applications in quantum optics,
this may be very important in telecommunications, in particular, for development of all-optical
switches based on the third-order nonlinearity [16].

Note that in this letter the microscopic mechanism for the molecular nonlinear
polarizability is not discussed and the latter is introduced through a phenomenological
parameter. The main point of this letter is to show that, regardless of the actual value of
the complex molecular polarizability α(3), it is possible to incorporate the nonlinear molecule
in a metal nanosystem in such a way that the effective nonlinear polarizability α

(3)
eff would have

any given phase. In particular, the phase of α
(3)
eff can be tuned to be exactly zero, which would

correspond to Teff = 0.
Consider a simple physical system shown schematically in figure 1. Here a nonlinearly-

polarizable molecule is placed in the centre of symmetry of two spheres. The radius of each
sphere is denoted by a and the width of the gap (surface-to-surface) by 2h. Thus, for example,
if a = 50 nm and 2h = 1 nm, which is the smallest physical gap considered in [11], we have
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h/a = 0.01. The system is excited by a monochromatic incident wave with the frequency
ω and wavelength in vacuum λ = 2πc/ω, linearly polarized along the axis of symmetry.
The latter coincides with the z-axis. The whole system is assumed to be sufficiently small
compared to λ and we work in the quasistatic approximation. Further, we use the Drude
formula for the dielectric function of metal, namely,

ε = ε0 − ω2
p

/
ω(ω + iγ ). (1)

The following parameters are used in the simulations: ε0 = 5, γ /ωp = 0.002, and the value
of ωp is unspecified. Note that the dielectric function of silver in the anomalous dispersion
region is well described by choosing ωp ≈ 4.6 s−1 (λp ≈ 136 nm). Finally, we assume that
the metal nanoparticles are embedded in a transparent host medium with a refractive index of
nh = 2 (εh = 4).

Because of the axial symmetry, the dipole moment induced in the molecule is parallel to
the z-axis. The third-order nonlinear correction to the dipole moment oscillating at the same
temporal frequency as the incident field is given by

d(NL)
z (t) = α(3)Ez|Ez|2 = α

(3)
eff E0|E0|2 exp(−iωt). (2)

Here Ez is the amplitude of the local electric field at the location of the molecule and E0 is the
amplitude of the incident wave. Note that, even if we assume for simplicity that E0 is purely
real, Ez can be complex. In general, there can be an arbitrary phase shift between the local
and the external fields. The effective nonlinear polarizability α

(3)
eff is related to α(3) by

α
(3)
eff = Gα(3), (3)

where the enhancement factor G is given by

G = Ez|Ez|2
E0|E0|2 . (4)

Since G is, in general, complex, it can influence not only the magnitude but also the phase of
the effective third-order polarizability. Below, we calculate G numerically and show that its
phase can be varied in its whole range by changing the inter-sphere separation.

To calculate the local field in the gap, Ez, we expand the polarization inside each
sphere in the quasistatic vector spherical harmonics X(1)

ilm(r) = (la)−1/2∇ψ
(1)
lm (r − ri ).

Here i = 1, 2 indexes the nanospheres, ri are the radius vectors of the spheres’ centres,
ψ

(1)
lm (r) = (r/a)lYlm(r̂), and Ylm(r̂) are spherical functions of the polar angles of the unit

vector r̂. Polarization inside the ith sphere can be written as

P(r) =
∑
lm

CilmX(1)
ilm(r), if |r − ri | < a, (5)

where the unknown coefficients Cilm must be found from the standard boundary conditions
applied at the surface of each sphere, or alternatively, from the integral equation formalism as
described in [17]. From general considerations, it is clear that Cilm obey a system of linear
equations which, in the quasistatic limit, was obtained in [18] and simplified in [19]. In
general, this set of equations has the form

(1/χ − W)|C〉 = |E〉, (6)

where χ = (3/4π)[(ε − εh)/(ε + 2εh)] is the coupling constant, W is the electromagnetic
interaction matrix and |E〉 is the appropriate right-hand side defined by the external field.
In the case of axial symmetry, only modes with m = 0 are excited, so that Cilm = Cil0δm0.
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The matrix elements of W needed to find the solution are

〈il0|W |i ′l′0〉 = lδll′δii ′

2l + 1
+ (1 − δii ′)(−1)l

′
[sgn(zi − zi ′)]

l+l′

×
√

ll′

(2l + 1)(2l′ + 1)

(l + l′)!
l!l′!(1 + h/a)l+l′+1

(7)

and the components of the right-hand side vector in (6) are given by

〈il0|E〉 = E0

√
4πa3/3. (8)

In general, once the coefficients Cilm are found, the scattered field at an arbitrary point r
in the host medium can be found from

Es(r) = −
∑
ilm

Cilm

4π(l − 1)

3(2l + 1)
X(2)

ilm(r), (9)

where X(2)
ilm(r) = [(l + 1)a]−1/2∇ψ

(2)
lm (r − ri ) are the quasistatic vector spherical harmonics of

the second kind and ψ
(2)
lm (r) = (a/r)l+1Ylm(r). For the particular problem considered in this

letter, the only non-zero terms in series (9) are those with m = 0. Further simplification is
obtained if the electric field is evaluated on the axis of symmetry, in which case

Esz(z) = E0

√
4π

a3

∑
n

〈E|Pn〉
1/χ − wn

fn

( z

h

)
, (10)

where

fn(x) =
∞∑
l=1

(l + 1)

√
l

2l + 1

{ 〈1l0|Pn〉
[1 + (h/a)(1 + x)]l+2

− (−1)l
〈2l0|Pn〉

[1 + (h/a)(1 − x)]l+2

}
(11)

and |Pn〉 are the eigenvectors of W with corresponding eigenvalues wn. Here Esz is the
z-component of the scattered field on the axis of symmetry (the x- and y-components are
zero). The total local field Ez is a superposition of the incident and scattered fields:

Ez = E0 + Esz. (12)

Note that we have used the spectral approach to solving (6). In other words, instead of directly
inverting 1/χ − W , we seek eigenvectors and eigenvalues of W and then obtain the solution
in terms of these quantities for an arbitrary coupling constant χ .

The matrix W is of infinite size and in practical calculations must be truncated. The
truncation order lmax required to obtain an accurate solution depends on the inter-sphere
separation. Although, for any separation, there exist an infinite number of modes, most of
them are antisymmetric [20, 21] or, equivalently, dark [22]. A dark mode is not coupled to the
homogeneous external field because the scalar product 〈E|Pn〉 is either exactly zero or very
small. Correspondingly, the input of a dark mode to series (10) is negligible. Modes which
are not dark are referred to as luminous [22]. For a finite value of h, there is a finite number
of luminous modes and the spectrum of eigenvalues wn which correspond to these modes is
discrete. However, as h decreases, the number of luminous modes grows and the intervals
between consecutive values of corresponding eigenvalues wn approach zero. When the two
spheres touch, the spectrum becomes continuous and, strictly speaking, cannot be adequately
described at any finite truncation order. However, for practical purposes, the matrix still
can be truncated, as long as the resultant discrete density of states approximates the true
continuous function with sufficient precision. The latter condition depends on the relaxation
in the system and is very difficult to satisfy for silver in the near-IR spectral region due to the
very small non-radiative relaxation. In the simulations presented below, the minimum ratio
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Figure 2. The ratio |Ez/E0|2 in the centre of the inter-sphere gap as a function of ω/ωp for
different relative inter-sphere separations.

h/a is equal to 0.01. In this case, all luminous modes are obtained with very high precision at
relatively modest truncation orders. The results reported below were obtained at lmax = 800
and convergence with machine accuracy was verified by doubling this number.

Now we turn to the numerical results. First, in figure 2, we plot the spectral dependence
of the factor |Ez/E0|2 in the centre of the inter-sphere gap for different relative separations
h/a. It can be seen that a ‘resonance band’ exists in the spectral region whose bounds depend
on the ratio h/a. For h = 0.01a, resonance interaction takes place for 0.15 � ω/ωp � 0.33.
For h = 0.32a, the resonance band is smaller, 0.25 � ω/ωp � 0.32. We will be interested in
the frequencies which lie in the resonance band for the smallest value of h considered, namely,
h = 0.01a.

In figures 3–5, we show the parametric plots of the complex enhancement factor G for the
following values of the ratio ω/ωp: 0.20, 0.25 and 0.32. In the case ω/ωp = 0.20, the most
dramatic change of G happens when h changes from 0.36a to 0.41a. The phase of G changes
in this interval of h from ≈ π/4 to ≈ 3π/4. Overall, the phase of the enhancement factor can
be tuned from ≈ 0 to ≈ π by tuning h in the whole considered interval.

Much more control over the phase of G can be attained for ω/ωp = 0.25, as shown in
figure 4. It is interesting to note that the parametric curve shown in these figure is approximately
self-similar, consisting of several almost closed loops which can be seen at different scales.
The phase of G changes in the whole interval from 0 to 2π . Qualitatively similar curve was
also obtained for ω/ωp = 0.30 (data not shown).

Perhaps, the most interesting curve is obtained at ω/ωp = 0.32 (figure 5), although the
magnitude of G is not as large for this value of ω/ωp as in figures 3–4. The parametric plot of
G is in this case a spiral. The phase of G changes monotonically from ≈ 0 to ≈ 5π . Thus,
the curve makes more than two full revolutions around the origin in the complex plane. By
varying the parameters in the Drude formula and the refractive index of the host medium, it
was found that the spiral shape of the curve is typical when ω/ωp is close to the right bound
of the resonance interaction band (data not shown).

Thus, we have shown that by changing the inter-sphere separation h from 0.01a to 0.32a

it is possible to change the phase of the enhancement factor G, and, consequently, that of the
effective nonlinear polarizability α

(3)
eff in its whole range. Some limitations of the model used

in this letter must be mentioned. First, we did not account for direct electromagnetic coupling
between the nonlinearly polarizable molecule and the nanospheres, nor did we take into account
the nonlinearity of the metal itself. The latter effect can be significant. Further, we assumed
purely local dielectric response of the metal and worked in the quasistatic approximation.
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Figure 3. The parametric plot of the complex enhancement factor G as a function of h/a for
ω/ωp = 0.2. Graphs (a)–(c) show the same curve on different scales.

We did not account for the fact that the electric field in the gap is not constant but can
change on the scales comparable to molecular. Although all these factors are important
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Figure 4. Same as in figure 3 but for ω = 0.25ωp.

if one seeks to calculate the nonlinear response of the system with precision, inclusion of
all these complications would make the theoretical description unrealistically complicated.
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Figure 5. Same as in figure 3 but for ω = 0.32ωp.

On the other hand, the physical effect described in this letter does not originate due to any
of the approximations listed above. Instead, it is explained by the resonant nature of the
interaction between the electromagnetic field and the nanosystem. When the spacing between
the nanospheres is tuned, different resonance modes are excited in the bisphere aggregate.
This results the change of the relative phase between the local field in the gap Ez and the
external field E0 and the characteristic dependence of the enhancement factor G on h which is
illustrated in figures 3–5. Since the resonance nature of interaction is not altered by the factors
mentioned above, it is reasonable to expect that the fine tuning of the third-order nonlinear
response is achievable in nanosystems specifically engineered for that purpose.
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