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The two-stream approximation to the radiative transport equation (RTE) is a convenient exactly solvable model
that allows one to analyze propagation of light in amplifying media. In spite of neglecting the phase and the
interference effects, this model describes the same phenomena as Maxwell’s equation: electromagnetic resonances,
onset of lasing, and onset of instabilities. An important added bonus of the RTE description is that it provides for
a simple and unambiguous test of physicality of stationary solutions. In the case of Maxwell’s equations, it is not
always obvious or easy to determine whether certain stationary (in particular, monochromatic) solutions are
physical. In the case of RTE, the specific intensity of unphysical stationary solutions becomes negative for some
subset of its arguments. In the paper, stationary and time-dependent solutions to the two-stream model are an-
alyzed. It is shown that the conditions for stationary lasing and for emergence of instabilities depend only on the
geometry of the sample and the strength of amplification but not on the intensity of incident light. © 2018

Optical Society of America

OCIS codes: (110.6960) Tomography; (290.5855) Scattering, polarization; (110.5405) Polarimetric imaging.
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1. INTRODUCTION

Recently, propagation of light in amplifying media has attracted
considerable interest [1–10], and even some controversy
[11–14]. The problem has, in fact, a long history [15,16],
and a comprehensive exposition of the subject has been given
in [17]. The difficulty seems to be rooted in the attempts to
describe amplifying media phenomenologically by a linear per-
mittivity ϵ with a negative imaginary part. This description is
sometimes valid and sometimes not, but it is easy to make a
mistake by assuming the existence of certain stationary (in par-
ticular, monochromatic) solutions to Maxwell’s equations that
are not physically realizable. That is, these solutions—even
though they appear to be perfectly valid—can never be reached
if one starts from a physically reasonable initial condition. In
addition, amplifying media are known to possess instabilities.
This means that solutions can depend dramatically on small
variations in the initial conditions or the form of external
radiation.

In the case of Maxwell’s equations, determining which sta-
tionary solutions are physical and which are not is not always
straightforward. However, if we describe the light propagation
in the medium by the radiative transport equation (RTE), the
determination becomes much simpler. The reason for this sim-
plification is that the specific intensity I, which is the physical
quantity described by the RTE [18], is point-wise nonnegative
by definition. We will see that the stationary solutions

purportedly yielding I can be, in fact, negative, at least for some
subsets of the arguments of I , if these solutions are unphysical
in the above sense. This is a red flag; such solutions are math-
ematical artifacts of an imprecise or incomplete model; they do
not correspond to the physical reality and should not be used.
A related point is that, for the corresponding parameters of
the medium, stationary solutions do not exist, and one must
consider time dependence.

A similar consideration cannot be applied to the electric
field, which is a vector and can have a projection of arbitrary
sign on any given axis. However, we will show that many im-
portant features of light propagation in amplifying slabs as
described by Maxwell’s equations [17] are also present in the
transport theory. This is counterintuitive, because the RTE
disregards the phase of light and, correspondingly, it disregards
the interference effects. Nevertheless, the transport theory pre-
dicts that a sample of amplifying medium has resonances and
can support stable lasing or exponentially growing runaway
solutions, just as is the case for Maxwell’s equations.

Thus, the main goal of this paper is to provide an alternative
and a somewhat simpler (albeit an approximate) theoretical
framework in which propagation through amplifying media
can be considered. It will be shown that, although the math-
ematical model employed below does not involve the phase, it
captures, at least qualitatively, certain physical phenomena such
as resonances and the onset of lasing that are generally believed
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to be closely related to phase and interference. The advantage of
using the formalism of this paper is simplicity and transparency.
It will become clear, for example, that, in the recent controversy
between Baranov et al. and Wang et al. [13,14], the former are
right: the onset of lasing is a condition that involves the size of
the sample and the magnitude of the imaginary part of the per-
mittivity but not the field strength.

To avoid unnecessary complications, we will consider a sim-
ple exactly solvable model that involves two oppositely directed
streams of radiation. The corresponding two-stream approxima-
tion was originally introduced by Kubelka and Munk in 1931
[19], well before the modern radiative transport theory was
developed. The goal of the original paper by Kubelka and
Munk was to compute the reflectance of a layer of paint.
However, the model with just two streams, although never pre-
cise, is surprisingly rich and describes radiation transfer in many
physical systems qualitatively. For example, the two-stream
approximation can be used to explain the varying colors of
clouds. Also, the two-stream theories are applicable to all
one-dimensional systems in which forward and backward
propagation is possible, such as waveguides and transmission
lines. More broadly, the theory of this paper can be applicable
to random lasing in micro- or nanopowders wherein the
description in terms of Maxwell’s equations is too complex
and detailed to be practical and the approximate description
based on the RTE must be used instead.

The point of departure for this paper is the RTE written in
the form�

1

c
∂
∂t

� ŝ · ∇� μt

�
I�r; ŝ; t� � μs

Z
A�ŝ; ŝ 0�I�r; ŝ 0; t�d2s 0:

(1)

Here I�r; ŝ; t� is the specific intensity at the position r in the
direction of the unit vector ŝ and at the time t, c is the average
speed of light in the medium, μt � μa � μs is the total attenu-
ation coefficient of the medium, with μa and μs being the
absorption and the scattering coefficients, and, finally,
A�ŝ; ŝ 0� is the single-scattering phase function. We assume that
external radiation enters the medium through its boundary,
which can be described mathematically by inhomogeneous
boundary conditions (stated below).

The two-stream approximation grows from the minimalistic
assumption that only forward and backward scattering is pos-
sible. In this case, single scattering in the medium is governed
by the delta-Eddington phase function:

A�s; ŝ 0� � pδ2�s; ŝ 0� � qδ2�s; −ŝ 0�; (2)

where p and q are the probabilities of forward and backward
scattering (p� q � 1). The scattering asymmetry parameter
of the medium is g � p − q � 1 − 2q � 2p − 1. The transport
mean free path l� is given for this medium by

l� � 1

μa � �1 − g�μs
� 1

μa � 2qμs
: (3)

Note that δ2�s; ŝ 0� in Eq. (2) is the two-dimensional angular
delta function with the property

R
δ2�s; ŝ 0�f �ŝ 0�d2s 0 � f �ŝ�

[20]. Upon substitution of Eq. (2) into Eq. (1), the RTE
becomes

�
1

c
∂
∂t

� ŝ · ∇� μa � qμs

�
I�r; ŝ; t� � qμsI�r; −ŝ; t�: (4)

In what follows, we will consider the case when the vector ŝ is
perpendicular to an infinite slab of a material. In this case,
propagation is described by a one-dimensional set of equations.

2. STATIONARY TWO-STREAM EQUATIONS

Consider the case when a sufficiently wide front of parallel rays
of stationary intensity I 0 (incoming energy per unit surface per
unit time) is normally incident onto a layer contained between
the planes z � 0 and z � L. The slab is characterized by spa-
tially uniform coefficients μs and μa and by the scattering prob-
abilities p and q. Under certain conditions, which are explored
in detail below (and certainly in the case μa > 0), the specific
intensity is also stationary and can be written in the form

I�r; ŝ; t� � I 0�i1�z�δ2�ŝ; ẑ� � i2�z�δ2�ŝ; −ẑ��; (5)

where the two dimensionless streams, i1�z� and i2�z�, satisfy the
pair of ordinary differential equations

��d∕dz � μa � qμs�i1�z� � qμs i2�z�; (6a)

�−d∕dz � μa � qμs�i2�z� � qμsi1�z�; (6b)

and the boundary condition

i1�0� � 1; i2�L� � 0: (7)

Note that the above boundary condition does not account for
Fresnel reflections of the streams at the slab interfaces (i.e., due
to an index mismatch). A more general case of nonnegligible
Fresnel reflections is considered in Section 7 below. We thus see
that the parameter 1∕qμs sets the characteristic length scale of
the problem. All possible solutions can be expressed in terms of
three dimensionless variables: qμsz, qμsL, and μa∕qμs. Without
loss of generality, we can assume that qμs is fixed, while μa and
L and z can vary. This point of view is adopted everywhere
below except in Section 7, where, in one of the figures, we
assume that μa is fixed while qμs and L can vary.

Note that the stationary two-stream equations (6) are equiv-
alent to a one-dimensional stationary diffusion equation for the
energy density u�z� (this equivalence does not hold in the time-
dependent case; see below). Indeed, let us define the density
and current of energy as u�z� � �I 0∕c��i1�z� � i2�z�� and
J�z� � I 0�i1�z� − i2�z��. The two functions satisfy

dJ∕dz � αu�z� � 0; Ddu∕dz � J � 0; (8)

where D � cl� and α � cμa are the diffusion coefficient and
the rate of absorption. Thus, Fick’s law (second equation above)
holds in the two-stream model exactly. We can further trans-
form Eq. (8) into a second-order diffusion equation for u, viz.,

�−Dd 2∕dz2 � α�u � 0: (9)
The boundary condition for the diffusion equation follows
from Eq. (7) and is of the form

u�0� − l�u 0�0� � 2I0; u�L� � l�u 0�L� � 0: (10)
This is a special case of the more general boundary condition
�u� ln̂ · ∇u�jr∈∂Ω, where n̂ is the outward unit normal to the
boundary ∂Ω of the domain Ω occupied by the medium, and
the parameter l is known as the extrapolation distance [21].
Generally, the value of l depends on the medium parameters
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and, in three dimensions, the typical value of l is l ∼ 0.71l�

[22] (in the absence of Fresnel reflections at the interfaces). The
above result l � l�, as well as the expression D � cl� for the
diffusion coefficient, are exact only in the one-dimensional
two-stream model.

Note that it is possible to establish an exact equivalence
between the one-dimensional diffusion equation (9) with
the boundary condition (10) and the two-stream equations (6)
with the boundary condition (7). However, there is no such
correspondence between the one-dimensional diffusion equa-
tion and a more general one-dimensional RTE. If the phase
function is not of the delta-Eddington form (2), then the dif-
fusion equation (9) is only an approximation to the RTE and,
moreover, one should use in this case different values for the
parameters D and l.

For our purposes, it is more convenient to work directly
with the streams i1 and i2, since both functions are physically
required to be nonnegative. The solution to Eqs. (7), (6) is

i1�z� �
a−eλ�z−L� − a�eλ�L−z�

a−e−λL − a�eλL
; (11a)

i2�z� � qμs
eλ�z−L� − eλ�L−z�

a−e−λL − a�eλL
; (11b)

where

a	 � μa � qμs 	 λ; (12a)

λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa�μa � 2qμs�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
μa∕l�p

: (12b)

As one could expect, the expressions for i1�z�, i2�z� are invari-
ant with respect to the substitution λ → −λ. Although nothing
depends on the choice of the square root branch in Eq. (12b),
we will, for the sake of clarity, fix the branch by applying the
condition 0 ≤ arg�λ� < π. Then we can distinguish the
following cases:

(i) If μa > 0, then λ > 0.
(ii) If μa � 0, then λ � 0.
(iii) If −2qμs < μa < 0, then λ � ijλj � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμaj�2qμs − jμaj�
p

.
In this case, maxμa jλj � qμs is achieved at μa � −qμs.

(iv) If μa � −2qμs, then λ � 0.
(v) If μa < −2qμs, then λ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμaj�jμaj − 2qμs�

p
> 0.

To summarize, λ is either purely real and positive, or purely
imaginary with a positive imaginary part, or zero.

3. STATIONARY TRANSMISSION AND
REFLECTION BY A SLAB

We can define the transmission and reflection coefficients of
the slab as T � i1�L� and R � i2�0�. The reflection coefficient
R is called the albedo; it would yield, for example, the reflec-
tivity of a plane-parallel atmosphere. From the result (11),
we can find that

T � λ

�μa � qμs� sinh�λL� � λ cosh�λL� ; (13a)

R � qμs sinh�λL�
�μa � qμs� sinh�λL� � λ cosh�λL� : (13b)

We start the consideration of amplifying media with a few
numerical examples. In Fig. 1(a), we plot T and R as functions
of the slab width L for a fixed negative value of μa, which
corresponds to amplification (negative absorptive losses).
In Fig. 1(b), we plot T and R as functions of μa spanning
negative and positive values for a fixed value of L.

In the case of fixed μa, the functions T �L�, R�L� have res-
onances (divergences) at the values of L that satisfy the equation

e2λL � μa � qμs − λ
μa � qμs � λ

: (14)

When μa > 0, the above equation does not have positive roots
L. Indeed, for μa; L; λ > 0, the left-hand side of Eq. (14) is
greater than unity, while the right-hand side is smaller, and
the equality is impossible.

However, if μa lies in the interval −2qμs < μa < 0, then
λ � ijλj is imaginary, and Eq. (14) has infinitely many positive
roots Ln, which are all of the form

Ln�μa� �
1

jλ�μa�j

�
nπ − arctan

� jλ�μa�j
μa � qμs

��
;

if − 2qμs < μa < 0: (15)

In the above expression, λ is viewed as a function of μa as is
given by Eq. (12b), and n is an integer index labeling the roots.
We should select only such indices n that make the expression
in the right-hand side of Eq. (15) positive. Let the arctangent be
defined by the condition 0 ≤ arctan�z� < π for any real num-
ber z. Although arctan�z� is discontinuous in this case, all func-
tions Ln�μa� defined by Eq. (15) turn out to be continuous in
the interval −2qμs < μa < 0. Then the consideration of indices
is simple: n � 1; 2; 3;… yield all positive roots Ln. In Fig. 1(a),
the ticks on the horizontal axis and the dashed vertical lines are
shown at the positions of the first four resonance values Ln.

In the case μa < −2qμs, Eq. (14) has exactly one positive
root:

L1�μa� �
1

2λ�μa�
ln

jμa � qμsj � λ�μa�
jμa � qμsj − λ�μa�

; if μa < −2qμs :

(16)

(a) (b)

Fig. 1. Two-stream approximation predictions for the transmission
and reflection coefficients of a slab. Panel (a) shows T and R as func-
tions of L for a fixed negative value of μa. Panel (b) shows these
coefficients as functions of μa spanning negative and positive values
for a fixed L. For comparison purposes, the thin lines in panel (a) show
the respective results computed at μa � 0. The ticks on the horizontal
axis and the dashed vertical lines of panel (a) correspond to the first
four resonance values Ln as defined by Eq. (15) (the numerical values
shown are approximate).
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Note that the expression under the logarithm and the function
λ�μa� are positive under the conditions of applicability
of Eq. (16).

The function L1�μa� can be defined using Eq. (15) and
Eq. (16) and is positive and continuous in the whole open
interval μa < 0, while the functions Ln�μa� with n > 1 are
defined only in the interval −2qμs < μa < 0 [23]. The first
several functions Ln�μa� are plotted in Fig. 2.

For a fixed value of L, we can similarly find the resonance
values of μa as the roots μan�L� of Eq. (14). The two obvious
roots μa � 0 and μa � −2qμs should be considered separately.
These values of μa satisfy Eq. (14) irrespectively of L. However,
the root μa � 0 does not correspond to a resonance and should
always be excluded from consideration. In fact, the transmis-
sion and reflection coefficients at μa � 0 are always finite
and positive. The root μa � −2qμs corresponds to a resonance
only if, in addition, L � 1∕qμs. For a general L, the transmis-
sion and reflection coefficients at μa � −2qμs are given by
T � 1∕�1 − qμsL� and R � qμs∕�1 − qμsL�. Obviously, these
results are physical and correct if qμsL < 1 and unphysical and
incorrect otherwise; the divergence occurs at L � 1∕qμs.

The number of real-valued roots μan�L� is finite and almost
always odd, except for a discrete set of values of L. At least one
resonance value of the absorption coefficient exists for any
L > 0. For example, only one such resonance exists for the
parameters of Fig. 1(b); the divergence of T and R at this single
resonance value of μa is clearly visible in the figure.

The resonance values of μa cannot be expressed in terms of
elementary functions. However, it is easy to find these roots
numerically or visualize graphically. Indeed, let us plot all
the functions Ln�μa� defined in Eqs. (15) and (16), as is done
in Fig. 2. The roots μan�L� can be visualized as the intersections
of a horizontal line L � const with all the curves shown in the
figure. It can indeed be seen that the number of roots is odd
except when the horizontal line touches the minimum of one of
these curves [24].

Let us now fix some μa < 0, and let L1�μa� be the first (the
smallest) resonance value of L for this particular μa. Then the
coefficients T and R are positive for any L in the interval
0 < L < L1�μa�. This is illustrated in Fig. 1(a). In fact, not

only the transmission and reflection coefficients, but the
specific intensity is also positive for these values of L. This
is illustrated in Fig. 3(a), where the functions i1�z� and
i2�z� are plotted for μa � −0.2qμs [same value as in Fig. 1(a)]
and qμsL � 3.5. This value of L satisfies the inequality
0 < L < L1�μa�. Indeed, we have qμsL1�−0.2qμs� ≈ 4.15.

We can generalize that, for any μa < 0, the two-stream
approximation yields physically meaningful solutions as long
as L < L1�μa�, that is, in sufficiently thin slabs, up to the first
resonance value of L. Similarly, for any fixed value of L, the
solutions are physical for μa > μa1�L�, where μa1�L� is the
first (negative) resonance value of μa for the given L. The two-
dimensional region in the plane �μa; L� where physically
meaningful solutions exist is illustrated in Fig. 2.

It may seem that, in some cases, physically meaningful sta-
tionary solutions can exist even beyond the first resonance, that
is, above and to the left of the curve L1�μa� in Fig. 2. For ex-
ample, both coefficients T and R are positive for μa � −0.2qμs
and qμsL � 12.5, as can be seen in Fig. 1(a). This point �μa; L�
is above the curve L1�μa�. However, the individual streams in-
side the medium change sign and are unphysical at these values
of parameters; this is illustrated in Fig. 3(b). Generally, the sta-
tionary solutions are always unphysical for L > L1�μa� or
μa < μa1�L�. Exactly at the resonances, stationary solutions
simply do not exist. Past the first resonance and between
higher-order resonances, solutions exist, but the specific inten-
sity becomes negative at least for some positions and directions.

4. STATIONARY LASING

We have defined the resonances of the two-stream model as the
set of parameters μa and L, for which the stationary two-stream
equations (6) with the inhomogeneous boundary condition (7)
has no solutions. This set is defined by all possible solutions to
Eq. (14). All real resonance values of the above two parameters
lie on the curves shown in Fig. 2.

We can as well say that the two-stream equations (6) with
the homogeneous boundary condition i1�0� � i2�L� � 0 have
nontrivial solutions if and only if the parameters μa and L take
the resonance values. Let us look in more detail at these non-
trivial stationary solutions, which are obtained in the absence
of any external sources. Equations (6) with the above homo-
geneous boundary condition are satisfied by the functions

Fig. 2. Loci of the resonances of the two-stream model in the real
�μa; L� plane. A point on any of the curves corresponds to a root of
Eq. (14). The lowest resonance curve L1�μa� is emphasized by color
and linewidth. All points to the right and below the curve L1�μa� cor-
respond to physically meaningful unique solutions to the stationary
two-stream equations (6). Any point above and to the left of
L1�μa�, but not on any of the other curves, Ln�μa� corresponds to
a unique but unphysical solution. Finally, for any point on any of
the curves Ln�μa�, solutions, even unphysical ones, do not exist for
the inhomogeneous boundary condition (7).

(a) (b)

Fig. 3. Two streams i1�z� and i2�z� for μa � −0.2qμs and L �
3.5∕qμs (a), L � 12.5∕qμs (b). The streams are shown as functions
of the dimensionless variable z∕L. At L � 12.5∕qμs , both the trans-
mission and reflection coefficients are positive (see Fig. 1), but both
functions i1�z� and i2�z� change sign; such solutions are unphysical.
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i1�z� � A�eλz − e−λz�; (17a)

i2�z� �
A
qμs

��μa � qμs � λ�eλz − �μa � qμs − λ�e−λz �; (17b)

provided that Eq. (14) holds. Otherwise, the problem has only
the trivial solution. Here A is an arbitrary constant, and we
should exclude the root μa � 0 (which satisfies Eq. (14) for
an arbitrary L) from consideration. As was explained in
Section 3, μa � 0 is not a resonance of the system.

As for the resonance at the point μa � −2qμs, L � 1∕qμs, it
should be considered separately. The right-hand sides in the
equations (17) turn to zero in this case. However, there exists
a nontrivial linear solution at this resonance point; it is of the
form i1�z� � Az, i2�z� � A�1 − z∕L�. This solution can be,
in fact, obtained from Eq. (17) if we make the substitu-
tion A → A∕2λ.

An important consideration is symmetry. Since, in the
absence of any incoming external radiation, the two possible
directions of propagation are physically equivalent, we expect
the expressions for the two streams to satisfy i1;2�z� �
	i2;1�L − z�. The possibility of the minus sign in the above
symmetry relation is somewhat counterintuitive. However,
Eqs. (17) allow for both possibilities. The physical requirement
that each stream transforms into itself after we apply the oper-
ation of coordinate inversion twice holds in both cases.
Moreover, the solution (17) satisfies the symmetry relation with
the plus sign if the point �μa; L� lies on one of the curves Ln�μa�
with an odd index n and with the minus sign if the index is even.
Indeed, let L � Ln�μa�. We can use Eq. (17a) to write

i1�Ln − z� � A�eλ�Ln−z� − e−λ�Ln−z��: (18)

We now use Eqs. (15) and (16), which define the functions
Ln�μa� for all possible indices and values of the argument, to
find that

e	λLn � �−1�n μa � qμs 
 λ

qμs
: (19)

To derive Eq. (19), one should be careful to use the correct
branch of the arctangent in Eq. (15) (recall that the arctangent
in this formula is defined so that 0 ≤ arctan�z� < π for any real
number z). Note that, if we square Eq. (19), we would obtain
the resonance condition (14). This result follows immediately if
we account for the identity

�μa � qμs − λ��μa � qμs � λ� � �qμs�2: (20)

Finally, we substitute Eq. (19) into Eq. (18), compare the
result to Eq. (17b), and find that the solution (17) satisfies
i1�Ln − z� � �−1�n�1i2�z�.

We can now see that the solution (17) is unphysical for all
even n. Indeed, the two streams cannot be simultaneously pos-
itive in this case. In fact, an even stronger condition holds: the
solution is unphysical for all n > 1. Indeed, for n > 1, λ is
imaginary, and we have i1�z� � 2iA sin�jλjz�. We can select
A � A 0∕2i, where A 0 > 0. Then the overall coefficient is pos-
itive. However, we also have jλjLn > π for n > 1. Therefore,
the function sin�jλjz� necessarily changes sign in this case,
and the solution cannot be physically valid.

We can conclude that the stationary solution given by
Eq. (17) is physical only if the point �μa; L� lies on the curve

L1�μa�. In this case, we can write i1�z� � A sin�jλjz� if
−2qμs < μa < 0 and i1�z� � A sinh�λz� if μa < −2qμs.
Here A is an arbitrary positive constant, and the total power
generated by the system, e.g., i1�L� � i2�0�, is also arbitrary.

The stationary solution described above can be understood
as the state of continuous-wave lasing. This interpretation may
seem counterintuitive because lasers, generally, require a reso-
nator. In the two-stream model discussed so far, there appears
to be no resonator. Moreover, there is no electromagnetic phase
and no constructive interference. However, as we have seen,
there are resonances. The backward reflections and mutual
conversion of the two streams work so as to create a semblance
of a resonator. We will consider the role of the resonator and
the more general condition of stationary lasing with reflection
of the streams at the slab interfaces in Section 7 below.

5. TIME EVOLUTION IN AN AMPLIFYING
MEDIUM

So far, we have considered only stationary solutions. We have
seen that such solutions can be physical or unphysical.
Apparently, the unphysical stationary solutions cannot be
achieved by considering any transient process in which the ini-
tial state of both streams is zero. Questions arise about how a
physical state of stable lasing can be excited, or what would
happen if we apply external radiation to a medium with param-
eters �μa; L� for which stationary solutions do not exist or are
unphysical. We are therefore motivated to look at the time evo-
lution in the two-stream model. We note that time-dependent
solutions to a general RTE with any physically reasonable
source and initial conditions are unique and nonnegative, even
for arbitrary negative μa [22]. This mathematical result applies
to the two-stream theory of this paper.

The time-dependent two-stream equations are of the form�
1

c
∂
∂t

� ∂
∂z

� μa � qμs

�
i1�z; t� � qμsi2�z; t�; (21a)

�
1

c
∂
∂t

−
∂
∂z

� μa � qμs

�
i2�z; t� � qμs i1�z; t�: (21b)

We also assume that the streams satisfy the time-dependent
boundary conditions

i1�0; t� � S�t�; i2�L; t� � 0; (22)

and the initial conditions ik�z; t� � S�t� � 0 for t → −∞.
Thus, the intensity of the external radiation incident onto
the z � 0 face of the slab is described by the function S�t�,
which tends to zero in the sufficiently distant past.

Unlike the stationary equations, the set [Eq. (21)] cannot be
reduced to a one-dimensional diffusion equation. Rather, it is
equivalent to the telegraph equation, which contains both
first and second time derivatives [25].

It is tempting to try to solve Eq. (21) by temporal Fourier
transform. This approach works fine if the medium is absorb-
ing (i.e., μa > 0), and even under some less restrictive
conditions. However, for sufficiently negative values of μa or
for sufficiently large width L for a given μa < 0, the streams
ik�z; t� can increase exponentially in time and, in this case, their
temporal Fourier transforms do not exist, even in the sense of
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generalized functions. One can still apply the Fourier transform
technique formally to Eq. (21), but the result would be incor-
rect and, in particular, it will violate causality [1]. The math-
ematical difficulty here is subtle and may not be obvious when
the actual calculations are done; it is the a priori assumption
that certain Fourier transforms exist when, in fact, they might
not, that is causing the trouble. We will therefore use the
Fourier–Laplace transform instead, as was done previously in
the case of Maxwell’s equations [1,7,17].

Let us search for solutions to Eq. (21) in the form

i1;2�z; t� � e−cμat f 1;2�z; t�: (23)

The effect of this substitution is to eliminate μa from the
differential equations. Indeed, the functions f 1;2 satisfy�

1

c
∂
∂t

� ∂
∂z

� qμs

�
f 1�z; t� � qμsf 2�z; t�; (24a)

�
1

c
∂
∂t

−
∂
∂z

� qμs

�
f 2�z; t� � qμsf 1�z; t�: (24b)

However, μa is now present in the boundary conditions

f 1�0; t� � ecμatS�t�; f 2�L; t� � 0: (25)

It can be seen that the functions f 1;2 are solutions to the origi-
nal two-stream equations (21) in a medium with μa � 0 and
with the modified source S 0�t� � ecμat S�t�. Let us assume that
this modified source injects a finite energy into the medium so
that

R
S 0�t�dt < ∞. If μa � 0, this energy is neither absorbed

nor amplified and will eventually be radiated into free space
through the slab surfaces without net loss or gain. In this case
(and accounting for the positivity of f 1;2 ) we haveR jf 1;2�z; t�jdt < ∞. Consequently, the functions can be
Fourier-transformed with respect to t. Keep in mind, however,
that, if S�t� contains generalized functions, the same can be
expected of f 1;2�z; t�.

We can now write the boundary condition in Fourier
representation as

f̃ 1�0;ω� � F�ω� ≡
Z

∞

−∞
S�t�e�cμa�iω�tdt; f̃ 2�L;ω� � 0:

(26)

Here we have used the Fourier transform convention,

x̃�ω� �
Z

∞

−∞
x�t�eiωtdt; x�t� �

Z
∞

−∞
x̃�ω�e−iωt dω

2π
; (27)

for all time-dependent functions. We can now solve Eq. (24) by
Fourier transform. The result is

f 1;2�z; t� �
Z

∞

−∞
g1;2�z;ω�F �ω�e−iωt

dω

2π
; (28)

where g1;2�z;ω� are the linear transfer functions. At every value
of the Fourier variable ω, the problem of computing the trans-
fer functions is formally equivalent to the stationary problem
considered in Section 3, with the only difference being that μa
should now be replaced by −iω∕c. Therefore, we obtain the
following expressions:

g1�z;ω� �
a−�ω�eλ�ω��z−L� − a��ω�eλ�ω��L−z�

a−�ω�e−λ�ω�L − a��ω�eλ�ω�L ; (29a)

g2�z;ω� � qμs
eλ�ω��z−L� − eλ�ω��L−z�

a−�ω�e−λ�ω�L − a��ω�eλ�ω�L ; (29b)

where

λ�ω� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−i�ω∕c��−iω∕c � 2qμs�

p
; (30a)

a	�ω� � −iω∕c � qμs 	 λ�ω�: (30b)

Let us further assume that the source is a delta-function pulse
of the form S�t� � δ�t − t0� and, correspondingly, F �ω� �
e�cμa�iω�t0 . Solutions to Eq. (21) with this delta source are
the Green’s functions of the time-dependent two-stream equa-
tions, which we denote by G1;2�z; t − t0�. In terms of the
response functions, we have

G1;2�z; τ� � e−cμaτ
Z

∞

−∞
g1;2�z;ω�e−iωτ

dω

2π
: (31)

Solutions for more general sources can be found by
superposition, viz.,

i1;2�z; t� �
Z

G1;2�z; τ�S�t − τ�dτ: (32)

Note the following properties of the transfer functions:

g1�z; 0� � 1 −
qμsz

1� qμsL
; g2�z; 0� �

qμs�L − z�
1� qμsL

: (33)

From this, we conclude that 0 ≤
R
G1;2�z; τ�ecμaτdτ < 1. The

first inequality can be expected on physical grounds, since the
streams are nonnegative by definition. The second inequality
places a bound on how fast the solutions can grow with time
in amplifying media. Note that g1�L; 0� � g2�0; 0� � 1. This
equality means that all energy injected into a medium with
μa � 0 leaves eventually through the surfaces. This can be
expected, since Eqs. (24) do not contain the absorption or
amplification; the latter are accounted for by the exponential
factor e−cμaτ in Eq. (31).

It is also useful to write out the first few terms in the ballistic
expansion of the Green’s functions. This expansion is of the
form

G1;2�z; τ� � e−c�μa�qμs�τ
X∞
k�0

�qμs�kK �k�
1;2�z; τ�; (34)

and it can be derived by starting with the initial guess i1 �
i2 � 0 in the right-hand side of Eq. (24) and iterating the
resulting equations. The first two terms in this expansion
are easy to compute, and they are given by the expressions

K �0�
1 �z; τ� � δ�τ − z∕c�; (35a)

K �1�
2 �z; τ� � c

2
θ�τ − z∕c�; (35b)

K �2�
1 �z; τ� � c

2
zθ�τ − z∕c�; (35c)

K �2k�1�
1 �z; τ� � K �2k�

2 �z; τ� � 0; k � 0; 1; 2…; (35d)

where θ�x� is the unit step function. The term K �0�
1 describes

the propagation of the nonscattered light (the precursor). We
will refer to this term as to the ballistic component of the spe-
cific intensity. Note that K �0�

1 �z; τ� turns to zero identically
when τ > L∕c. In the case of a more general excitation, the
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ballistic component of the forward stream can be found from
Eqs. (32) and (35a):

i�0�1 �z; t� � e−�μa�qμs�zS�t − z∕c�: (36)

The second-order term K �2�
1 �z; τ� does not contain a singularity

but is discontinuous at τ � z∕c. All higher-order terms
K �2k�

1 �z; τ� are continuous. For this reason, Eq. (35c) yields
the exact result for the jump of the Green’s function G1�z; τ�
at τ � z∕c: the jump is equal to 1

2 c�qμs�2ze−�μa�qμs�z .
The Green’s function G2�z; τ� and the reverse stream

i2�z; t� do not have ballistic components and, correspondingly,
K �0�

2 �z; τ� � 0. This is, of course, due to the assumption that
the exciting pulse enters the medium only through the surface
z � 0. However, G2�z; τ� still has a discontinuity at τ � z∕c.
Again, Eq. (35b) predicts the jump correctly, since all higher-
order terms are continuous.

We could easily derive several higher-order terms in Eq. (34);
all these terms are causal; that is, they turn identically to zero for
τ < z∕c. The ballistic expansion is useful at small times with the
characteristic time scale being 1∕qμsc. We therefore have shown
that, at small times, the response of the system is causal. We are
however more interested in the long-time behavior. To this end,
it is instructive to evaluate the Fourier transform (31) by contour
integration. Although the poles of the transfer functions cannot
be computed analytically, the resulting semianalytical formulas
will provide an important insight.

The first thing to note is that g1;2�z;ω� are single-valued
functions of ω in spite of the presence of square roots in
the definitions (29) and (30). This is similar to the case of
transmission and reflection coefficients of homogeneous slabs
computed from Maxwell’s equations [1,2]. In particular, when
ω → 	∞ (on the real axis), we have

g1�z;ω�⏤→
ω→	∞

e�iωc−qμs�z : (37)

Therefore, G1�z;ω� contains a singularity, which must be ex-
tracted before computing the Fourier transform (31). This sin-
gularity is exactly equal to the ballistic term given in Eq. (35a).
Let us adopt the following notations:

g1�z;ω� � g �0�1 �z;ω� � g �d �1 �z;ω�; (38a)

g �0�1 �z;ω� � e�iωc−qμs�z : (38b)

The corresponding ballistic and diffuse parts of the Green’s
function G�0�

1 and G�d �
1 are obtained by computing the

Fourier transforms of g �0�1 and g �d �1 according to Eq. (31).
Referring to expansion (35), we can identify

G�d �
1 �z; τ� � G1�z; τ� − e−c�μa�qμs�τδ�τ − z∕c�: (39)

Viewed as functions of ω, g�d �1 �z;ω� and g2�z;ω� are casual
linear transfer functions. Both have Fourier transforms and no
singularities on or above the real axis. In the lower open half-
plane, the functions are analytic everywhere except for a count-
able infinite set (same for both functions) of simple poles
ωn�L�, which accumulate at infinity. The poles can be found
by solving Eq. (14) for a fixed value of L treating μa as the
unknown. The equation has infinitely many solutions
μan�L� but only a finite number of them are real-valued. These
real roots have been discussed in Sections 3 and 4. Now we

require all solutions to Eq. (14), including the complex ones.
The frequencies ωn�L� are related to μan�L� by ωn�L� �
icμan�L�. The argument L in ωn�L� and μan�L� will be omitted
below for simplicity. The poles are shown in Fig. 4 for two
different slab widths. It can be seen that, for L � 2∕qμsL, only
one of the roots μan is purely real. Correspondingly, only one of
the frequencies ωn is purely imaginary; the rest are complex.
For L � 6∕qμs there are three purely real roots μan and three
purely imaginary frequencies ωn.

When performing contour integration according to
Eq. (31), we can close the loop in the upper half-plane if
τ < z∕c, which obviously yields zero. This guarantees causality
of the response. However, when τ > z∕c, the situation is not so
simple. If we close the integration loop in the lower half-plane
using the semicircle ω � cqμsReiϕ, π ≤ ϕ ≤ 2π, we would
enclose a finite number of poles inside the integration contour.
However, the integral over the semicircle does not tend to zero
when R → ∞, because the integrand has sharp spikes when the
integration path crosses the “trajectories” of the complex poles,
as is illustrated in Fig. 5(a). These spikes have nonzero integral
weight. Related to the above, the sums of residues computed at
the poles enclosed inside the above integration path does not
converge when R → ∞. It is true that the nonconverging part
of the sum and the integral over the circular arc tend to zero
exponentially with τ. However, for any nonzero τ, these
quantities are nonzero.

To avoid dealing with diverging series, we can adopt the
following approximation, which yields exponentially accurate

(a) (b)

Fig. 4. Complex frequencies ωn for L � 2∕qμs (a) and L � 6∕qμs
(b). The patterns seen in the plots are infinite and can be
continued indefinitely beyond the figure frames.

(a) (b)

Fig. 5. (a) Plot of jg �d�1 �z;ω�e−iωτj on the lower semicircle ω∕c
qμs

�
Reiϕ as a function of ϕ for the following parameters: R � 60,
L � 2∕qμs , z � 0.5L, τ � 0.6L∕c. (b) Rectangular integration path
discussed in the text for β � 1. Poles are shown for L � 6∕qμs.
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results when τ → ∞. Let τ > z∕c. We then close the integra-
tion contour, as is shown in Fig. 5(b). The integration path is
the rectangle with the vertices at �−R; 0� to �R; 0�, �R; −β�,
�−R; −β� in the complex ω∕c

qμs
plane. It can be seen that the

segment Γ3 passes clear of any poles. This is different from
the case of a semicircle, which necessarily crosses the regions
where the poles are located very close to each other and form
an almost continuous “trajectory.” As a result, the integral over
Γ3 is not zero but small and can definitely be neglected when
τ → ∞ (integrals over Γ2 and Γ4 tend to zero when R → ∞
and can always be neglected). The optimal choice of the param-
eter β depends on L. In relatively thin slabs, one might need to
take β ≥ 2 so that at least one pole is inside the rectangle. For
L > 2∕qμs, one can safely use β � 1, as is shown in the figure.
This choice yields an especially simple integral over the segment
Γ2. For our purposes, computing this integral is unimportant;
we just assume that it is negligible at large times.

We finally need to compute the residues of g �d �1 �z;ω�, which
is a cumbersome but straightforward task. The result is

lim
ω→ωn

�ω − ωn�g �d �1 �z;ω� � cλn
2i

eλnz − e−λnz

1� �qμs � μan�L
: (40)

We do not need to compute the residues of g2�z;ω�, as they
can easily be found by applying Eq. (24a) to Eq. (40). Putting
everything together, we obtain the following result:

G�d �
1 �z; τ� ≈ c

2
θ
�
τ −

z
c

�
e−cμaτ

×
X
n

θ

�
μan
qμs

� β

�
ecμanτ

λn�e−λnz − eλnz�
1� �qμs � μan�L

;

(41a)

G2�z; τ� ≈
c
2
θ
�
τ −

z
c

�
e−cμaτ

×
X
n

θ

�
μan
qμs

� β

�
ecμanτ

λn�a−ne−λnz − a�n eλnz�
qμs �1� �qμs � μan�L�

:

(41b)

Thus, the nature of the approximation is quite simple: truncate
the summation over the infinite set of poles so that the cutoff is
drawn in the widest gap separating one group of poles from
another. The line Γ3 in Fig. 5 is such a cutoff. It separates
the poles with relatively small imaginary parts, which dominate
the large-time behavior from the rest of the poles.

The quality of the approximation given by Eq. (41) is
illustrated in Fig. 6, where we plot the integrals

I �d �1 �z� �
Z

eατG�d �
1 �z; τ�dτ; I 2�z� �

Z
eατG2�z; τ�dτ

(42)

as functions of z in a slab of the width L � 6∕qμs. Exact results
inferred from Eq. (33) are compared to the approximation (41).
For the parameters considered, the sum (41) contains only two
terms, which correspond to the two poles inside the integration
loop in Fig. 5(b). However, the agreement is excellent at rel-
atively large values of z, which correspond to sufficiently large
propagation times. In fact, the approximation for I �d �1 �z� is

quite good even at small-to-moderate values of z. This is so be-
cause we have already extracted analytically the singular part of
the Green’s function, which cannot be captured accurately by an
expansion of the form (41). For I2�z�, there is no singular part,
and the approximation is not as accurate at small distances.
However, note that Eq. (35b) predicts the value of I�0� exactly.

Approximation (41) is instructive for understanding the
long-time evolution of the system. It can be seen that the re-
sponse to a delta pulse is always transient if μa > 0. That is, both
G1�z; τ� and G2�z; τ� tend to zero exponentially when τ → ∞.
If μa < 0, time evolution can still be transient as long as
μa > maxn�Re�μan�� � maxn�Im�ωn∕c��. We note that the
maximum is always achieved for the real-valued root μa1�L�,
which is discussed in detail in Section 3. In other words, the
equality μa � maxn�Re�μan�� holds if and only if the two param-
eters μa and L lie on the lowest (emphasized) curve L � L1�μa�
in Fig. 2. If the parameters are above and to the left of this
curve, then μa < maxn�Re�μan��. In this case, the solution
(41a) is not transient; rather, it exhibits unbounded exponential
growth with τ. One can say that the system is in this case
unstable, as an arbitrarily small excitation in a distant past
can create an arbitrarily large intensity at the time of observation.

To summarize, the response to a delta-pulse excitation is
transient and stable if and only if the parameters �μa; L� are
to the right of and below the emphasized curve L1�μa� in
Fig. 2. If the parameters are above and to the left of this curve,
the response is not transient and experiences unbounded
exponential growth. However, if this pair of parameters is
exactly on the curve L1�μa�, the response become stationary
at large times, which corresponds to a state of stable lasing.

Let us consider the latter occurrence in more detail. Let
α � maxn�Re�αn�� � cμa1�L� < 0. Then, at large times, the
only term that will survive in Eq. (41a) is n � 1. We then
obtain

G1�z; τ� →
τ→∞

c
2

λ1�e−λ1z − eλ1z�
1� �qμs � μa1�L

: (43)

The above result applies to the total Green’s function, not only to
its diffuse component, since the ballistic term (the precursor) is
zero at large times. Assuming that the slab is sufficiently thick so
that μa1 > −2qμs, we have λ1 � ijλ1j so that the limit becomes

(a) (b)

Fig. 6. Integrals (42) for I �d �1 �z� (a) and I 2�z� (b) in a slab of the
width L � 6∕qμs computed approximately according to Eq. (41) and
exactly according to Eq. (33). Note that the exact result for I �d �1 �z� is
obtained from the first equation in Eq. (33) by subtracting the addi-
tional term e−qμs z .
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G1�z; τ� →
τ→∞

cjλ1j sin�jλ1jz�
1� �qμs � μa1�L

: (44)

The denominator in this expression is positive. This is the sinus-
oidal solution corresponding to stable lasing that was found
previously in Section 4. The positive z-independent coefficient
in Eq. (44) quantifies the achieved lasing power due to a unit
power injected into the system in the distant past. Also, as was
discussed in Section 4, the sine in Eq. (44) does not change sign,
so that the solution is positive for all z, as expected.

Finally, if the slab is sufficiently thin so that μ1a < −2qμs,
the exponent λ1 is real and positive so that the hyperbolic
stationary lasing solution of the form G1 ∝ sinh�λ1z�, which
was also discussed in Section 4, is obtained.

6. NUMERICAL EXAMPLES

A practical approach to accurate and efficient evaluation of the
integral (31) that is valid at all times is simply by the trapezoidal
rule. In Fig. 7, we plot the exponentially scaled time-dependent
diffuse transmission ecμaτG�d �

1 �L; τ� for different widths of the
slab L. The diffuse component is shown because the ballistic
contribution is a delta pulse, which is difficult to represent
graphically. One should, however, keep in mind that the
ballistic component is always present, although, in sufficiently
thick slabs, it becomes negligible. The ratio of the integral
weights of the ballistic component and diffuse components
is (for transmission) �1� qμsL�∕�eqμsL − 1 − qμsL�. For
L � 6∕qμsL, this ratio is ≈0.02 and for L � 12∕qμsL, it is
≈8 · 10−5. In time-resolved experimental measurements, the
precursor can appear as a sharp spike of relatively small integral
weight centered at τ � T , where T � L∕c is the time of flight
through the slab [26].

The scaling by the function ecμaτ is used in the figure to
make the displayed functions independent of μa. More pre-
cisely, the functions that are shown correspond to a medium
with μa � 0. To obtain the corresponding functions in a
medium with μa ≠ 0, all one has to do is multiply the scaled
functions by e−cμaτ. If μa is negative, the exponential growth of
e−cμaτ can overcome the exponential decay of the scaled func-
tions. In this case, the transmission will experience an un-
bounded exponential growth with τ. If the rate of increase
of ecμaτ matches exactly the rate of decay of the scaled functions,

the system will evolve over time into a state of stationary lasing.
Exact compensation occurs when the parameters �μa; L� lie on
the curve L1�μa� in Fig. 2. It can be seen that the rate of ex-
ponential decay of the scaled transmission is slower in a wider
slab. Correspondingly, smaller gain is required to compensate
for this decay.

Both curves shown in Fig. 7 experience a discontinuity at
τ � T . The jump magnitudes are given exactly by Eq. (35c),
where we should use z � L. As expected, the jump goes to zero
with L, and the discontinuity is barely visible in the case
L � 12∕qμsL.

The data points of Fig. 7 were obtained numerically by
using the trapezoidal rule. The data points match with very
high accuracy the approximate result given by Eq. (41a) with
only two terms in the summation, which correspond to the two
poles inside the integration loop of Fig. 5(b). The solutions
match almost perfectly and cannot be visually distinguished.
This means that, at z � 6∕qμs, the solution is exponentially
dominated by the two first terms in Eq. (41a). One, however,
needs to be careful and not include contributions from the
poles that lie below the cutoff line Γ3 in Fig. 5(b). Including
such contributions will worsen the precision and eventually
yield a wrong result.

Reflection is less interesting than transmission (see Fig. 8).
Since the Green’s function G2�0; τ� is evaluated in this case at
z � 0, there are no discontinuities in time domain, or, rather,
the discontinuity occurs exactly at τ � 0. The magnitudes
of the displayed functions at τ � 0 can be found analytically
from Eq. (35b), which approaches the exact result at τ → 0.
Specifically, we have TG2�0; 0� � 1

2 qμsL, which is, indeed,
the case, as can be seen from the figure. However, the numerical
integration becomes unstable very close to τ � 0, and we have
suppressed the left-most data points in the plots of Fig. 8.
Trying to compute these points numerically is similar to trying
to compute (e.g., by some integral or expansion) the value of a
step function exactly at the point where it is discontinuous.

The reflection data computed numerically by the trapezoi-
dal rule are noticeably different from the approximate result
(41b), as is shown in Fig. 8(a). The difference is, however,
visible only at the relatively small times. As noted above, the
approximation (41) is less accurate for the reverse than for
the forward stream. The reason is that we were able to subtract
the ballistic component of the forward stream analytically
from the solution and then treat it separately. There is no analo-
gous manipulation that is applicable to the reverse stream.

(a) (b)

Fig. 7. Time dependence of the exponentially scaled diffuse trans-
mission, ecμaτG�d �

1 �L; τ�, for L � 6∕qμs (a) and L � 12∕qμs (b). The
normalization factor T � L∕c is the time of ballistic propagation of
light through the slab (time of flight). The ballistic component of the
transmission (the precursor) is not shown and should be accounted
for separately.

(a) (b)

Fig. 8. Same as in Fig. 7 but for the exponentially scaled reflection,
ecμaτG2�0; τ�.
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One final remark about the time dependence of reflection
needs to be made. It may appear that the scaled reflection de-
cays exponentially with τ on the time scale of T . However, this
is not so. The functions have wide, slowly decaying tails, which
match the transmission functions shown in Fig. 8 in the decay
rate and amplitude. As can be expected, the specific intensity
inside the slab becomes symmetric at large times, and both di-
rections of propagation become equivalent. This implies that
G2�0; τ� → G1�L; τ� when τ → ∞ (at large times, there is
no difference between G1 and G�d �

1 ). The stationary lasing and
instability conditions are, of course, the same for transmission
and reflection.

7. ROLE OF THE RESONATOR

As was noted above, the boundary condition (7) does not ac-
count for the possibility of Fresnel reflections from the slab in-
terfaces. A more general boundary condition (for the stationary
equations) that takes the reflections into account is of the form

i1�0� � 1� jr0j2i2�0�; i2�L� � jrLj2i1�L�; (45)

where r0 and rL are the internal Fresnel reflection coefficients at
the z � 0 and z � L interfaces for the field amplitudes (not to
be confused with the power reflection coefficient R of the slab as
a whole). If one imagines that the regions z < 0, 0 < z < L,
and z > L have the average refractive indices of n1, n,
and n2, respectively, then r0 � �n − n1�∕�n� n1� and
rL � �n − n2�∕�n� n2�. It is sufficient to assume for our pur-
poses that n1 and n2 are real-valued, while n � n 0 � in 0 0 can
have a positive or negative imaginary part n 0 0 corresponding
to either absorption or amplification. In this case, one can write
μa � 2k0n 0 0, where k0 � ω0∕c is the wavenumber at the cen-
tral frequency of quasi-monochromatic radiation. We note that,
in Eq. (45), the coefficients r0 and rL are squared because the
streams i1�z�, i2�z� describe the propagation of energy; for
the same reason, the relation between μa and n 0 0 contains
the factor of 2.

It is instructive to start with the simple case when qμs � 0 so
that there is no interaction of the streams inside the medium
and the only process that can result in energy exchange between
the two streams is reflection at the interfaces. Physically, this
case corresponds to a perfectly homogeneous medium in which
there is no scattering. The solution to the stationary two-stream
equations (6) with the boundary condition (45) is

i1�z� �
eμa�2L−z�

e2μaL − jr0rLj2
; i2�z� �

jrLj2eμaz
e2μaL − jr0rLj2

: (46)

It can be seen that the resonance condition becomes in this case
e2μaL � jr0rLj2 or, accounting for the relation μa � 2k0n 0 0,

e2k0n 0 0L � jr0rLj: (47)

This is the easily recognizable condition of stationary lasing: the
energy gain on double passage of a resonator should be equal to
the energy loss due to transmission through (and absorption) at
its mirrors. Obviously, the condition (47) can hold only if
n 0 0 < 0 and then only if 0 < jr0rLj < 1. It can further be seen
that, if e2k0n 0 0L > jr0rLj, then both streams are positive. In
this case, physically meaningful stationary solutions exist. If
e2k0n 0 0L < jr0rLj, then Eq. (46) predicts negative values of

i1�z�, i2�z�. This means that, in this case, stationary solutions
do not exist, and the system is unstable.

In regard to the various possible values of the reflection co-
efficients, three special cases can be mentioned. The case r0 �
rL � 0 (the resonator is effectively absent) was considered in all
previous sections. The condition (47) tells us that lasing in the
absence of a resonator and with no internal scattering (recall
that qμs � 0 at the moment) can occur only in the limit
L → ∞, which is not physical. The second special case,
jr0rLj � 1, corresponds to perfectly reflecting mirrors and
an ideal resonator. In this case, an infinitesimally small amount
of amplification will give rise to exponentially growing instabil-
ities. Of course, we know that there are no perfect mirrors in
nature, so that this case is also unphysical. Finally, the third
special case one can consider is r0 � 0 and rL ≠ 0. In this case,
the resonator is effectively open, and there is no lasing in any
finite system. We note that, on physical grounds, the lasing
condition should be invariant with respect to the interchange
r0←⏤→rL and Eq. (47) indeed satisfies this condition. We will
see below that the permutation invariance holds in a more
general case as well.

We thus have rederived by a somewhat unconventional
method the well-known result that, according to the condition
(47), a resonator is required for lasing. In contrast, the
previously derived lasing condition (14) does not require
any resonator. We reiterate that there is no paradox or contra-
diction here. The condition (47) was obtained under the
assumption that there is no internal scattering in the medium
and that stream conversion can occur only at the interfaces z �
0 and z � L due to Fresnel reflections. The condition (14) was
obtained under the assumption that stream conversion does not
occur at the interfaces (there are no Fresnel reflections) but can
occur anywhere inside the medium due to scattering. Thus, we
come to the conclusion that lasing requires, in general, some
physical mechanism for stream conversion; it does not matter
whether it occurs at the interfaces as in conventional lasers or
inside the medium (as one can interpret the action of random
lasers).

We will now consider the case when the stream conversion
can occur both at the interfaces and inside the medium. In
other words, we abandon the simplifying assumption qμs � 0
but still use the more general boundary condition (45).
Omitting the intermediate details, the condition of stationary
lasing in this case is of the form (we use μa instead of n 0 0

everywhere below)

e2λL � μa � �1 − jr0j−2�qμs � λ

μa � �1 − jr0j−2�qμs − λ
×
μa � �1 − jrLj2�qμs − λ
μa � �1 − jrLj2�qμs � λ

:

(48)

This expression is invariant with respect to the permutation
r0←⏤→rL but to see this, we need to account for the specific
form of λ given in Eq. (12b). In the limit r0; rL → 0,
Eq. (48) is equivalent to Eq. (14) and in the limit qμs → 0,
it is equivalent to Eq. (47). To obtain the latter result, one
needs to expand λ as λ � 	�μa � qμs� � O��qμs�2�.

Just as was done in Section 3, we can view Eq. (48) as an
equation defining an infinite number of curves Ln�μa�, n �
1; 2;… in the real �μa; L� plane. The lowest of these curves,
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L1�μa�, is the locus of all points for which stationary laser gen-
eration is possible. For all points below and to the right of this
curve, stationary solutions with a nonzero external source are
possible, and for all points above and to the left, stationary sol-
utions are not possible even without external excitation. In
Fig. 9, we illustrate the condition of stationary lasing for various
values of the reflection coefficients r0 and rL, including the case
r0 � rL � 0. It can be seen that allowing reflections to occur at
the slab interfaces tends to relax the lasing condition. In other
words, lasing is ignited for smaller values of L for a given μa < 0
and for larger values of μa for a given L when jr0j2 and jrLj2 are
equal to each other and monotonically increased towards the
limiting value of unity. If jr0j2 and jrLj2 are different, the sit-
uation is somewhat more complicated, as can be seen from the
intersection of the curves labeled 2 and 4 in Fig. 9. However,
increasing one of the reflection coefficients while keeping the
other unchanged always relaxes the lasing condition.

The data of Fig. 9 do not allow one, at least easily, to visu-
alize the dependence of the stationary lasing condition on qμs.
In particular, it is not possible to infer the limit qμs → 0 from
this figure. This is so because, as in all previous figures, we have
used �qμs�−1 as the unit of length in Fig. 9. To visualize the
dependence on qμs, we have displayed in Fig. 10 the condition
of stationary lasing as curves in the �qμs ; L� plane for a fixed
negative μa < 0. Again, it can be seen that allowing reflections
at the interfaces to occur relaxes the lasing condition.

8. DISCUSSION

The simple two-stream approximation to the RTE is a conven-
ient model for studying propagation of light in amplifying me-
dia. An added bonus of this approach is that the unphysical
stationary solutions, which are not always easy to spot in
the case of Maxwell’s equations, become apparent in the case
of the RTE because the specific intensity in all such instances
changes sign, which is clearly unphysical.

Three-dimensional generalizations of the theory developed
above can be applicable to random lasers. It should be also kept
in mind that the RTE is equally applicable to neutron trans-
port. The critical thickness of an amplifying slab beyond which
the system response is unstable is directly analogous to the criti-
cal mass in nuclear fusion, beyond which an uncontrolled chain
reaction occurs. Although this phenomenon has been very well
understood in nuclear physics, the analogy with optics may not
be obvious. The main reason is that the RTE has no phase,
whereas interference effects are often viewed as conceptually
important in the functioning of lasers.

Of course, the instabilities and the unbounded growth of
intensity are artifacts of an incomplete mathematical model.
In real systems, the growth of intensity is always limited by
the effects of saturation and other kinds of negative feedback.
For example, the competition of gain and losses and the effect
of saturation play an important role in conventional lasers.
However, the laser medium is not described in this case by
a linear RTE; one must use a nonlinear equation where the gain
is saturated at high energy density. For example, we can use the
model expression

μa�u� � a −
b

1� u∕u0
; u�z� � i1�z� � i2�z�: (49)

Here a and b are two positive constants, and u is the density of
energy. It can be seen that the coefficient μa becomes in this
case position-dependent, since u�z� will change with position.
It can be concluded that, in the region of parameters where the
medium response is unstable, linear or weak-field approxima-
tion is not applicable in principle.

In light of the above, we can analyze the arguments appearing
inWang et al.’s reply [14] to the comment by Baranov et al. [13].
In particular, Wang et al. write “The main argument of Baranov
et al. that ‘the movement of SPs [singular points-V.M.] …
indicates the onset of lasing’ implies that the onset of lasing
does not depend on the field strength but relies on the slab’s
thickness. This incorrect argument is different from the conven-
tional view on lasing….” In the foregoing text, Wang et al. also
argue that the slab width at which the onset of lasing occurs,
denoted by d las in the discussed references, depends on the
intensity of incident light: “The lower the intensity of the inci-
dent light is, the larger the width d las will be.”

The results of this paper show clearly that the above argu-
ments are incorrect. The critical width of the slab beyond
which the system is unstable does not depend on the intensity
of incident light. In fact, the instabilities will develop in the
absence of any incident light; a tiny thermal fluctuation will
get exponentially amplified over time. This phenomenon is
physically similar to the uncontrolled chain fusion reaction
and is qualitatively similar to all other instabilities in systems

Fig. 9. Illustration of the condition of stationary lasing (48). The
lowest-lying solutions of Eq. (48) are shown for varying values of
the reflection coefficients jr0j2 and jrLj2. The curve labeled as 1 cor-
responds to r0 � rL � 0 and is identical to the curve L1�μa� shown in
Fig. 2. Other curves have the following parameters: jr0j2 � jrLj2 �
0.5 (Curve 2); jr0j2 � jrLj2 � 0.9 (Curve 3); and jr0j2 � 0.05,
jrLj2 � 0.95 (Curve 4).

Fig. 10. Same as in Fig. 9 but the stationary lasing condition is
shown in the �qμs ; L� plane for a fixed negative value μa < 0.
Same curve labels as in Fig. 9. Note that the curve labeled 1, which
corresponds to r0 � rL � 0, exhibits a logarithmic divergence at
qμs � 0.
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with positive feedback. Even though we did not use Maxwell’s
equations to arrive at this conclusion, the mathematics in both
cases is exactly the same: it is the motion of the poles of the
transfer function (SPs in the terminology of the discussed refer-
ences) that governs the transition from a linear regime in which
a weak-field approximation is indeed applicable to the regime
of stationary lasing and further to the regime of unstable
generation.

Finally, the question of “resolving the index of refraction” in
amplifying media [1,3,5] [determining the “correct” branch of
the square root in Eq. (12b) in the context of the theory
developed above] is of philosophical rather than of physical in-
terest. In any finite sample, the solutions are independent of
this choice, and therefore, no prediction of a physical observ-
able depends on it. The question can be relevant to a semi-
infinite medium. In conventional passive media, a semi-infinite
sample is a useful idealization of a very thick slab; the question
of determining the refractive index correctly in this case makes
physical sense. However, in the case of even arbitrarily small
gain, the model of semi-infinite medium is incompatible with
the assumption of linearity. Linear equations (either Maxwell’s
or the RTE) do not have physically valid stationary solutions in
semi-infinite amplifying samples. The idealization is in this case
not useful or physically applicable, and the notion of index of
refraction is equally inapplicable. Of course, it should always be
kept in mind that the instabilities can realistically propagate not
only in the direction perpendicular to the slab but also along the
slab. Therefore, the linear (or weak-field) approximation is
applicable only to sufficiently small samples that have finite size
in all three spatial dimensions. An infinite slab (even of finite
width) with any amount of gain is intrinsically unstable, and
linear weak-field approximation is not applicable to it in
principle.
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