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Antisymmetrical optical states
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The general properties of antisymmetrical solutions of the coupled-dipole equation are studied. This equation
is used to describe the interaction of a cluster of small particles acting as elementary dipoles with an external
electromagnetic wave. It is shown that antisymmetrical (with zero total dipole moment) eigenstates can be
excited even in clusters that are much smaller in size than the wavelength of the incident radiation. In this
case the quality of the collective optical resonance may be enhanced by the large parameter slyRcd2 (Rc is the
characteristic size of the cluster). This phenomenon, in contrast to superradiance, leads to an increased [by
the factor slyRcd2] lifetime of the system in the excited state and can be called antisuperradiance.  1995
Optical Society of America
1. INTRODUCTION
Scattering and absorption of light by a cluster is a prob-
lem of general interest in optics and classical electro-
dynamics. One usually refers to a cluster as a set of
small particles fixed in space and acting as elementary
dipoles. This simple model was extensively studied dur-
ing the past 20 years. It was used to describe interac-
tion of light with improperly shaped particles,1 – 8 fractal
clusters,9 – 16 molecular clusters,17 and in many other ap-
plications. The theoretical point of departure in these
publications was the coupled-dipole equation (CDE, also
known as the discrete-dipole equation or the discrete-
dipole approximation), which couples the dipole moments
of particles to each other and to the incident wave through
classical dipole radiation fields. The CDE can be derived
from the Maxwell equations provided that the local elec-
trical field varies slightly in the size of each particle.18 – 20

In this paper the general properties of eigenstates of
the CDE with zero total dipole moment (antisymmetrical
states) are investigated. It turns out that under certain
circumstances such eigenstates can be excited in clusters
even by incident radiation with the wavelength l much
larger than the size of cluster Rc. The quasi-static ap-
proximation is not valid in this case, no matter how large
the ratio lyRc is.

The quasi-static approximation (i.e., restricted to the
near-zone term in the formula for dipole radiation and
neglecting the phase shift of the effect of the incident
wave on the size of the cluster) was used extensively (see,
for example, Refs. 10–13). In many cases, especially if
there is strong absorption, this approximation is abso-
lutely justified. However, if absorption is weak and the
system possesses antisymmetrical states, the quasi-static
approximation fails dramatically.

The antisymmetrical states, if they exist, possess re-
markable properties. Probably the most important of
these are mutual compensation of the radiation reaction
and high quality of optical resonance.

In Section 2 the basic equations and expressions for op-
tical cross sections of clusters are reviewed. In Section 3
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general expressions for optical cross sections are obtained
by integration of the scattering amplitude. In Section 4 a
general eigenstate formalism for the complex symmetrical
interaction matrix is developed, and expressions for the
optical cross sections in terms of dipole eigenstates are ob-
tained. Section 5 is devoted to the long-wave limit, when
the non-Hermitian part of the interaction matrix may be
treated as a perturbation. In this section the antisym-
metrical states are introduced, and it is shown that even
for an asymptotically infinite wavelength of the incident
light one must take into account the second-order correc-
tions to the eigenvalues to describe scattering and absorp-
tion in an antisymmetrical state correctly. (If a state is
not antisymmetrical, one still needs to keep the first-order
correction to describe scattering.) In Section 6 the prop-
erties of the antisymmetrical states are discussed in more
detail. In Section 7 some examples of the antisymmetri-
cal state are given, and Section 8 is devoted to a final
discussion.

2. BASIC EQUATIONS
Let us consider scattering of a plane wave of the form

Eincsr, td ­ E0 expsikr 2 ivtd (1)

from a set of N small spherically symmetrical particles
located at points r1, . . . , rN . Each particle obeys linear
dipole polarizability x so that its dipole moment di is
proportional to the local field at the point ri, which is the
superposition of the incident wave and all the secondary
waves scattered by other dipoles. Therefore the dipole
moments are coupled to each other and to the incident
field (1) by

di ­ xfE0 expsikrid 1
NP

j­1

0 Ŵ sri 2 rj ddj g , (2)

where the time dependence exps2ivtd is omitted,
P

0 de-
notes the sum over all values of the index j except j ­ i,
and the 3 3 3 interaction tensor Ŵ acts on a three-
dimensional vector of the dipole moment and is defined
by the general formulas for dipole radiation:
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Wabsrd ­ k3

"
Askrddab 1 Bskrd

rarb

r2

#
, (3)

Asxd ­ sx21 1 ix22 2 x23dexpsixd , (4)

Bsxd ­ s2x21 2 3ix22 1 3x23dexpsixd . (5)

Here Greek indexes stand for Cartesian components of
vectors and A and B are complex functions of a real scalar
argument.

The dipole moments defined by Eq. (2) may be used to
find the scattering amplitude and all the cross sections.
The scattered field Es at some point R in the far zone
sR .. jri 2 rj j, ld is given by

Es ­ k2
NX

i­1

di 2 sdisds
jri 2 Rj

expsikjri 2 Rjd . (6)

With the usual decomposition jri 2 Rj ø R 2 sri, where
s ­ RyR is the unit vector in the direction of scattering,
one gets the expression for the scattering amplitude fssd:

fssd ­ k2
NP

i­1
fdi 2 sdisdsgexps2iksrid . (7)

The cross sections of extinction, scattering, and absorp-
tion, se, ss, and sa , respectively, are expressed through
the scattering amplitude:

se ­
4p

k
ImffskykdE0

pg
jE0j2

, (8)

ss ­
1

jE0j2

Z
jfssdj2dV , (9)

sa ­ se 2 ss . (10)

Here kyk is the unit vector in the forward direction and
dV is an element of the solid angle in the direction of
scattering s.

The straightforward application of the optical theorem
[Eq. (8)] to the scattering amplitude [Eq. (7)] leads to the
simple and well-known result for the extinction cross sec-
tion:

se ­
4pk
jE0j2

Im
NX

i­1
diE0

p exps2ikrid , (11)

The expression for the scattering cross section, which
follows from Eqs. (7) and (9), is

ss ­
k4

jE0j2

NX
i,j­1

Z
fdidj

p 2 sdisdsdj
psdg

3 expfikssri 2 rj dgdV . (12)

Unlike the extinction cross section, the scattering cross
section is given by the double summation and contains all
the relative distances ri 2 rj in the cluster. In Section 3
it is shown that Eq. (2) may be used to reduce the double
summation to a single summation and to eliminate the
relative distances from the expression for the scattering
cross section.

3. INTEGRATION OF THE
SCATTERING AMPLITUDE
It is convenient to represent Eq. (12) for ss as a sum of
diagonal and off-diagonal terms:

ss ­
NP

i­1
ss,ij 1

NP
ifij

ss,ij , (13)
where
PN

ifij denotes double summation over i from 1 to
N and over j not equal to i from 1 to N. Integration
according to Eq. (12) gives us, for the diagonal terms,

ss,ii ­
8pk4

3
jdij

2

jE0j2
, (14)

and for the off-diagonal terms,

ss,ij ­
4pk4

jE0j2

("
sinskrij d

krij
1

cosskrij d
skrij d2

2
sinskrij d
skrij d3

#
didj

p

1

"
2

sinskrij d
krij

2 3
cosskrij d
skrij d2

1 3
sinskrij d
skrij d3

#

3 sdinij dsdj
pnij d

)
, (15)

where rij ­ jri 2 rj j and nij ­ sri 2 rj dyrij . Obviously
ss,ii is equal to the scattering cross section of an isolated
dipole di (i.e., without interference), and ss,ij are the
interference terms.

At this point we make use of the properties given in
Eqs. (3)–(5) of the interaction tensor Ŵ and the coupled-
dipole equation (2). First we notice that the terms in
square brackets in Eq. (15) are equal to Im Askrij d and
Im Bskrij d, where A and B are defined by Eqs. (4) and
(5), so that ss,ij may be rewritten as

ss,ij ­
4pk4

jE0j2
fdidj

p Im Askrij d 1 sdinij dsdj
pnij d

3 Im Bskrij dg . (16)

After summing ss,ij and ss,ji si fi jd, one obtains purely
real coefficients in front of Im A and Im B, and therefore
for the sum of the off-diagonal elements [Eq. (16)] over
all i and j fi i it is possible to put the symbol for the
imaginary part in front:

NX
ifij

ss,ij ­
4pk4

jE0j2
Im

NX
ifij

fdidj
pAskrij d

1 sdinij dsdj
pnij dBskrij dg . (17)

Notice that the term in the brackets is exactly equal to
the interaction tensor Ŵ [Eq. (3)] that acts on dj

p and is
multiplied by di, so that

NX
ifij

ss,ij ­
4pk
jE0j2

Im
NX

ifij

NX
j­1
jfii

fdi
p ? Ŵ sri 2 rj ddj g . (18)

The summation over the i and j indices is written explic-
itly in the right-hand part of Eq. (18), and the sign of
complex conjugation is moved from dj to di (this is valid
because Ŵ is a symmetrical operator). Now the summa-
tion over j can be done with Eq. (2), which states that

NX
j­1

0
Ŵ sri 2 rj ddj ­

1
x

di 2 E0 expsikrid . (19)

Combining Eqs. (13), (14), (18), and (19), one obtains the
final expression for the scattering cross section:

ss ­
4pk
jE0j2

NX
i­j

hImfdiE0
pexps2ikridg 2 ya jdij

2j , (20)
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where ya is a nonnegative constant defined by

ya ­ 2Imsx21d 2 2k3y3 . (21)

The fact that ya is nonnegatively defined follows from
the condition that the absorption cross section of a single
isolated monomer is not negative.21 Actually, ya is the
constant that characterizes the strength of absorption.
From comparing Eqs. (11) for the extinction cross section
and (20) for the scattering cross section, one can easily
obtain the absorption cross section, which turns out to be

sa ­
4pk
jE0j2

ya

NX
i­1

jdij
2 . (22)

Equations (20) and (22) give the desired cross sections.
Both of them are given by single summation, and the
expression for ss, Eq. (20), contains only the coordinates
of particles [by means of the factor exps2ikrid] instead
of the set of N sN 2 1dy2 relative distances ri 2 rj in the
Eq. (12).

The expressions for optical cross sections were obtained
here by the use of straightforward integration of the
scattering amplitude. It is also possible to obtain these
expressions from simple physical arguments based on en-
ergy conservation.7,21 One can associate extinction with
the work exerted by the external field (produced by some
source external to the cluster) and absorption with the
work of the total local field, which includes the field of
radiation reaction and all secondarily scattered waves.
Application of this principle leads immediately to Eqs. (8)
and (22). The derivation in this section is basically more
strict and shows that the above principle is valid only if
the system obeys the CDE.

4. EIGENSTATE ANALYSIS
The formulas for the optical cross section acquire an ele-
gant form if the dipole moments are expressed in terms
of the eigenstates of Eq. (2). First we rewrite Eq. (2) in
matrix form:

jdl ­ xsjEl 1 W jdld . (23)

Here jdl [ C3N is a 3N-dimensional column vector built
from usual three-dimensional dipole moments di. Anal-
ogously jEl is the 3N-dimensional column-vector of the
right-hand part and W is 3N 3 3N interaction matrix
built from 3 3 3 blocks Ŵ sri 2 rj d. We also use the or-
thonormal basis jial in C3N with the unit on the 3si 2

1d 1 a place and zeros on all others. The Cartesian com-
ponents of the 3-dimensional vectors di are expressed as
dia ­ kia j dl.

The interaction matrix W appearing in Eq. (23) is in
the general case a complex symmetrical matrix and there-
fore is not Hermitian. A complex symmetrical matrix
possesses a complete set of eigenvectors that covers the
C3N space, provided that the matrix is not defective (i.e.,
geometric multiplicity of each eigenvalue is not less than
its algebraic multiplicity). The sufficient condition of
nondefectiveness is nondegeneracy of the matrix. Basi-
cally we can restrict consideration to only nondegenerate
matrices because one can always think of a small per-
turbation of vectors ri that breaks degeneracy but leaves
optical properties almost unchanged.22 But even this is
not necessary, because the most important reason for de-
generacy of W is some kind of geometric symmetry of
the cluster; in this case the degenerate eigenstates corre-
spond to spatial symmetry transformations of some given
eigenstate (i.e., rotations or reflections), and therefore geo-
metric and algebraic multiplicities of the corresponding
eigenvalues are equal. Another possibility is random de-
generacy, which is not related to spatial symmetry of a
cluster, but the probability of such an event is asymptoti-
cally zero.23 Based on the above arguments, consider the
full set of eigenstates jnl and corresponding eigenvalues
wn:

W jnl ­ wnjnl . (24)

Here n runs from 1 to 3N, as the dimension of the sys-
tem is 3N and jnl is a 3N-dimensional column vector
with elements that are probably complex. We denote the
Hermitian conjugate of jnl as knj, the latter being a 3N-
dimensional row vector with entries obtained by complex
conjugation of the corresponding entries of jnl.

Unlike in the case of Hermitian matrix, the eigenvec-
tors jnl are not orthogonal, which means that km j nl fi

dmn. Instead, for symmetrical matrices one can prove
(see Appendix A) that

km j nl ­ 0 if m fi n , (25)

where the bar denotes complex conjugation of all en-
tries. Thus kmj actually denotes a row vector with the
same entries as jml. We assume the usual normaliza-
tion of eigenvectors, so that kn j nl ­ 1, whereas kn j nl
is not equal to the unit (and actually may be a complex
number24).

The representation of the unit matrix in this basis is

I ­
X jnl knj

kn j nl
. (26)

Provided that the basis [Eq. (24)] exists, one can decom-
pose the solution of Eq. (23) in terms of jnl:

jdl ­
3NX
n­1

jnl kn j El
kn j nl s1yx 2 wnd

. (27)

Clearly the sums in Eqs. (11), (20), and (22) for the cross
sections may be represented as

NX
i­1

diE0 exps2ikrid ­ kE j dl ,
NX

i­1

jdij
2 ­ kd j dl , (28)

and therefore

se ­
4pk
jE0j2

Im
3NX
n­1

kE j nl kn j El
kn j nl s1yx 2 wnd

, (29)

sa ­
4pkya

jE0j2

3

3NX
mfin

kE j ml km j nl kn j El
km j ml kn j nl s1yx 2 wnds1yx 2 wmdp

. (30)

Equations (29) and (30) give the general form of de-
pendence of the cross sections on x. They may be used
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to deduce some general properties of imaginary parts of
eigenvalues.

First we notice that the vector jEl in Eqs. (29) and (30)
is just the right-hand part of Eq. (20) and may be, in prin-
ciple, arbitrary. This means that one may consider exci-
tation of the system by an incident field of an arbitrary
configuration, not necessarily by a plane wave. Still the
inequality se $ sa must hold for any jEl.25 Let us as-
sume for a moment that jEl coincides with one of the
eigenvectors, say, E0jMl. Then the expressions for the
cross sections are simplified as

se ­ 4pk
Ims1yx 2 wM dp

j1yx 2 wM j2
, sa ­ 4pk

ya

j1yx 2 wM j2
.

(31)

Using the definition (21) of ya and the inequality se $ sa,
we can derive the exact property of the eigenvalues:

Im wn $ 22k3y3 ; n . (32)

Because the trace of the W matrix is zero, its eigenval-
ues obey the sum rule,

3NP
n­1

wn ­ 0 , (33)

which when combined with inequality (32) leads to

Im wn # s3N 2 1d2k3y3 ; n . (34)

As we show below, imaginary parts of the eigenvalues
never can be exactly equal to the margins defined by
inequalities (32) and (34) but may approach them asymp-
totically. This ensures that the resonance denominators
in Eqs. (29) and (30) are never exactly zero, even for ab-
solutely nonabsorbing particles with ya ­ 0.

Note that the margins for the imaginary parts of eigen-
values do not depend on the geometry of the cluster but
only on the frequency and the number of particles. On
the contrary, the margins for real parts of eigenvalues
should clearly depend on the geometry. The simplest ex-
ample is a couple of particles.21

For a cluster lying in a two-dimensional plane,
inequality (34) may be replaced by a stronger one. In-
deed, in the two-dimensional case the space of eigenvec-
tors can be split into two nonintersecting subspaces: one
corresponds to the polarization orthogonal to the plane
with dimensionality N, and the other corresponds to the
parallel polarization with dimensionality 2N. Clearly
one can write the following instead of inequality (34):

Im wn # sN 2 1d2k3y3 ,

n [ f1, N g sorthogonal polarizationd ,

Im wn # s2N 2 1d2k3y3 ,

n [ fN 1 1, 3Ng sparallel polarizationd .

5. LONG-WAVE LIMIT
If the wavelength of the incident radiation l is much
larger than the cluster size, one can consider the imagi-
nary part of the W matrix as a perturbation:

W ­ Wr 1 iWi , (35)

Wi ­ V1 1 V2 1 V3 1 . . . . (36)
Here Wr and Wi are purely real symmetrical (and there-
fore Hermitian) matrices and Vl are the corresponding
terms in the Taylor expansion of Wi. The matrix ele-
ments of the first two terms in the decomposition of Wi

are as follows:

kiajV1jjbl ­
2k3

3
s1 2 dijddab , (37)

kiajV2jjbl ­
2k3

3
skrij d2

10

√
22dab 1

rijarijb

rij
2

!
. (38)

We can build the usual perturbation theory starting
with the orthonormal basis jns0dl of the eigenvectors of Wr.
The corresponding unperturbed eigenvalues are ws0d

n . We
consider first the nondegenerate case [ws0d

n fi ws0d
m if n fi m]

and decompose the eigenvectors and eigenvalues of W in
the usual manner:

jnl ­ jns0dl 1 jns1dl 1 jns2dl 1 . . . , (39)

wn ­ ws0d
n 1 ws1d

n 1 ws2d
n 1 . . . . (40)

As we show below, although the zero-order approximation
is sufficient for the eigenvectors in the limit of infinite l,
it may be necessary to take into account higher approxi-
mations for the eigenvalues.

A. Zero-Order Approximation
We understand the zero-order approximation here as lim-
iting us to the first term in the expansion [Eq. (39)] for
eigenvectors, assuming that jnl ­ jns0dl. We do not make
any approximations at this point regarding eigenvalues,
and we use exact eigenvalues wn here. Below we show
which terms in the expansion [Eq. (40)] for wn should be
left. Analogously, we use the exact right-hand part vec-
tor jEl.

Because the jns0dl basis is orthonormal and real, the
expressions for optical cross sections acquire the following
form:

ss0d
e ­

4pk
jE0j2

3NX
n­1

jkE j ns0dlj2
sya 1 2k3y3 1 Im wnd

j1yx 2 wnj2
, (41)

ss0d
a ­

4pk
jE0j2

3NX
n­1

jkE j ns0dlj2
ya

j1yx 2 wnj2
, (42)

ss0d
s ­

4pk
jE0j2

3NX
n­1

jkE j ns0dlj2
2k3y3 1 Im wn

j1yx 2 wnj2
. (43)

The superscript (0) denotes the order of approximation.
As follows from Eq. (43), the imaginary parts of the

eigenvalues are always important for the scattering cross
section. But ws0d

n are eigenvalues of the Hermitian ma-
trix Wr and therefore are real. This means that even in
the zero-order approximation we cannot neglect higher
corrections to ws0d

n . As we have shown above, the left
margin for Im wn is 22k3y3. If it turns out that Im ws1d

n
can reach this margin, it would mean that the next term
with a nonzero imaginary part in the expansion [Eq. (40)]
should be kept in Eq. (43).

In the case of small absorption (small ya), and if some
resonance conditions are fulfilled, the imaginary parts of
eigenvalues become important for the absorption cross
section as well. Note that by small absorption we mean
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small absorption by an individual particle. The absorp-
tion by cluster given by Eq. (42) is not necessarily small.
Indeed, let us consider the resonance denominator j1yx 2

wnj2 and assume that the resonance condition Res1yx 2

wnd ­ 0 is fulfilled (for some resonance frequency of the in-
cident light). Then j1yx 2 wnj2 ­ sya 1 2k3y3 1 Im wnd2.
Let us also assume that 2k3y3 and Im wn nearly com-
pensate each other, so that 2k3y3 1 Im wn ­ j (small j).
Then the absorption cross section would be of the order
of yayfmaxsya , jdg2. If it happens that j is smaller than
ya , the absorption cross section becomes proportional to
1yya instead of ya .

We also note that the perturbation matrix V1 has the
order of k3, and the first two terms in decomposition of jEl
are of the order of k and k2, respectively. This justifies
the use of the exact right-hand part vector jEl in the zero-
order approximation.

B. Perturbation of Eigenvalues
The expressions for ws1d

n and ws2d
n follow from the usual

perturbation theory:

ws1d
n ­ ikns0djV1jns0dl , (44)

ws2d
n ­ 2

X
mfin

jkms0djV1jns0dlj2

ws0d
n 2 ws0d

m
1 ikns0djV2jns0dl . (45)

It can be easily shown from Eq. (37) for V1 that

V1 ­
2k3

3

√
3X

a­1
j0al k0aj 2 I

!
, (46)

where j0al ­
P

i jial (a ­ 1, 2, 3) are the homogeneous
vectors with components defined by kib j 0al ­ dab and
I is the unit matrix. Therefore the matrix elements
kms0djV1jns0dl are expressed as

kms0djV1jns0dl ­
2k3

3

3X
a­1

kms0d j 0al k0a j ns0dl ,

for m fi n , (47)

kns0djV1jns0dl ­
2k3

3

√
3X

a­1
jkns0d j 0alj2 2 1

!
. (48)

It is natural to introduce three-dimensional vectors of
the total dipole moment of the nth eigenmode Dn with
Cartesian components Dna ­ k0a j ns0dl. Then Eqs. (44)
and (45) may be rewritten as

ws1d
n ­ i

2k3

3
sjDnj2 2 1d , (49)

ws2d
n ­ 2

√
2k3

3

!2 X
mfin

jDmDnj2

ws0d
n 2 ws0d

m
1 ikns0djV2jns0dl . (50)

One can see that ws1d
n is purely imaginary and ws2d

n has
both real and imaginary parts.

It may occur that there exists an eigenmode with zero
total dipole moment, i.e., Dn ­ 0. We call this eigenstate
antisymmetrical. In this case one has

ws1d
n ­ 2is2k3y3d , ws2d

n ­ ikns0djV2jns0dl . (51)

Thus we show that if the antisymmetrical eigenstate ex-
ists, Im ws1d

n reaches the left margin of Im wn. As follows
from the above discussion, this means that the scatter-
ing cross section in the zero-order approximation is deter-
mined by the second-order correction ws2d

n . If it turns out
that ya is much smaller than Im ws2d

n ­ kns0djV2jns0dl, the
resonance absorption is also governed by ws2d

n .
One can also consider the case of a symmetrical eigen-

state, i.e., with maximum possible jDnj2. Given the nor-
malization rule kns0d j ns0dl ­ 1, it can be easily verified that
the maximum possible value of jDnj2 is N and the cor-
responding Im ws1d

n ­ s2k3y3dsN 2 1d does not reach the
right margin for Im v defined by inequality (34). The
latter may be explained by the fact that if a symmetri-
cal eigenstate exists in an essentially three-dimensional
system, it must be triple degenerate. Also it is appar-
ent from Eq. (33) that, if such a triple-degenerate sym-
metrical eigenstate exists, all other eigenstates must be
antisymmetrical.

If a cluster has no antisymmetrical eigenstates, Eq. (43)
for the scattering cross section can be written as

ss0d
s ­

8pk4

3jE0j2

3NX
n­1

jkE j ns0dlj2
jDnj2

j1yx 2 wnj2
. (52)

If the external field can effectively excite only the sym-
metrical mode (as in the case of a small dielectric sphere),
the scattering cross section becomes proportional to N2 ac-
cording to the classical conception. Indeed, in this case
jDnj2 ­ N , jkE j ns0dlj2 ­ NjE0j2, and only one term is left
in the above summation [Eq. (52)]. Note that this is al-
ways the case if the interaction between monomers is
weak and may be neglected.

In the general case, however, the scattering cross sec-
tion is not proportional to N2, nor can it be expressed
through the squared total dipole moment of the cluster,
Dtot, with Cartesian components Da

tot ­ k0a j dl. Indeed,
in the zero-order approximation one has, from Eq. (27)
and the above definition of Dtot,

jDtotj2 ­
3NX

n,m­1
kns0d j El kE j ms0dl

DnDm

s1yx 2 wnds1yx 2 wmdp
.

(53)

One can see from comparison of Eqs. (52) and (53) that
if we leave only diagonal terms (with n ­ m) in Eq. (53),
the cluster would scatter as one particle and the classi-
cal relation ss ­ 8pk4jDtotj2y3jE0j2 will hold. However,
the sum of the off-diagonal terms in Eq. (53) is typically
not equal to zero. This means that even if the size of a
cluster is much smaller than the wavelength, it cannot be
replaced by a single effective particle with the total dipole
moment Dtot. Instead, as follows from Eq. (52), differ-
ent eigenmodes scatter independently, without mutual
interference.

C. First-Order Approximation
Although the zero-order approximation [Eqs. (41)–(43)]
together with the expansion of eigenvalues [Eqs. (49) and
(50)] is sufficient for analysis of antisymmetrical eigen-
states, in this section we report the first-order corrections
to the optical cross sections.

The expression for jns1dl that follows from the pertur-
bation theory is
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jns1dl ­
3NX

m­1

0 jms0dl kms0djV1jns0dl

ws0d
n 2 ws0d

m
­

2k3

3

3NX
m­1

0 jms0dlDmDn

ws0d
n 2 ws0d

m

.

(54)

The first-order approximations for the scalar products
km j nl and kn j nl are

km j nl ­ dmn 1 i
4k3

3
s1 2 dmnd

DmDn

ws0d
n 2 ws0d

m

,

kn j nl ­ kn j nl ­ 1 . (55)

Note that in the first-order approximation km j nl ­
2kn j ml for m fi n.

Using Eqs. (54) and (55), we can find the first-order
corrections to the optical cross sections. We start with
the correction for the extinction, ss1d

e . By substitution of
Eq. (54) into Eq. (29), with the use of Eq. (47), we obtain

ss1d
e ­

16pk4

3jE0j2

X
mfin

sDnDmdRefkE j ns0dl kms0d j Elg

ws0d
n 2 ws0d

m

3 Re

√
1

1yx 2 wn

!
, (56)

where again we used the definition of the total dipole
moment of the nth eigenmode Dn. Because the second-
order correction to se is proportional to k6, it is natural
to keep the exact right-hand part jEl in Eq. (56). It is
worthwhile to note that the decomposition of the cross
sections according to the perturbation theory does not co-
incide with the Taylor expansion with respect to the pow-
ers of k. Indeed, the zero-order approximation [Eq. (41)]
for se contains all powers of k starting from 1. The first-
order correction [Eq. (56)] contains powers of k starting
from 4. Thus the terms of different order actually differ
in the lowest power of k in their Taylor expansion.

Analogously, the first-order correction to the absorption
cross section is

ss1d
a ­

16pk4ya

3jE0j2
Im

X
mfin

DnDmkE j ns0dl kms0d j El

fws0d
n 2 ws0d

m gs1yx 2 wnd

3

√
1

1yx 2 wn
2

1
1yx 2 wm

! p
. (57)

The first-order correction for the scattering cross section
may be obtained by ss1d

s ­ ss1d
e 2 ss1d

a .

D. Case of Degeneracy of Wr

Above, we used the nondegenerate perturbation theory.
In the case of degeneracy of Wr this is invalid. Al-
though the zero-order expressions for the cross sections
[Eqs. (41)–(43)] and the first-order correction for eigen-
values [Eqs. (44) and (49)] hold despite degeneracy, the
higher corrections [Eqs. (45), (50), and (54)–(57)] must be
modified.

However, there are two important cases when no correc-
tions to the nondegenerate perturbation theory are nec-
essary. The first is if one of the degenerate eigenstates,
say the nth, is antisymmetrical. In this case the terms
in sums [Eqs. (45), (50), and (54)–(57)] with denomi-
nators ws0d

n 2 ws0d
m corresponding to degenerate eigenval-

ues fws0d
n ­ ws0d

m g may be omitted because of the fact that
Dn ­ 0.
The second case is when the degeneracy occurs because
of some spatial symmetry of the cluster and the degen-
erate eigenvectors correspond to orthogonal polarizations
in space. Then, for these eigenstates DnDm ­ 0 and cor-
responding terms are also canceled. Note that spatial
symmetry may result in a kind of degeneracy when the
degenerate eigenstates have the same polarization (see
the example in Subsection 6.B).

6. ANTISYMMETRICAL STATES
In this section we examine in more detail properties of
the antisymmetrical states introduced in Subsection 5.B.
We use the zero-order approximation [Eqs. (41)–(43)] for
optical cross sections. We also assume that the Mth
eigenstate is antisymmetrical sDM ­ 0d and consider only
one term in Eqs. (41)–(43) with n ­ M . If all other terms
in Eqs. (41)–(43) are off resonance and the distance be-
tween modes is large enough, this term is prevalent (reso-
nance approximation).

Note that in this section we assume that the antisym-
metrical state exists a priori. In Section 7 we give some
examples of antisymmetrical states.

For convenience we introduce notations for the real and
imaginary parts of 1yx:

1yx ­ 2x 2 iy , y ­ 2k3y3 1 ya (58)

A. Scattering
From Eqs. (43), (44), (45), and (47), the resonance scatter-
ing cross section in an antisymmetrical state is given by

ss0d
s ­

4pk
jE0j2

jkE j Ms0dlj2kMs0djV2jMs0dl

sx 1 ws0d
M d2 1 fya 1 kMs0djV2jMs0dlg2

, (59)

with V2 given by Eq. (38).
Let us assume that the resonance condition x 1 ws0d

M ­ 0
is fulfilled and that the absorption is very small sya ,,

kMs0djV2jMs0dld. Then the resonance scattering cross sec-
tion is given by

ss0d
s sx ­ 2ws0d

M d ­
4pk
jE0j2

jkE j Ms0dlj2

kMs0djV2jMs0dl
. (60)

We can decompose the jEl vector as jEl ­ jEs0dl 1

jEs1dl 1 . . . , kia j Es0dl ­ E0a and kia j Es1dl ­ E0aikri,
where E0 is the amplitude of the incident wave. Because
jMs0dl is an antisymmetrical state, one has kEs0d j Ms0dl ­ 0,
and therefore jkE j Ms0dlj2 , jE0j2skRcd2, where Rc is the
characteristic size of the cluster. On the other hand
V2 , k5Rc

2, and finally

ss0d
s sx ­ 2ws0d

M d , k22 , l2 . (61)

Thus one can see that the antisymmetrical state produce
resonance scattering cross section of the order of l2, as
in the well-known case of symmetrical states. But the
width of antisymmetrical resonance is smaller than that
of an isolated particle by the factor skRcd22.

Let us make an estimate of the possible linewidth of
an antisymmetrical resonance in a cluster of nonabsorb-
ing two-level atoms with transition dipole moment d12.
The polarizability of a two-level atom near resonance
can be written as x ­ 2jd12j2y"sV 1 iGd, where V is
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the detuning from resonance frequency. Because we as-
sume no absorption, we can find from Eq. (21) that G ­
s2k3y3djd12j2y". For our estimate we assume that jd12j ,
eaB , where e is the electron charge and aB is the Bohr ra-
dius, and that the transition frequency is v0 ­ 4.71 3 1015

(l0 ­ 400 nm). This gives us G ø 1.7 3 107 radys, which
is a realistic value for atomic dipole transitions. Now we
use Eq. (59) with x ­ "Vyjd12j2 and ya ­ 0 to calculate
the linewidth of an antisymmetrical resonance G0. This
gives us G0 ­ jd12j2kMs0djV2jMs0dly". As we already have
mentioned, V2 , k5Rc

2, and therefore G0 , skRcd2G. Be-
cause the value of kRc can, in principle, be as small as
10–2, we can obtain G0 of the order of 103 (corresponding
lifetime 10–3 s).

The phenomenon discussed above can be referred to as
the antisuperradiance effect. The superradiance, intro-
duced in Dicke’s classic paper26 and discussed later by
a number of authors,27 – 30 is essentially a phenomenon
in which an ensemble of N interacting atoms emits ra-
diation at a rate that is N times greater than those for
isolated atoms; i.e., the (radiation) lifetime of the sys-
tem is N times smaller. As was shown above (see the
discussion in Subsection 5.B), this situation takes place
for symmetrical eigenstates when the linewidth is deter-
mined by 2k3y3 1 Im vs1d

n and Im ws1d
n ­ s2k3y3dsN 2 1d.

But for an antisymmetrical state the situation is quite
the opposite: the radiation linewidth is determined by
Im ws2d

n , s2k3y3dskRcd2, where kRc is a small parameter.
Theoretically one can think of an eigenstate of even

higher order of antisymmetry, in which not only DM ­
0 but also kMs0djV2jMs0dl ­ 0. For such an eigenstate
the width of the resonance would be of the order of
s2k3y3dskRcd4. An example of such an eigenstate is given
in the next section.

B. Absorption
In Subsection 4.A we used the limit of small absorption
by formally putting ya ­ 0. However, for the absorption
cross section this will yield sa ­ 0, so we need to consider
some nonzero ya . The resonance absorption cross section
[analogous to Eq. (60) for scattering] is

ss0d
a sx ­ 2ws0d

M d ­
4pk
jE0j2

jkE j Ms0dlj2ya

fya 1 kMs0djV2jMs0dlg2
. (62)

Considering ya as an independent variable, we can find
that maximum resonance absorption can be reached if
ya ­ kMs0djV2jMs0dl. In this case, although ya ,, 2k3y3
and absorption by an individual monomer would be very
small, the resonance absorption cross section is propor-
tional to l2, as we had it in the case of scattering.

Note that if ya ­ kMs0djV2jMs0dl, both the absorption and
the scattering resonance cross sections are equal to 1y4
the value of Eq. (60).

7. EXAMPLES OF ANTISYMMETRICAL
EIGENSTATES
Antisymmetrical eigenstates may occur either because
of spatial symmetry of the cluster or randomly. In the
latter case the antisymmetry is unlikely to be exact, in the
sense that Dn may be small but not exactly zero. Below
we consider some examples of exactly antisymmetrical
eigenstates.
A. Two Particles
The case of two particles separated by a distance a was
considered in detail in Ref. 21. Here we adduce the re-
sults concerning the antisymmetrical states. The system
has two antisymmetrical states, as shown schematically
below:

1d ≠°°°°°°°Ø 2d √√√±°°°°°°°±!!!

The first eigenstate is double degenerate because of the
axial symmetry. The corresponding eigenvalues are

w1 ­ 2k3Askad , w2 ­ 2k3fAskad 1 Bskadg , (63)

where A and B are defined by Eqs. (4) and (5), respec-
tively.

Taylor expansion of Eqs. (63) gives us

Im ws1d
1 ­ 22k3y3 , Im ws2d

1 ­ s2k3y15dskad2 , (64)

Im ws1d
2 ­ 22k3y3 , Im ws2d

2 ­ sk3y15dskad2 . (65)

Note that the same expressions can be obtained with per-
turbation Eqs. (49) and (50), although the first eigenvalue
is double degenerate.

B. Four Particles
Let us consider four particles forming a square with size a.
We consider here only eigenstates normal to the plane of
the square. There are two antisymmetrical eigenstates
in this system, as schematically shown below:

sAd Ø°°°°°°°≠ sBd ≠°°°°°°°ØÉ É É É
Ø°°°°°°°≠ Ø°°°°°°°≠

The corresponding eigenvalues are

w1 ­ 2k3As
p

2 kad , w2 ­ k3fAs
p

2 kad 2 2Askadg .

(66)

Note that the first eigenstate is double degenerate. The
degenerate eigenstates have the same polarization, but
we can use the degenerate perturbation theory because
they are antisymmetrical. Also the geometric multiplic-
ity is clearly equal to the algebraic multiplicity in this
case, and therefore the expansion in Eq. (27) is correct.

The Taylor expansion of Eqs. (66) gives us

Im ws1d
1 ­ 22k3y3 , Im ws2d

1 ­ s4k3y15dskad2 , (67)

Im ws1d
2 ­ 22k3y3 , Im ws2d

2 ­ 0 ,

Im ws3d
2 ­ sk3y70dskad4 . (68)

The same results can be obtained with perturbation the-
ory Eqs. (49) and (50).

Note that the second eigenstate possesses even higher-
order antisymmetry than the first one, which results
in Im ws2d

2 ­ 0. Physically, this means that not only
the total dipole moment of this eigenstate but also the
quadrupole and magneto-dipole moments are zero. As
a result the linewidth of this resonance is determined
by Im ws3d

2 instead of Im ws2d
2 . However, the resonance

value of the scattering cross section is still of the order
of l2 (instead of l4ya2 as one could expect). The reason
for this is that the projection of this eigenstate on jEs1dl
is always zero, and one needs to use higher decomposi-
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tion of jEl. The resulting resonance value of the scat-
tering cross section is (with ya ­ 0) ss0d

s sx ­ 2ws0d
M d ­

s35l2y2pdcos2 f sin2 f, where f is the angle between the
wave vector of the incident wave and one of the sides of
the square.

8. DISCUSSION
In the paper it has been shown that if the absorption
parameter ya is small enough the resonance optical cross
section (both absorption and scattering) may be of the
order of l2 and that quasi-static approximation in this
case gives the wrong results no matter how small the
size of the cluster under consideration. Actually, it was
shown that the smaller the size of the cluster, the smaller
the resonance linewidth f,skRcd2g.

The antisymmetrical states considered here are actu-
ally resonances of the total quadrupole moment (in con-
trast to symmetrical eigenstates, which are resonances of
the total dipole moment). The second eigenstate consid-
ered as an example in Subsection 7.B has not only zero
total dipole moment but also zero quadrupole and
magneto-dipole moments. This state may be considered
an octupole resonance. However, the resonance cross
sections in this state are still of the order of l2, as they
are in the case of quadrupole resonance and in the well-
known case of dipolar resonance (the latter is the only
resonance if only one particle is present).

One can make a generalization for the case of l-polar
resonances in clusters of weakly absorbing particles.
The resonance value of the optical cross sections for any l
is ,l2, but the linewidth, being proportional to k3skRcdl21,
depends strongly on the order of multipole l. The condi-
tion on ya also varies with l and may be approximately
written as ya # s2k3y3dskRcdl21.

Theoretically, by using higher l, one can obtain reso-
nances of extremely high quality. The physical limit is
the value of ya, which can never be exactly zero. How-
ever, it can be very small. For example, in the systems
of atoms in vacuum (without collisions) there are no evi-
dent sources of absorption except light pressure (disper-
sion forces) exerted by atoms on each other.

APPENDIX A
Let us consider a symmetrical matrix W of the order q
(q ­ 3N in our case, where N is the number of particles)
with complex entries. We assume that its eigenvectors
jnl [ Cq sn ­ 1, . . . , qd form a (normalized) basis in the
Cq space. This is always true if Ŵ is nondegenerate
(see, for example, Ref. 31). We also use here a basis of
unit vectors jeil si ­ 1, . . . , qd, which are vectors with the
unit in the ith place and zeros in all other places. The
symmetry of W means that keijW jej l ­ kej jW jeil ; i, j .

The eigenvectors for W are not orthogonal in the gen-
eral case, which means that km j nl fi dmn. Instead we
prove here that for a symmetrical matrix the orthogonal-
ity rule is replaced by

km j nl ­ 0 if m fi n , (A1)

where we obtain jnl from jnl by complex conjugation of
all entries (but without transportation). Thus if jnl is a
column vector, knj is a row vector with the same entries
as jnl.

To prove Eq. (A1) let us consider knjW jml:

knjW jml ­
P
i,j

kn j eil keijW jej l kej j ml . (A2)

Noting that kn j eil ­ kei j nl, kej j ml ­ km j ej l and
keijW jej l ­ kej jW jeil, we can write

knjW jml ­
P
i,j

km j ej l kej jW jeil kej j nl ­ kmjW jnl . (A3)

On the other hand knjW jml ­ wmkn j ml and kmjW jnl ­
wnkm j nl, where wm and wn are the corresponding eigen-
values of W. Because wm fi wn, Eq. (A3) can hold only if
kn j ml ­ km j nl ­ 0, which proves Eq. (A1).
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