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We investigate the inverse scattering problem for scalar waves. We report conditions under which the terms in the
inverse Born series cancel in pairs, leaving only one term at each order. We refer to the resulting expansion as the
reduced inverse Born series. The reduced series can also be derived from a nonperturbative inversion formula.
Our results are illustrated by numerical simulations that compare the performance of the reduced series to the full
inverse Born series and the Newton–Kantorovich method. ©2022Optica PublishingGroup
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1. INTRODUCTION

The inverse scattering problem (ISP) is of fundamental impor-
tance in optics and nearly every branch of physics. There are
numerous applications in fields ranging from biomedical imag-
ing to atmospheric science, and extending over spatial scales
from microscopic to macroscopic. The problem is usually stated
in the following form: determine the scattering potential of a
medium of interest from measurements of the scattered field.
The scattering potential is related to the dielectric permittivity
in optics, the speed of sound in acoustics, and corresponds to the
potential energy of a particle in quantum mechanics. There are
a number of approaches to reconstruct the scattering potential.
Direct reconstruction methods provide an analytic solution to
the ISP, principally in 1D, although higher-dimensional meth-
ods are also known. Nonlinear optimization, which is often
based on Newton’s method and its variants, is extremely flexi-
ble, but has high computational complexity. A comprehensive
overview of inverse scattering theory can be found in [1].

In a landmark paper, Wolf pioneered the study of the ISP for
scalar waves, motivated by applications in optical imaging [2].
He derived an inversion formula for the linearized ISP in a trans-
mission experiment. This formula holds within the accuracy of
the first Born approximation. In later work, Wolf extended this
result to a nonlinear ISP by using a direct reconstruction method
that is now known as the inverse Born series (IBS) [3].

The IBS was initially developed for the 1D quantum
mechanical ISP [4]. Later, it was extended to higher dimen-
sions and to a variety of ISPs in classical and quantum physics
[5,6]. These include the ISPs of optical tomography, electrical
impedance tomography, and acoustic and electromagnetic
imaging [7–15]. The convergence of the IBS has been analyzed
in [16–18]. We note that the computational advantage of the

IBS is that it does not require evaluation of the forward operator.
However, the number of terms in the IBS grows exponentially,
which limits its use to weakly nonlinear problems. A survey of
these developments can be found in [19].

In this paper, we apply the IBS to an ISP for scalar waves. The
scattering potential is assumed to have compact support, so that
the corresponding Lippmann–Schwinger integral equation can
be discretized in a finite volume, thereby becoming a system of
linear algebraic equations. In this setting, the ISP is discrete, and
consists of finding the susceptibilities of the volume elements
in the discretization. The corresponding IBS is algebraic and
is amenable to straightforward analysis. We find that there is
a cancellation of terms, in which exponentially many terms
cancel in pairs, with a single term remaining at each order. We
refer to the resulting series as the reduced inverse Born series
(rIBS). Under certain conditions (single source or detector),
the cancellations are exact and the rIBS and IBS coincide. In
this setting, the rIBS can also be derived from a nonperturbative
inversion formula. In other cases, the rIBS can be viewed as an
approximation. Numerical simulations of 1D and 2D scatterers
embedded in 3D space are used to illustrate the applicability of
the rIBS. Throughout, we compare reconstructions obtained
with the IBS, rIBS, and the Newton–Kantorovich (NK) meth-
ods. The NK method is a variant of Newton’s method that
does not require computation of a derivative for every iterative
step [20]. We consider separately: (i) The case when the rIBS
is exact, (ii) the case when the IBS and NK methods are exact,
but the conditions for the applicability of rIBS are not met, and
(iii) the case when all methods fail. For simplicity, we restrict our
attention to scalar waves, but the generalization to the case of
vector electromagnetic fields is straightforward.
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The remainder of this paper is organized as follows. The
necessary theoretical background is introduced in Section 2.
The rIBS and the accompanying nonperturbative inversion
formula are derived in Section 3. 1D and 2D numerical exam-
ples are shown in Sections 4 and 5. Finally, Section 6 contains a
discussion of our results.

Throughout the paper we use the following notational con-
ventions. Matrices are denoted by straight typewriter-style
letters such as A. Matrix elements are denoted by italic letters
as in Anm. If a matrix is diagonal, its elements are denoted by
small italic letters; for example, a diagonal matrixV has elements
Vnm = vnδnm.

2. NONLINEAR INVERSE SCATTERING
PROBLEM

A. General Formulation

We consider the scattering theory for a scalar field. Rather than
beginning with the wave equation, we introduce an equivalent
formulation in terms of integral equations [21]. The forward
problem is to determine the scattered field from the scattering
potential. The corresponding inverse problem is to recover the
potential from measurements of the scattered field. In both
problems, the T matrix plays a crucial role. Consider the field
generated by a monochromatic point source at the location
rs , and let the point of observation be rd . We denote the field
measured in such an experiment by8(rd , rs ). The connection
to the T matrix is established by the integral equation∫

�

d3r
∫
�

d3r ′ G(rs , r)T(r, r′)G(r′, rd )=8(rs , rd ), (1)

where � is the region containing the scatterer, T(r, r′) is the
kernel of the T matrix operator and G(r, r′) is the free-space
Green’s function. The operator T is defined by

T = V + TGV = V + V GT, (2)

where V is the scattering potential. The equation above can be
formally solved for T by

T = V (I − V G)−1
= (I − V G)−1V , (3)

where I is the identity operator. Note that V is diagonal
by definition, which means that its kernel is of the form
V (r, r′)= v(r)δ(r− r′). Here, v(r) refers, for example, to
the dielectric susceptibility of the scattering medium. In gen-
eral, v(r) vanishes outside of the scatterer. We also assume that
the sources and detectors are located outside of �, which con-
tains the support of v(r). Note that the principle of reciprocity
implies that T(r, r′)= T(r′, r), so that T is symmetric.

By expanding the right hand side of Eq. (2), we obtain a series
for T in powers of V that is given by

T = V + V GV + V GV GV + · · · . (4)

We will refer to Eq. (4) as the Born series.
In practice, a computational implementation of a recon-

struction method uses a finite amount of data. As a result, a
reconstruction algorithm produces an approximation to a con-
tinuously varying scattering potential. Here, we approximate

the potential in a basis of functions that are constant on volume
elements of�. To this end, we discretize the integral Eq. (1) as
follows. Suppose that there are Ns sources, Nd detectors, and Nv

volume elements in �. Let Ain = G(rs i , rn), Tnm = T(rn, rm),
Bmj = G(rm, rdj), and 8ij =8(rs i , rdj), where i = 1, . . . , Ns ,
j = 1, . . . , Nd , and n,m = 1, . . . , Nv . Replacing the integral
by a sum, Eq. (1) becomes∑

n,m

AinTnm Bmj =8ij, (5)

which we write in the form

AT[V]B=8, (6)

where the dependence of the matrix T on V has been made
explicit. Note that the incident and measured fields will cor-
respond to discrete sets of sources and detectors, but we relax
the assumption that the latter are points. We can, for example,
consider illumination by several distinct plane waves. We will
refer to A and B as measurement matrices since they establish
the linear relation between the scattering potential and the data.
Specific forms ofA andB depend on the illumination and detec-
tion schemes and several examples are given below. In addition,
we note that in Eq. (6), V is a diagonal matrix with the elements
Vnm = vnδnm. We also note that it is possible to set Gnn = 0 for
all n, so that the matrix G has a zero diagonal [22]. We assume
that this is the case below.

The ISP can now be formulated as follows: Given the matrix
of data 8, find the diagonal matrix V that solves Eq. (6). Since
T depends nonlinearly on V, this is a nonlinear problem. As
discussed in the next section, the first step is to consider the
linearization of this problem.

B. Linearization

While this paper is focused on solving the nonlinear ISP, we will
frequently need a solution to the corresponding linearized prob-
lem, which we denote byL. Here,Ldenotes the solution to

ALB=8. (7)

Note that L is diagonal by definition and we denote its ele-
ments by `n . If it is known a priori that V is small in norm, then
L is a good approximation to the solution to the ISP. However,
we are interested in situations where this approximation is not
accurate.

The two-sided matrix multiplication in Eq. (7) together with
the condition that L is diagonal defines a linear operator K.
Equation (7) can be rewritten as

KL=8. (8)

The operatorK acts on square diagonal matrices of size Nv ×

Nv and returns a matrix of size Ns × Nd . For a diagonal matrixD
with elements dn ,K is defined by

(KD)ij =
Nv∑

n=1

K (i j ),ndn where K (i j ),n = Ain Bnj. (9)

Note that K can be rearranged into an Ns Nd × Nv matrix K.
The latter can be viewed as acting on vectors of length Nv and
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returning a vector of length Ns Nd . The two formulations of the
linearized problem (using the operator K or the matrix K) are
equivalent. However, working with K as with a generic matrix
disregards the algebraic structure, which is explicit in the second
part of Eq. (9). As was shown in [23,24], accounting for this
structure results in a more efficient reconstruction algorithm.

Equation (8) may not have a solution. When a solution does
not exist or is not unique, we seek the pseudo-inverse solution of
Eq. (8) instead. This allows the number of linearly independent
equations in Eq. (8) to be larger or smaller than the number of
unknowns `n . The operator K has a pseudoinverse, which we
denote by K+. This operator acts on a matrix of size Ns × Nd

and returns a diagonal matrix of size Nv × Nv . Thus L can be
written in the form

L=K+8. (10)

Efficient numerical methods to compute K+ for domains�
with translational symmetry (such as a slab or a cylinder) have
been described in [25] and for regions without such symmetry
in [23,24].

C. Inverse Born Series

The IBS is derived by acting with K+ on the nonlinear Eq. (6),
which results in

K+(AT[V]B)= L. (11)

Using the relation in Eq. (2) in Eq. (11), we find that

(K+K)V= L−K+(A T[V] G V B). (12)

If we substitute K+K= I on the left-hand side of the above
equation, we obtain

V= L−K+(A T[V] G V B). (13)

If K+K 6= I, then the quantity on the left-hand side of
Eq. (13) is the projection of V onto the subspace on which K is
invertible. After making use of the forward Born series for T[V]
in matrix form, Eq. (13) becomes

V= L−K+[A (VGV+ VGVGV+ VGVGVGV+ · · ·) B].
(14)

Suppose that

V= V(1) + V(2) + V(3) + · · · , (15)

where V(p) contains p factors of L [see Eq. (16) below].
Substituting Eqs. (15) into Eq. (14) and matching powers
ofL, we find that

V(1) = L,

V(2) =−K+[A(V(1)GV(1))B],

V(3) =−K+[A
(
V(1)GV(2) + V(2)GV(1) + V(1)GV(1)GV(1)

)
B].
(16)

We will refer to Eq. (15) as the IBS. At each order p > 1, the
term V(p) can be computed recursively using compositions of
the integer p and the previously computed terms of orders less

than p . We note that the number of terms in the IBS grows
exponentially with p . Therefore, computing the series to a high
order is prohibitively computationally expensive.

D. NK method

The NK method is an iterative procedure to solve the ISP. It is
derived by noting that Eq. (12) leads to the fixed-point iteration

Vp+1 = L−K+(AT[Vp ] G Vp B), V1 = L. (17)

It is important to note that the iterations in Eq. (17) require
solving the forward problem (computing T[Vp ]) at each order,
which is computationally expensive. The IBS method bypasses
this difficulty by using a series expansion for T[V]. We also
note that if the IBS and NK method both converge, they have
the same limit [12]. The convergence of the IBS has been
investigated in [16,18].

3. REDUCED INVERSE BORN SERIES

In this section, we study a remarkable cancellation of terms in
the IBS that occurs for the ISP with a single detector. Consider a
formally determined ISP specified by a square invertible matrix
A of size N × N, where N = Ns = Nv . We suppose that the
measurement matrix B consists of just one column of length Nv

with all entries constant, which we take to be equal to 1. Under
the above conditions, Eq. (5) becomes∑

m

(AT[V])im =8i1. (18)

The corresponding linearized equation is of the form∑
m

Aim`m =8i1, (19)

whose solution is given by

`n =
∑

i

A+ni 8i1. (20)

Note that althoughA is invertible, withA+ = A−1, we use the
pseudo-inverse notation since we intend to apply the ensuing
inversion formula as an approximation under more general
conditions.

We now exhibit the cancellations in the IBS. We begin from
Eq. (18) and make use of the Born series Eq. (4) for T[V ]. This
results in∑

m

Aimvm =8i1 −
∑

m

[A(VGV+ VGVGV+ · · · )]im

=8i1 −
∑
n,m

Ain(VGV+ VGVGV+ · · · )nm.

(21)

SinceA is invertible, Eq. (21) implies that

vn = `n −
∑

m

(VGV+ VGVGV+ · · · )nm. (22)

We now iterate this equation to generate the IBS. At first
order, we haveV(1) = L. At second order, we find the relation
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v(2)n =−
∑

m

(LGL)nm =−`n

∑
m

Gnm`m =−`n Sn, (23)

where

Sn =
∑

m

Gnm`m . (24)

At third order, three terms are found:

v(3a)
n =−

∑
m

(LGLGL)nm =−`n

∑
m

Gnm`m Sm, (25a)

v(3b)
n =−

∑
m

(LGV(2))nm = `n

∑
m

Gnm`m Sm, (25b)

v(3c )
n =−

∑
m

(V(2)GL)nm = `n S2
n . (25c)

The rules to calculate the higher-order terms are given in [19].
We immediately see that V(3a) and V(3b) cancel and therefore
V(3) = V(3c ). Detailed calculations (not shown here) demon-
strate that the same pattern continues at higher orders, with
2p−1
− 1 terms at order p canceling in pairs, resulting in one

term. Thus, an exponentially large number of terms at each
order of the IBS is replaced by a single term.

We have seen that for the case of a single detector, cancella-
tions in the inverse Born series arise with one term surviving
at each order. More generally, such cancellations should not
be expected to occur. Nevertheless, we can define the reduced
inverse Born series (rIBS) to be of the form of Eq. (15) in which

V(p)nm = v
(p)
n δnm, where v(p)n = `n(−Sn)

p−1, (26)

as an approximation to the IBS. Evidently, the definition above
agrees with Eq. (25c) when p = 3.

We will see that, in some instances, the approximation is
quite accurate. In particular, if the cancellations are exact, then
Eq. (26) agrees with Eq. (16) (and similar expressions obtained
at higher orders. It is important to note that the computational
cost to implement the rIBS is low. Computing K+ by a direct
method has computational complexity O(N3) but only one
such operation is required. Computing all Sn according to
Eq. (24) has complexity O(N2) and is also performed once.

We now show that the rIBS can be recovered from a nonper-
turbative inversion formula for the case of a single detector. To
proceed, we begin from Eq. (18) and use the invertibility ofA to
obtain ∑

m

Tnm[V] = `n . (27)

Next, making use of the relation Tnm = vnδnm + vn(VGT)nm,
and carrying out the summation over m, we find that

`n = vn + vn

∑
m

Gnm`m . (28)

Solving the above equation for vn , we obtain the inversion
formula

vn =
`n

1+
∑
m

Gnm`m
=

`n

1+ Sn
, (29)

where Sn is defined in Eq. (24). We can expand the above solu-
tion for vn in a power series of the form

vn = `n

∞∑
p=0

(−1)p S p
n , (30)

which coincides with the rIBS. We note that the case of a single
source and N detectors (and invertible B) results in a similar
inversion formula.

4. 1D NUMERICAL EXAMPLES

A. Imaging Geometry

In this section, we consider a scatterer consisting of N volume
elements of linear size h embedded in 3D space and arranged in
a linear chain. Assuming the chain is aligned with the X axis, the
coordinates of the centers of the volume elements are xn = nh
and yn = zn = 0, where n = 1, 2, 3, . . . , N. Each volume
element is assigned a permittivity εn . We aim to reconstruct all
εn from measurements, assuming the illuminating field, the
detection scheme, and the Green’s functionG are known.

In the geometry considered, the diagonal elements of V are
related to εn by [26]

vn =
h3χn

1− (kh)2(ξ + ikh)χn
, (31)

where

χn =
εn − 1

4π
(32)

is the susceptibility and k =ω/c is the free space wave number.
In addition, the numerical constant ξ is given by

ξ = ln(26+ 14
√

3)− π/2≈ 2.38. (33)

Note that there is a one-to-one correspondence between εn ,
χn , and vn . In particular, we have

χn =
vn/h3

1+ (kh)2(ξ + ikh)vn/h3
, εn = 1+ 4πχn . (34)

In the reconstructions below, we display χn rather than εn , as
the former quantity is a convenient measure of the scatterer con-
trast relative to the vacuum.

The free-space Green’s function in 3D [21] is given by

G(r, r′)= k2 e ik|r−r′|

|r− r′|
. (35)

The corresponding matrix G is obtained by discretization
of G(r, r′). As mentioned above, we use the discretization
scheme in which the diagonal of G is zero, which is consistent
with the presence of the denominator in Eq. (31). The resulting
expression for the matrix elements ofG is

Gnm = (1− δnm) k2 e ikh|n−m|

h|n −m|
, 1≤ n,m ≤ N. (36)

Note that this discretization is specific to the 1D scatterer con-
sidered in this section.
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To compare the various contrasts and thus the various
strengths of nonlinearity in the ISP, we take χn = γ χ̃n where γ
is a dimensionless positive constant and the nonzero elements
χ̃n are of the order of unity. We refer to χ̃n as the model. By
changing γ , we can control the degree of nonlinearity in the
ISP while keeping the model shape constant. The numerical
reconstructions yield the elements ofV, vn , from which we com-
pute χn according to Eq. (34). We then compute χ̃n as χn/γ .
The reconstructed values of χ̃n are displayed in all plots below.
Note that the model used in this paper is purely real but the
reconstructions generally yield complex values. In the plots, we
display only the real parts of χ̃n and ignore the imaginary parts.

Although we display χ̃n in all plots, the error of reconstruc-
tion is defined differently. Since we reconstruct directly the
values of vn , we quantify the normalized `2 error as

η2
=

∑Nv
n=1 |v

(rec)
n − v(mod)

n |
2∑Nv

n=1 |v
(mod)
n |2

, (37)

where (mod) and (rec) refer to the model and reconstructed
values.

B. Incident Plane Waves with an Integrating
Detector

We now display numerical results under the same conditions
for which the rIBS and the nonperturbative inversion formula
Eq. (29) were derived in Section 3. Namely, we consider a for-
mally determined ISP with N degrees of freedom, N distinct
plane wave sources, and one integrating detector. We select the
illuminating fields so that the linearized ISP is well-posed. To
this end, we take the set of incident plane waves that coincide
with the Fourier modes of the scatterer. This illumination and
detection scheme is described by the following measurement
matrices:

Ain = e iqi xn , Bm1 = 1, (38)

where 1≤ n,m ≤ N,−M ≤ i ≤M and

M = (N − 1)/2. (39)

In the numerical examples, we take N to be odd so that M is
an integer. These measurement matrices in Eq. (38) are realized
if the free-space wave number is k = π/h and we illuminate the
chain at different angles θi . It can be seen that, by using

Fig. 1. Convergence of the NK method with iteration order p
for different values of the contrast γ for the measurement setup of
Section 4.B. Wave number k = π/h .

Fig. 2. The reconstructions for the setup of Section 4.B and various
contrasts γ . Left: The model (red circles) and reconstructions by the
nonperturbative formula Eq. (29) (blue lines). The central peak of the
model consists of only one voxel. Right: Reconstructions obtained
at various orders p of the NK iterations (order p = 0 shown by thick
red line corresponds to the linearized reconstruction). Intermediate
blue lines show order p = 3 for γ ≤ 0.05 and p = 50 for γ > 0.05.
Thin magenta lines show order p = 5 for γ ≤ 0.05 and p = 150 for
γ > 0.05. Wave number k = π/h .

qi = k cos θi where cos θi =
2i
N
, xn = nh, k =

π

h
,

(40)
we obtain

Ain = e i 2π
N in, (41)

which is the matrix of the discrete Fourier transform of
length N.

We perform reconstructions for a model with N = 1001
degrees of freedom consisting of several step functions of varying
width. The central peak of the model is one volume element
wide. To reconstruct this feature, all Fourier components up to
the theoretical band limit are needed. We illustrate convergence
of the NK method in Fig. 1. The model and reconstructions by
various methods are displayed in Fig. 2.
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Table 1. Summary of the Reconstruction Results for
the Setup of Section 4.B and Different Values of the
Contrast γ

a

γ w η Linearized η Eq. (29) NK

0.001 0.037 0.025 ∼10−15 Yes
0.002 0.077 0.051 ∼10−15 Yes [?]
0.005 0.20 0.13 ∼10−15 No
0.01 0.35 0.25 ∼10−15 No
0.02 0.50 0.37 ∼10−15 Yes [?]
0.05 0.50 0.40 ∼10−15 Yes
0.1 0.49 0.41 ∼10−15 Yes
1.0 0.47 0.42 ∼10−15 Yes

aSecond column gives the values of w [defined in Eq. (42)]. Third column
is the error of linearized inversion as defined in Eq. (37). Fourth column is the
error of nonperturbative solution in Eq. (29). Fifth column indicates whether
the NK iterations converge. A question mark means that for this particular
value of γ we are not certain about convergence.

The results of Fig. 1, where we plot the reconstruction error
η as a function of the order of the NK iterations for different
values of the contrast γ , are somewhat unexpected. At small
values of γ , the NK method converges exponentially. However,
for γ = 0.005 and γ = 0.01, after a small initial region of con-
vergence, the error begins to accumulate. For even larger values
of γ , the NK method again converges exponentially. This is
particularly unexpected because the rIBS converges for all values
of γ considered. This point is illustrated in Table 1, where we
summarize the reconstruction results. In particular, for each γ ,
we show the quantity

w=max
n
|Sn|, (42)

where Sn is defined in Eq. (24); here, the index n labels the vol-
ume elements. Ifw< 1, the rIBS as given by Eq. (30) converges.
We thus have an example in which the rIBS converges but the
NK method does not.

The observation above can be explained as follows. When all
methods converge, the limit of the NK iterations, when carried
out to infinite order, formally coincides with the IBS and, under
the conditions of this subsection, with the rIBS. However,
the NK iterates do not coincide with the terms of the IBS. A
given NK iterate may contain terms with different numbers
of factors of L, whereas a given order of the IBS contains only
terms with the same number of such factors. Cancellation of
terms occurs at each order of the IBS, but not in each order of
the NK method. Thus, at any finite order, the NK method gen-
erates exponentially many terms, which are not small and not
canceled. Therefore, at any finite order, the NK iterates do not
coincide with the terms of the rIBS, in which the cancellations
have been accounted for analytically.

We now turn to the reconstructions. The left column of
images in Fig. 2 shows the model superimposed with the result
of the nonperturbative inversion formula Eq. (29), which also
coincides with the limit of the rIBS. It can be seen that Eq. (29)
works perfectly at all values of γ . The right column shows the
linearized reconstructions and various orders of the NK iter-
ations. For relatively small values of γ , the orders p = 3 and
p = 5 are shown, whereas for γ = 0, 1 and γ = 1.0, the orders
p = 50 and p = 150 are shown. It can be seen that the NK itera-
tions converge to the correct solution except for γ = 0.005 and

γ = 0.01. In the latter two cases, an accurate result is achieved
at some a priori unknown order. However, continuing the iter-
ations past this order will result in an accumulation of errors.
The convergence of the NK method is slow at larger contrast,
with hundreds of steps required to achieve an accurate result.
However, the nonperturbative formula yields the solution with
machine precision in negligible computation time.

C. Excitation and Detection with Plane Waves
(Full Bandwidth)

Next we consider a measurement scheme with the same number
of plane wave sources as the number of detectors. The measure-
ment matrices in this case are of the form

Ain = e iqi xn , Bmj = e ixmq j , (43)

where 1≤ n,m ≤ N, −L ≤ i, j ≤ L , and qi are defined in
Eq. (40). However, unlike in the previous subsection, where
we took L =M = (N − 1)/2 and k = π/h , here we take
L =M/2= (N − 1)/4 and k = π/2h (N is selected so thatL is
an integer). We therefore have

Ain Bnj = e i 2π
N (i+ j )n . (44)

Since i + j takes all values in the interval [− N−1
2 , N−1

2 ], the
exponentials above include all discrete Fourier modes of the
scatterer. The corresponding linearized ISP is overdetermined
with (2L + 1)2 = (N + 1)2/4 distinct measurements and
only N unknowns. The operator K in this case is not invert-
ible. However, we still have the property K+K= I (while
KK+ 6= I ). Under these conditions, the derivation of the IBS
in Section 2.D involves no approximations. On the other hand,
the conditions under which the rIBS was derived in Section 3
are not met, and therefore the rIBS yields only an approximate
solution in this instance.

In the simulations, we take N = 1001, as above; corre-
spondingly, L = 250. The convergence of the NK method is
illustrated in Fig. 3 and the reconstructions are shown in Fig. 4.
A summary of the reconstruction results is given in Table 2.
Additionally, we compare the errors of reconstruction for the
IBS, the rIBS, and the NK method directly in Table 3.

The findings can be summarized as follows. First, when the
NK method converges, it yields a superior result because the
solution is found with machine precision. However, starting
from γ = 0.02 (which is a fairly low contrast), the NK iterations
diverge and are therefore not useful to solve the problem. At the
same time, the rIBS and its theoretical limit Eq. (29) yield an

Fig. 3. Convergence of the NK method with iteration order p
for different values of the contrast γ for the measurement setup of
Section 4.C. Wave number k = π/2h .
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Fig. 4. Same as in Fig. 2, but for the setup of Section 4.C. Wave
number k = π/2h .

Table 2. Summary of the Reconstruction Results for
the Setup of Section 4.C and Different Values of the
Contrast γ

a

γ w η Linearized η Eq. (29) NK

0.001 0.001 0.007 0.003 Yes
0.002 0.02 0.01 0.007 Yes
0.005 0.06 0.04 0.02 Yes
0.01 0.12 0.08 0.04 Yes
0.02 0.25 0.18 0.11 No
0.05 0.61 0.47 0.35 No
0.1 0.65 0.51 0.30 No
1.0 0.50 0.42 0.17 Yes

aSame columns as in Table 1.

approximate, yet still a useful, result for values of γ up to∼0.1;
only at γ ∼ 1 the rIBS method breaks down completely. The
IBS was computed to fifth order. It is either similar to or out-
performs the rIBS at each finite order, albeit not by much, but
cannot be computed to significantly higher orders than p = 5
due to the high computational cost.

Table 3. Reconstruction Error η of IBS, rIBS, and NK
Iterations in the Setup of Section 4.C, for Two Values of
γ as Labeled

a

Order p IBS rIBS NK

γ = 0.01

1 7.9 · 10−2 7.9 · 10−2 7.9 · 10−2

2 9.0 · 10−3 9.0 · 10−3 1.4 · 10−2

3 1.2 · 10−3 3.2 · 10−3 2.6 · 10−3

4 1.7 · 10−4 2.9 · 10−3 6.9 · 10−4

5 3.1 · 10−5 3.0 · 10−3 2.6 · 10−4

∞ N/A 3.0 · 10−3
∼10−15

γ = 0.1

1 0.51 0.51 0.51
2 0.29 0.29 0.35
3 0.18 0.20 0.26
4 0.12 0.17 0.20
5 0.11 0.15 0.15
∞ N/A Diverges Diverges

aThe order∞ corresponds to either the analytical summation or converged
result after many iterations. N/A in the IBS columns indicates that the series
could not be computed to high orders due to computational complexity.

Table 4. Reconstruction Error η of IBS, rIBS, and NK
Iterations in the Setup of Section 4.D, for Two Values of
γ as Labeled

a

Order p IBS rIBS NK

γ = 0.01

1 7.5 · 10−2 7.5 · 10−2 6.5 · 10−2

2 6.4 · 10−2 6.4 · 10−2 6.4 · 10−2

3 6.4 · 10−2 6.4 · 10−2 6.4 · 10−2

4 6.4 · 10−2 6.4 · 10−2 6.4 · 10−2

5 6.4 · 10−2 6.4 · 10−2 6.4 · 10−2

∞ N/A 6.4 · 10−2 6.4 · 10−2

γ = 0.1

1 0.62 0.62 0.62
2 0.43 0.43 0.57
3 0.31 0.28 0.60
4 0.26 0.17 0.74
5 0.24 0.14 1.06
∞ N/A 0.16 Diverges

aSame columns as in Table 3.

D. Excitation and Detection with Plane Waves
(Reduced Bandwidth)

Here, we work with the same geometry as in Section 4.C, except
that we now take L smaller than (N − 1)/4, which is required
for the conditionK+K= I to hold. Specifically, for N = 1001,
we take L = 150. The wave number is still k = π/2h . In this
case, the exponentials in Eq. (44) represent only 601 out of
the total of 1001 Fourier modes of the scatterer. The linearized
ISP is underdetermined, and the conditions under which the
NK, the IBS, and the rIBS methods were derived do not hold.
All these methods can be expected to yield only approximate
solutions, and the quality of the approximation is not known
a priori. Nevertheless, some improvement compared to the
linearized reconstructions can be achieved with the IBS. To
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support this conclusion, we show some results of numerical
reconstructions in Table 4 (graphical information provides no
additional insights). At γ = 0.01, the linearized reconstruction
(order p = 1) is reasonably accurate with an error of the order
η∼ 0.1. No meaningful improvement over this result can be
achieved by any method. At γ = 0.1, the IBS achieves a twofold
improvement over the linearized reconstruction at the fifth
order. Neither the rIBS nor the NK method are of use.

5. 2D NUMERICAL EXAMPLES

A. Imaging Geometry

The transition from 1D to 2D does not entail any conceptual
or mathematical difficulties. However, some details must be
mentioned. First, the scatterer in this section is an N × N square
lattice embedded in a 3D space. The ISP is to reconstruct the
susceptibilities χnx n y of all Nv = N2 volume elements. Here,
instead of a single index n, which takes values from 1 to N2,
we have introduced a composite index (nx n y ). Assuming the
scatterer lies in the X Y plane, the coordinates of the centers of
the volume element can be written as ρnx n y

= h(nx x̂+ n y ŷ).
The model is defined similarly to the 1D case with several over-
lapping regions. The dimensionless constantγ is used to control
the degree of nonlinearity in the ISP. Second, the measurements
we consider use incoming and outgoing plane waves, which
coincide with some or all Fourier modes of the scatterer. The
corresponding measurement matrices are

Aix iy , nx n y = e i qix iy · ρnx ny , Bmx m y , jx jy = e i q jx jy · ρmx my ,

(45)
where the 2D wave vectors qix iy

are of the form

qix iy
=

2π

Nh
(ix x̂+ i y ŷ), (46)

and the indexes are sampled as described below, but in all cases
satisfy the inequality

−
N − 1

2
≤ ix , i y , jx , jy ≤

N − 1

2
. (47)

Note that we still assume that N is odd. The 2D wave vectors
qix iy

are projections of the 3D wave vector k (of fixed length k)
onto the X Y plane. Geometrically, this is possible by taking

k =

√
2π

h
(48)

and

qix iy
= k sin θix iy (x̂ cos φix iy + ŷ sin φix iy ). (49)

We will use the wave number defined in Eq. (48) throughout
this section, unlike in the 1D examples of Section 4 where dif-
ferent values of k were used in different examples. The rotation
angles can be determined from

sin2 θix iy =
2(i2

x + i2
y )

N2
, cos φix iy =

i2
x

i2
x + i2

y
. (50)

Third, the discretized Green’s function is now a slight gener-
alization of Eq. (36):

Gnx n y ,mx m y = (1− δnx n y ,mx m y )
k2e ik|ρnx ny −ρmx my |

|ρnx n y
− ρmx m y

|
. (51)

Here, the Kronecker delta symbol δnx n y ,mx m y is 1 if nx =mx

and n y =m y simultaneously and 0 otherwise. The wave
number k in Eq. (51) is the same as is given in Eq. (48). Finally,
it should be noted that, for 2D scatterers, the interaction of
volume elements is stronger than in the 1D case due to more
dense packing. Therefore, somewhat smaller values of γ are
considered below.

B. Incident Plane Waves with an Integrating
Detector

We first consider the case when the derivation of the rIBS
involves no approximations. To this end, we take N = 51
(Nv = 2601 degrees of freedom), and use incident waves
with the wave vectors qix iy

with the indexes satisfying
−M ≤ ix , i y ≤M, where M is defined in Eq. (39). We there-
fore use Ns = 2601 incident plane waves (Ns = Nv), which
sample all Fourier modes of the scatterer. We also use a single
integrating detector. In this setting, the conditions of the deriva-
tion of the rIBS and of the nonperturbative formula Eq. (29)
are met. However, as mentioned above, the nonlinearity of the
ISP now sets in for much smaller contrast γ compared to the 1D
case. We therefore consider the relatively small values γ = 0.001
andγ = 0.01.

Reconstructions are shown in Fig. 5, and the relevant numeri-
cal data are summarized in Table 5. For γ = 0.001, both the
NK method and the rIBS converge to the exact result. The
IBS in this case yields numerical values equivalent to those of
the rIBS but is harder to compute. For γ = 0.01, neither of

Fig. 5. The reconstructions for the 2D measurement setup of
Section 5.B for γ = 0.001 and γ = 0.01. Note that, even though all
expansions or iterative methods diverge for γ = 0.01, the nonpertur-
bative formula Eq. (29) is exact. This result is not shown in the figure
because the corresponding reconstruction coincides with the model
with machine precision. Wave number k =

√
2π/h .
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Table 5. Reconstruction Error η for the Setup of
Section 5.B

a

Order p IBS rIBS NK

γ = 0.001 (w= 0.21)

1 0.11 0.11 0.11
2 1.67 · 10−2 1.67 · 10−2 2.87 · 10−2

3 2.78 · 10−3 2.78 · 10−3 7.48 · 10−3

4 4.98 · 10−4 4.98 · 10−4 1.96 · 10−3

5 9.34 · 10−5 9.34 · 10−5 5.25 · 10−4

∞ ∼10−15
∼10−15

∼10−15

γ = 0.01 (w= 2.36)

1 1.47 1.47 1.47
2 2.69 2.69 5.64
3 5.36 5.36 9.99
4 11.24 11.24 12.43
5 24.29 24.29 15.19
∞ Diverges Diverges Diverges

aSame columns as in Table 3. In addition to γ , the value of w defined in
Eq. (42) is shown. Note that, forw≥ 1, rIBS diverges.

the iterative methods converge. The nonperturbative formula
Eq. (29), however, still yields the exact result. Reconstructions
performed according to Eq. (29) are not shown in Fig. 5 because
they coincide with the model. We thus see that, in the regime of
strong nonlinearity, the IBS, rIBS, or iterative methods are not
effective even under the strong assumptions of this subsection.
The nonperturbative formula, however, remains useful.

C. Excitation and Detection with Plane Waves
(Full Bandwidth)

We next consider a measurement scheme in which identical
sets of incident and outgoing plane waves are used for illumi-
nation and detection. Each set is the same as the set of incident
waves used in Section 5.B. Thus, the linearized ISP is strongly
overdetermined, with Ns = Nd = Nv . However, we still have
K+K= I. Under this condition, the NK method and the IBS,
if convergent, yield the exact result. However, the conditions
under which the rIBS was derived are not met and the latter can
be viewed as an approximation.

Reconstructions are shown in Fig. 6 and the relevant numeri-
cal data are summarized in Table 6. At γ = 0.01, the linearized
solution is close to the model and no further improvement
can be obtained by the expansion methods. In particular, IBS
diverges. The rIBS converges to the theoretical limit Eq. (29);
however, the latter contains a noticeable error, but is still good
quality visually. However, the NK iterations converge to the
exact result almost with machine precision. A qualitatively
similar picture emerges at a larger value of the contrast γ = 0.1.
The IBS diverges but the rIBS converges to a result that is not
far off from the model. The NK iterations still yield the correct
reconstruction with machine precision. It can be concluded that
the NK method is superior in this case, but it is much harder to
compute than rIBS or the nonperturbative formula Eq. (29),
which both yield reasonable results. Under the conditions of this
subsection, the rIBS provides a useful approximation.

Finally we note that both measurement matrices A and B
used in this subsection are invertible. In this case, the ISP can
be solved analytically by three matrix inversions. Indeed, we

Fig. 6. The reconstructions for the 2D measurement setup of
Section 5.C for γ = 0.01 and γ = 0.1. Wave number k =

√
2π/h .

Table 6. Reconstruction Error η for the Setup of
Section 5.C

a

Order p IBS rIBS NK

γ = 0.01

1 0.15 0.15 0.15
2 0.15 0.15 0.13
3 0.12 0.15 0.095
4 0.44 0.15 0.061
5 0.91 0.15 0.049
∞ Diverges 0.15 ∼10−15

γ = 0.1

1 0.11 0.11 0.11
2 0.11 0.11 0.061
3 0.19 0.11 0.042
4 0.17 0.11 0.025
5 0.62 0.11 0.014
∞ N/A 0.11 ∼10−15

aSame columns as in Table 3.

can find T from Eq. (5) by acting with A−1 and B−1 and then
find the solution as V= (I+ TG)−1T. A family of methods
that find V as the minimum norm solution (in case the latter
equation does not yield a diagonal matrix) is also easily deriv-
able. However, ISPs with this property are rarely encountered in
practice.

D. Reduced Bandwidth

We consider an N × N scatterer with N = 51, but now the
incident and outgoing waves sample the Fourier modes of
the scatterer only within a reduced band limit. The indexes of
the wave vectors of the incoming and outgoing waves qix iy

and
q jx jy

are now limited by the condition−L ≤ ix , i y , jx , jy ≤ L ,
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Fig. 7. The reconstructions for the 2D measurement setup of
Section 5.D for γ = 0.01 and γ = 0.1. Wave number k =

√
2π/h .

Table 7. Reconstruction Error η for the Setup of
Section 5.D

a

Order p IBS rIBS NK

γ = 0.01

1 0.30 0.30 0.30
2 0.18 0.18 0.20
3 0.17 0.17 0.17
4 0.17 0.17 0.17
5 0.91 0.17 0.17
∞ Diverges 0.17 0.17

γ = 0.1

1 0.84 0.84 0.84
2 0.74 0.74 0.80
3 0.69 0.70 0.80
4 0.66 0.70 0.85
5 0.68 0.75 0.96
∞ N/A Diverges Diverges

aSame columns as in Table 3.

where L = 10. Note that 2L < M, where M = 25 according to
the definition Eq. (39). Correspondingly, the product

Aix iy , nx n y Bnx n y , jx jy = e i 2π
N [(ix+ jx )nx+(iy+ jy )n y ] (52)

samples the Fourier coefficients of the scatterer only within
the band limit [−2L, 2L] × [−2L, 2L] where 2L = 20,
whereas the complete set of coefficients covers the area
[−M, M] × [−M, M] where M = 25. Therefore, 920 out
of the total of 2601 Fourier coefficients of the scatterer are not
accessible in the linearized ISP, which is in these cases ill-posed.
The linearized ISP is still overdetermined, with 104 data points
and only N = 2, 601 unknowns. However, many of the linear
equations in Eq. (7) are redundant. Correspondingly,K+K 6= I
and the conditions under which all inversion methods used in

this paper were derived are not met. We can still apply these
methods and study the quality of the obtained reconstructions.

The reconstructions are shown in Fig. 7, and the relevant
numerical data are adduced in Table 7. It can be seen that, at the
relatively small contrast corresponding to γ = 0.01, linearized
inversion yields a reasonable result and some small improve-
ment can be achieved by either the rIBS or NK method. The
nonperturbative formula Eq. (29) and the fixed point of the NK
iterations yield a comparable improvement over linearization.
However, at γ = 0.1, the ISP becomes essentially nonlinear and
all methods fail in the sense that no meaningful improvement
over the linearized solution (which has a large error but preserves
some geometrical information) can be achieved.

6. DISCUSSION

We have considered the ISP for scalar waves in a medium dis-
cretized as a set of small cubic volume elements arranged in a 1D
structure (chain) or 2D structure (square lattice). We have found
conditions under which many terms in the IBS cancel in pairs,
leaving only one term at each order. We refer to the resulting
expansion as the rIBS. The terms in the reduced series can be
resummed, resulting in a nonperturbative inversion formula.
This result can also be derived directly, without resumming the
series.

The assumptions that led to the results above are rather
restrictive. We therefore investigated the rIBS and the nonper-
turbative inversion formula Eq. (29) beyond their conditions
of applicability. It was found that they can often be used as
reasonable approximations, especially considering that other
methods such as NK or the IBS do not perform better, but
are much harder to compute. We emphasize that the overrid-
ing advantages of the rIBS and of Eq. (29) is computational
efficiency.

An important observation can be made from the numerical
examples discussed above. Typically, the linearized ISP must be
regularized to avoid numerical instability. The resulting recon-
structions have relatively low spatial resolution. However, the
generalization of this approach to nonlinear ISPs is not straight-
forward. For this reason, replacing the inverse of the linearized
forward operator K−1 with a pseudo-inverse K+ in the NK
method does not generally lead to a noticeable improvement in
resolution. The question of whether it is possible to recover the
potential by solving a nonlinear ISP under the condition that
K+K 6= I is rather complicated mathematically and was the
subject of a recent computational study [27] with a pessimistic
conclusion.
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