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Standard textbooks on classical electrodynamics frequently operate with the notions of free and bound currents
(charges). Alternative terminology of external and induced currents also exists. However, a clear physical defi-
nition of these physical objects is rarely given. The term “free current” can refer in some cases to the conductivity
current, which is subject to constitutive relations in a material sample. In other cases, free current refers to the
current that is completely extrinsic to a given material sample and is assumed to be known a priori or manipulated
by the experimentalist at will. Although one can argue that all currents flowing in material media are subject to
some constitutive relations, there is a clear distinction in the construction of the classical electrodynamics between
the external and induced currents. The aim of this paper is to clarify this distinction while pointing out that the
traditional distinction between free and bound currents is arbitrary and can be abandoned. In addition, the paper
considers some relevant fundamental questions of classical electrodynamics, including the derivation of macro-
scopic Maxwell’s equations, the properties of the external currents, and the physical interpretation of some aux-
iliary fields such as the field of polarization P. © 2018 Optical Society of America

https://doi.org/10.1364/JOSAA.35.001663

1. INTRODUCTION

The resurgence of interest in the foundations of classical
electrodynamics can be evidenced by a number of recent papers
[1–6]. In the author’s opinion, significant confusion has devel-
oped in this field, especially concerning the concepts of free and
bound charges and currents, and external and induced charges
and currents. This terminology and the associated mathemati-
cal methods are often used inconsistently or even incorrectly.
Consequently, graduate education in classical electrodynamics
will benefit from a unified description and a clear understand-
ing of the physical quantities mentioned above.

This paper is an attempt to present such a unified descrip-
tion. It is shown that the concepts of free charges and currents,
as used frequently in the literature, are outdated and unneces-
sary and can be easily avoided. On the other hand, the concepts
of external and induced charges and currents are indeed fun-
damental and should never be confused with each other or with
free charges (currents). Unfortunately, free and external charges
(currents) are often conflated and described in similar terms.
However, these objects are generally not equivalent. The same
is true for bound and induced charges (currents). Therefore, it
appears to be important to draw a clear distinction.

The physical arguments presented in this paper are closely
related to some fundamental questions of classical electrody-
namics, such as the derivation of the macroscopic Maxwell’s
equations from their microscopic counterparts. Another
important question is the interpretation of the auxiliary fields
introduced in the macroscopic theory, such as the field of
polarization P. The author believes that these questions deserve
a discussion as well. Therefore, the paper is organized as
follows.

In Section 2, the definitions of free charges (currents) ap-
pearing in various standard textbooks are discussed and the
existing inconsistencies are pointed out. In Section 3, a self-
consistent microscopic theory that serves as the first principles
for the derivation of macroscopic Maxwell’s equations is stated.
In Section 4, the notion of external currents in the framework
of the microscopic theory is introduced. The main point of this
section is that the definition of external currents is situative
rather than physical. In Section 5, the macroscopic Maxwell’s
equations are derived by using certain phenomenological pos-
tulates. The averaging of the microscopic fields plays no role
in this derivation and, in fact, it is shown that such averaging
cannot be adequately defined mathematically. The important
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message of this section is a clear definition of the external and
induced currents. Section 6 is central to this paper. Here the
properties of external currents and the physical and mathemati-
cal consequences of these properties are discussed. The two im-
portant ideas introduced in Section 6 are (i) the requirement
that external currents not overlap with the medium in which
macroscopic Maxwell’s equations are being solved and (ii) the
observation that the model of infinite unbounded media is in-
complete and, in many practical applications of the theory, it is
important to include the medium boundaries into considera-
tion. In Section 7, one common point of contention is dis-
cussed, namely, that the steady conductivity currents can be
described in the same mathematical framework as all other
induced currents in the medium and, in particular, that the
conductivity current σE can always be absorbed in the term
∂P∕∂t, even in the static limit. The author does not suggest
that the expression σE is incorrect or should not be used when
appropriate; rather, the message is that absorbing the conduc-
tivity currents into the term ∂P∕∂t does not lead to loss of
generality and, at all finite frequencies, the latter approach is
preferred, as it results in shorter formulas and fewer notations.
Finally, Section 8 contains a brief summary.

The paper is largely methodological. The author does not
suggest that the traditional way of doing and teaching electro-
dynamics is erroneous. Rather, the implicit ambiguity and lack
of clarity of the definitions of free and induced charges and
currents, combined with some conceptually difficult questions
arising in the theory of electromagnetic nonlocality (discussed
in detail below), have resulted recently in the construction of
mathematically valid but physically inapplicable models in the
theory of electromagnetic homogenization [7–17]. The physi-
cally incorrect elements of these models are (i) the assumption
that an external (sometimes called “impressed”) current can
spatially overlap with a sample of electromagnetic medium,
(ii) the assumption that this medium is infinite, and (iii) stem-
ming from point (ii), a general disregard of the role and impor-
tance of the medium boundaries. This approach can be a source
of serious mistakes in the theory of electromagnetic homogeni-
zation. Of course, whenever a physical model is constructed,
one must use some physical intuition to make sure that the
model is adequate to the reality. This inevitably results in a de-
gree of arbitrariness. Indeed, physics, unlike mathematics, can-
not be built axiomatically. However, the author hopes that the
theoretical framework proposed below, while consistent with all
accumulated knowledge, will significantly reduce the possibility
of mistakes and, ultimately, will be less confusing for the stu-
dents studying the subject.

The Gaussian system of units is used throughout the paper.

2. FREE CHARGES AND CURRENTS IN THE
LITERATURE

Macroscopic Maxwell’s equations with some source terms Jfree
and ρfree on the right-hand side (sometimes written with the
subscripts, sometimes without, but still designated as “free”
charges and currents in the text) frequently appear in the liter-
ature. Usually, there is no further explanation of what exactly
these free currents and charges are. The authors who write
Maxwell’s equations in this form probably assume that the

terminology is so customary and clear that it does not require
any explanation in a research paper. More often than not, the
lack of definition of Jfree and ρfree is inconsequential since these
quantities are simply not used in any way, or are later assumed
to be zero. In other cases, as in the case of current-driven
homogenization [7–17], the choice of free terms has far-reach-
ing consequences. The problems with this approach have been
discussed by us in detail elsewhere [18,19] and similar argu-
ments (related to the importance of considering finite samples)
have been also made by Vinogradov and Merzlikin [2] and by
Merzlikin and Puzko [20]. Therefore, it would be reasonable to
ask what the exact definition of these terms is. Unfortunately,
standard textbooks are neither clear nor consistent on the sub-
ject. Indeed, consider the following examples:

In Fundamentals of the Theory of Electricity [21], Tamm gives
the following definition:

By free charges we shall mean, first, all the electric charges that
can move over macroscopic distances under the influence of an
electric field (electrons in metal and in a vacuum, ions in gases
and electrolytes, etc.), and, second, charges brought in from out-
side onto the surface of dielectrics and violating their neutrality
(for example, the charges of the intraionic lattice of solid dielec-
trics formed owing to the lack of ions of definite sign in this
section of the dielectric so that the section as a whole is no longer
neutral).

This definition is hardly satisfying. The first sub-category of
free charge, according to Tamm, are the electrons that can par-
ticipate in a steady current, i.e., the conduction-band electrons
in metals. Of course this association is purely microscopic. In
the macroscopic theory, the charge density is continuous and it
is generally impossible to trace a single charge and tell how far it
went “under the influence of an electric field.” Even charge
velocity is undefined in the macroscopic theory. The second
sub-category introduced by Tamm is even more dubious. It
is not really possible to put a label on a charge declaring that
it was (unlike all other similar charges) “brought in from out-
side,” if that history even matters. Besides, how is it possible to
tell which particular charge violates the electric neutrality of a
given dielectric body or some part thereof? Finally, what if the
body is electrically neutral as a whole and also non-conducting?
Does this mean that there are no free charges?

In Electricity and Magnetism [22], Purcell starts with a sim-
ilar idea of free charges and currents in dielectrics being in some
sense foreign or extraneous to a given sample, but makes a
crucial remark:

It is often useful to distinguish between the foreign charge Q
and the charges that make up the dielectric itself. Over the
former we have some degree of control—charge can be added
to or removed from an object, such as the plate of a capacitor.

Here the important point is control. But what does it mean
exactly to exercise some degree of control over charge or cur-
rent? For example, consider a homogeneous macroscopic
sphere irradiated by an incident plane electromagnetic wave.
The problem in this case can be solved analytically and, there-
fore, we can calculate exactly the current and charge distribu-
tions inside the sphere. So, since we can predict these quantities
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theoretically, do we exercise control over them in the just-
described experiment?

Purcell, similarly to Tamm, also labels the conductivity cur-
rent as free. However, in Section 10.14 of Electricity and
Magnetism, he makes another important point, namely, that
it is generally impossible to decompose unambiguously the to-
tal current density J into two contributions Jbound and Jfree (the
current densities of the bound and free charges). To examine
the possibility of such a decomposition, Purcell invokes the no-
tion of “molecular dipoles.” Indeed, if the vector of polarization,
P, is the volume density of these “molecular dipole moments,”
and if this density can be determined unambiguously, then we
can compute the bound current as Jbound � ∂P∕∂t, whereas the
remainder of the total current can be designated as free and
written in the form Jfree � σE. In this case, the two contribu-
tions to the total current can be disentangled on physical
grounds. However, Purcell also notes that the “molecular dipole
moments” are themselves not well-defined quantities, and so
the whole distinction is dubious. The conclusion drawn by
Purcell is the following:

This example teaches us that in the real atomic world the
distinction between bound charge and free charge is more or
less arbitrary, and so, therefore, is the concept of polarization
density P.

If the distinction is indeed arbitrary, why is it introduced
at all?

In this regard, it can be mentioned that the widespread belief
that the vector of polarization, P, is, by definition, the volume
density of the electric dipole moment induced in a sample of a
continuous medium is not generally correct, and that this in-
terpretation of P is not really needed for anything—nothing in
the macroscopic theory depends on it. This was apparently
understood by Purcell, but the fact came to the fore with the
development of the modern density functional theory (DFT)
computational methods (see relevant reviews by Resta and
Vanderbilt [23] and Spaldin [24]); the question was also con-
sidered recently without invocation of any quantum concepts
by the author [25].

Having acknowledged the ambiguity, Purcell has claimed
that, at least in the static limit, the distinction between free
and bound currents makes sense:

There is one rather obvious practical distinction—you can’t have a
steady bound charge current, one that goes on forever unchanged.

However, one can rather trivially write a constitutive relation
for a conducting medium such that the steady current is given
by the term ∂P∕∂t. This point will be discussed in more detail
in Section 7.

We can summarize that the various definitions of free cur-
rents and charges given in the literature are inconsistent and
ambiguous. At the very least, all such definitions appeal to
the microscopic description of matter. This is contradictory be-
cause, in the macroscopic theory, all microscopic notions such
as point charges, charge velocity, etc., disappear from consid-
eration. One can, for example, pose the following question:
I have a piece of material of known shape with a measured
dielectric permittivity of ϵ � −1.6� 14.7i at a working

frequency of ω � 2π × 1014 Hz. I illuminate the sample with
a monochromatic plane wave of that frequency and want to
know which charges and currents induced in that sample
are free and which are bound. According to the various defi-
nitions discussed above, there is no way to tell, unless more
information is given about the microscopic origin of ϵ. But this
additional microscopic information is neither required nor
available in the macroscopic theory. Since this information is
not needed, one can argue that the whole procedure of dis-
criminating the free and bound charges is also not needed, since
it does not lead to any observable physical consequences. This
terminology is simply a legacy of 19th century physics.

However, there is a useful and, in fact, unavoidable distinc-
tion between two different types of charges and currents. We
will call them external and induced. This will be discussed in
detail in Sections 4–6.

3. MICROSCOPIC MAXWELL’S EQUATIONS
AND LAWS OF MOTION

It is useful to start from the first principles, which, for our pur-
poses, is the derivation of macroscopic Maxwell’s equations
from their microscopic counterparts. The microscopic equa-
tions are not subject of any controversy or ambiguity, and
are of the form

∇ × B � 1

c
∂E
∂t

� 4π

c
J, ∇ × E � −

1

c
∂B
∂t

: (1)

Here E � E�r, t� and B � B�r, t� are, respectively, the electric
and magnetic fields, which manifest themselves through the
action of the Lorentz force and are, therefore, physically
measurable quantities [26]. Consider N point charges
qn, n � 1, 2,…,N . The Lorentz force acting on the nth point
charge moving along the classical trajectory rn�t� is

Fn�t� � qnE�rn�t�, t� �
qn
c
_rn�t� × B�rn�t�, t�: (2)

Here _rn�t� � d rn�t�∕d t � vn�t� is the velocity of the nth
particle. The microscopic electric charge and current
densities, ρ � ρ�r, t� and J � J�r, t� in Eq. (1), are defined,
respectively, as

ρ�r, t� �
XN
n�1

qnδ�r − rn�t��, (3a)

J�r, t� �
XN
n�1

qn_rn�t�δ�r − rn�t��: (3b)

Note that the continuity equation

∇ · J�r, t� � ∂ρ�r, t�
∂t

� 0 (4)

follows from Eq. (3) and the two equations ∇ · B � 0
and ∇ · E � 4πρ, in turn, follow from Eqs. (1) and (4). We
can, therefore, view the set of equations (1) and (3) as being
fundamental.

We can also state the relativistic law of motion, viz.,

dpn�t�
d t

� Fn�t�, pn�t� �
mnvn�t�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2n�t�∕c2

p , (5)

where mn is the mass of the nth charge.
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Thus, the self-consistent description of the classical (that is,
relativistic but not quantum-mechanical) system of “point
charges + fields” consists of the equations for the fields (1),
the expression for the current (3b), the expression for the force
acting on each charge (2), and the law of motion (5). Given
appropriate initial conditions, these equations can be solved,
at least, in principle, to describe uniquely the time evolution
of the system. In particular, the trajectories rn�t� and the fields
E�r, t� and B�r, t� can be found in this manner. It can be shown
that these solutions satisfy the conservation of the total energy
E , the total linear momentum P, and the total angular momen-
tum M. It can further be shown that the center of energy R�t�
of the system (which replaces in the relativistic physics the
Newtonian center of mass) satisfies the classical law of motion
E _R�t� � c2P. It is not our goal to derive these conservation
laws here, but we note that they are mathematical consequences
of Eqs. (1)–(5). Of course, the energy and momentum of the
field as well as those of the particles must be accounted for to
obtain the conservation laws. The point here is that, in con-
trast, the same conservation laws cannot be derived in the mac-
roscopic theory without introducing some phenomenological
terms. This observation indicates that the macroscopic theory
cannot be derived from its microscopic counterpart in a com-
pletely straightforward mathematical manner and without
making some phenomenological assumptions. This is discussed
in more detail in Section 5.

4. EXTERNAL AND INDUCED CURRENTS

The physical model described in the previous section is
self-consistent but is often not complete. In many physical sit-
uations, there exist some currents that cannot be included in
the self-consistent dynamics of the system, but are assumed to
be given and known, whether they are controlled by the exper-
imentalist or not. We will call such currents and the fields gen-
erated by them external (to the system under consideration). All
other currents and fields will be induced.

The external currents can be defined by the following two
properties:

• In any particular electromagnetic problem, the external
currents or the fields generated by the external currents (in
the applicable domain) are known a priori, that is, before
solving the problem.

• The external currents or the fields generated by the exter-
nal currents are not influenced in any way by the solution to a
given electromagnetic problem. In other words, the external
currents are independent of the fields. As a consequence,
the external currents do not depend on the type and physical
properties of the system that we want to study.

Whether these currents are directly controlled by the exper-
imentalist is not important. It is also not important whether
these currents are conductivity currents, and, more generally,
what the physical nature of the charges that create these cur-
rents is.

Examples of external currents include the current in the coils
of a particle accelerator, or the current in a transmitting an-
tenna, or the current flowing in the active medium of a laser.
In Fig. 1, we illustrate the concept of external current using the

example of a transmitting antenna. Here the current Jext is cre-
ated, e.g., by connecting the antenna to a generator. However,
we do not care and do not need to know how this current was
created; all that is important for us is that Jext is known and is
not influenced by the currents induced in any of the receiving
antennas (there is no back-action). This condition can be sat-
isfied in practice with extremely high precision. The receiving
antennas are, however, considered self-consistently by solving
Maxwell’s equations. Therefore, the current in the receiving
antennas is induced rather than external. We note that, if we
place several receiving antennas in close proximity to each
other, multiple-scattering effects will play an important role
and the receiving antennas would no longer be isolated from
each other.

It can be seen that the definition of the external current is
not “physical” but, rather, situative. In some problems, the cur-
rent in the transmitting antenna should be defined as external.
In other problems, when we wish to consider the transmitting
antenna itself in more detail, this current should be defined as
induced. Then we still need to define another external current,
perhaps, inside the generator. In fact, if we do not introduce
some external current into the model, the solution to Maxwell’s
equations would be trivial: all currents and fields will be zero.
The ultimate choice, which current is external and which is
induced, depends on the problem we wish to solve and not
on the physical nature of this current. Of course, the currents
in all antennas are, primarily, the conductivity currents, and
they satisfy Ohm’s law J � σE locally. But in some problems
this current is introduced in Maxwell’s equations as external
and in others as induced. For example, it is not possible or prac-
tical to consider the system “transmitting antenna + receiving
antenna” self-consistently. Therefore, the current in the trans-
mitting antenna is in this case external, and in the receiving
antennas it is induced.

The external fields Eext and Bext are defined as solutions to
the microscopic Maxwell’s equations in which Jext serves as the
source:

∇ × Bext �
1

c
∂Eext

∂t
� 4π

c
Jext, ∇ × Eext � −

1

c
∂Bext

∂t
: (6)

extJ

indJ
indJ

indJ
indJ

indJ

Fig. 1. Illustration of the concept of external current. The current
in the transmitting antenna (external) is given and known and is not
influenced by the receiving antennas. The currents in the receiving
antennas (induced) can be computed by solving the appropriate boun-
dary-value electromagnetic problem and depend on the geometry and
physical properties of the receiving antennas.
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In many cases, the exact form of Jext is not known, but the fields
Eext and Bext are known. Moreover, it is often sufficient to know
these fields in some bounded region of space. Note that
Jext�r, t� defines Eext�r, t� and Bext�r, t� uniquely everywhere
in space. Conversely, Eext�r, t� and Bext�r, t� uniquely define
Jext�r, t�, as follows from Eq. (6). However, if Eext�r, t� and
Bext�r, t� are known only in some region of space, say, Ω,
the problem of reconstructing Jext�r, t� is mathematically un-
stable as any problem of analytical continuation. Thus, there
can exist many different external current distributions that pro-
duce almost the same external fields (up to exponentially small
variations) in Ω. In the scattering theory, the external fields are
considered as known and given, whereas the external current is
not considered directly. However, we should keep in mind that
the external fields are always generated by the external current.

We now replace any of the receiving antennas in Fig. 1 with
a microscopic system of point charges qn and decompose the
total current J in Eq. (1) into the external and induced
components according to

J�r, t� � Jext�r, t� � Jind�r, t�: (7)

Here Jind is given by an expression identical to Eq. (3b), except
that now the summation runs only over the charges belonging
to the “receiving antenna” and does not include the charges that
created the external current. Consequently, the sum yields only
the induced current rather than the total current J, viz.,

Jind�r, t� �
X
n∈RA

qn_rn�t�δ�r − rn�t��: (8)

The notation n ∈ RA is a reminder that the summation runs
only over the charges of the “receiving antenna” (a notion that
we will generalize in what follows). The total fields are also
decomposed into the external and induced components,

E�r, t� � Eext�r, t� � Eind�r, t�, (9a)

B�r, t� � Bext�r, t� � Bind�r, t�, (9b)

and the induced fields satisfy

∇ × Bind �
1

c
∂Eind

∂t
� 4π

c
Jind, ∇ × Eind � −

1

c
∂Bind

∂t
: (10)

The force acting on each charge, qn, is now given by

Fn�t� � qn�Eext�rn�t�, t� � Eind�rn�t�, t��
� qn

c
_rn�t��Bext�rn�t�, t� � Bind�rn�t�, t��: (11)

The laws of motion for the nth charge remain the same as
before and are given by Eq. (5).

Let us now assume that Eext�r, t� and Bext�r, t� are known in
a sufficiently large region of space Ω, which can be expected to
contain all the trajectories rn�t�, at least, for some period of
time. Then we have the following self-consistent formulation
of the microscopic problem of “point charges moving in the
external and self-induced fields.” The equations for the induced
fields are (10), where Jind is given by (8); the force acting on
each charge is given now by (11) and the equations of motion
are still given by (5). Note that the conservation laws men-
tioned in Section 3 no longer hold because of the action of
the external fields.

5. FROM MICROSCOPIC TO MACROSCOPIC
MAXWELL’S EQUATIONS

It is widely believed that macroscopic Maxwell’s equations
can be derived by averaging their microscopic counterparts,
e.g., Eq. (10). The averaging operation for a generic field
F �r� is usually defined as

hF�r�i �
Z

S�r 0�F �r� r 0�d3r 0, (12)

where S�r� is a mollifier with the properties
R
S�r�d3r � 1 and

S�r� → 0 when r → ∞ (another possible approach is ensemble
averaging, but it usually involves not the field itself but two-point
and higher-order correlation functions [27]). In what follows,
we will show that this belief is incorrect. Then the macroscopic
equations will be derived from several phenomenological postu-
lates, which are independent of the averaging argument.

We start by noting that, in any realistic material (except,
perhaps, dilute gases), the microscopic fields that fluctuate on
the atomic scale are not known and, therefore, their averaging is
a purely formal procedure: it cannot be used, for example, to
compute the permittivity of the material. DFT simulations can
potentially be applied to this end, but DFT already operates
with continuous densities of charge, at least, for the electrons.
Still, one can argue that, even though the microscopic fields
may not be known, their suitably defined averages can be
shown to obey macroscopic Maxwell’s equations. Indeed, it
is true that the operation of spatial averaging (12) and the deriv-
atives in Eq. (10) commute. However, the commutative prop-
erty is not sufficient to show that macroscopic Maxwell’s
equations are averages of Eq. (10). It is also required that the
microscopic fields be integrable so that the averages in question
actually exist. But this is not the case. For example, it is easy to
see that the electric field of a point charge is not integrable.

To illustrate the above point, consider an electrically neutral
macroscopic sphere made of some spatially uniform dielectric
material. In the absence of any external field, the sphere is not
polarized and the macroscopic induced electric field is zero
everywhere in space. Any correct averaging of the microscopic
electric field must yield the same result. Obviously, the spatial
integral of zero electric field over the entire space is also zero.
We expect to obtain the same global zero result in the micro-
scopic picture as well. Indeed, the exact and averaged functions
must have the same global integrals, unless we have done some-
thing seriously wrong. Let us then integrate the electric field
created by each point charge that makes up the sphere and
add the results. But, as noted above, the electric field of a point
charge is not integrable. We can attempt to regularize the in-
tegral by introducing small-distance and large-distance cut-offs,
or by performing angular integration first and radial integration
second, assuming the charge is at the origin of a reference
frame. Whatever strategy we try, the only reasonable result
of such a regularized integration is zero. This follows immedi-
ately from the isotropy of space. The sum of zeros is zero, and
we see that the two global integrals in the macroscopic and mi-
croscopic pictures are consistent. Now, let us turn on some spa-
tially uniform external electric field so that the sphere gets
polarized and acquires a macroscopic dipole moment dtot,
and then evaluate the two global integrals again. In the
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microscopic picture, the point charges will shift from their
equilibrium positions, but the regularized global integral for
each charge will remain zero. However, in the macroscopic pic-
ture, the global integral of the induced electric field will now be
equal to −�4π∕3�dtot (assuming we use a reference frame whose
origin is the sphere’s center and perform angular integration
first). We thus have come to a contradiction.

It may not be immediately obvious what is going on in this
example. There is, however, no paradox. The discrepancy has
occurred because we manipulated diverging integrals and the
manipulation was not mathematically rigorous. There is, in
fact, no mathematically rigorous method to compute these
integrals: they simply do not exist. Consequently, the macro-
scopic induced field is not the average of its microscopic
counterpart because the latter does not exist.

Finally, consider the following point: even if the microscopic
field could be spatially averaged with some mathematical trick,
the result thus obtained would have no physical significance.
Indeed, the expression for the Lorentz force contains the elec-
tric and magnetic fields at the exact locations of the charged
particles, not some abstract averaged quantities. The particle
trajectories and the microscopic electromagnetic fields are not
statistically independent of each other. The mean-field approxi-
mation is inapplicable to the microscopic electrodynamics of
realistic materials. Then why would anyone be interested in
the averaged field? How can it be measured?

In fact, macroscopic Maxwell’s equations can be derived from
Eq. (10) by making an approximation to the induced current Jind.
This is the only approximation that is involved; the fields E and
B are computed from the resulting equations self-consistently.
Obviously, these fields are also in some sense approximate, but
they are not obtained by averaging of anything. The approxima-
tion for Jind is based on the following three postulates (reproduced
here with small clarifications from Ref. [25]):

1. The medium is a true continuum with piece-wise spa-
tially uniform properties but, possibly, with sharp boundaries or
interfaces where the properties can jump abruptly.

2. The external source excites a continuous density of in-
duced current Jind (possibly with singular contributions at
the surfaces of discontinuity), which is a functional of the fun-
damental electromagnetic fields E and B (total fields, not just
the induced components).

3. The induced current is zero in vacuum.

It can be pointed out that Postulate 1 is certainly an approxi-
mation. Discreteness of matter reveals itself in a variety of
physical phenomena, which include Rayleigh scattering from
random (incoherent) thermal fluctuations in gases and liquids
or from frozen inhomogeneities in solid amorphous media, and
x-ray diffraction in crystal.

Let the functional that maps the fundamental fields E and
B be F �·, ·�, so that Jind�r, t� � F �E�r, t�,B�r, t��. The ques-
tion then arises how to find F �·, ·�. This involves some addi-
tional phenomenological approximations such as linearity,
locality, and causality. These requirements can also be consid-
ered as postulates. For example, there is no a priori reason to
believe that the electric field is the cause and the induced cur-
rent is the effect and not vice versa. However, very extensive

experimental evidence suggests that these postulates are quite
accurate, and investigation of the cases wherein they break down
leads to separate fields of research such as nonlinear optics or the
theory of nonlocality. In the forthcoming discussion, we will con-
sider the above postulates or approximations more carefully.

Linearity implies that F �E1 � E2,B1 � B2� � F �E1,B1� �
F �E2,B2�. Locality is traditionally interpreted as the requirement
that F �·, ·� contain no spatial integrals and no more than the
first-order spatial derivative. Causality implies that Jind�r, t� is
not influenced in any way by E�r, t 0� and B�r, t 0�, where
t 0 > t . An additional requirement follows from symmetry:
Jind is a true vector (unlike the pseudo-vector B) so that its
Cartesian components must change sign under the operation
of coordinate inversion. For simplicity, we add the requirements
that the medium is reciprocal, non-chiral, and non-gyrotropic
(actually, magnetic gyrotropy contradicts the requirement of
linearity). Here we do not discuss possible exceptions to these
requirements as this will lead us to the vast topic of bi-isotropic
and bi-anisotropic media. However, in many natural materials,
all these conditions hold with good precision. Then the most
general form of the functional dependence of the induced cur-
rent on the fundamental fields, which is consistent with the
several assumptions made above, is of the form

Jind�r, t� �
∂P�r, t�

∂t
� c∇ ×M�r, t�, (13)

where

P�r, t� �
Z

∞

0

f̂ e�r, τ�E�r, t − τ�dτ, (14a)

M�r, t� �
Z

∞

0

f̂m�r, τ�B�r, t − τ�dτ: (14b)

Here the influence functions f̂ e�r, τ� and f̂m�r, τ� are symmetric
tensors. In isotropic media, the influence functions are reduced
to scalars so that f̂ e,m � fe,mÎ , where Î is the identity tensor. The
influence functions characterize the macroscopic response of a
medium completely. Collectively, Eqs. (13) and (14) are known
as the constitutive relations.

According to Postulate 1, the functions f̂ e,m�r, τ� are spa-
tially uniform inside a homogeneous material, but can jump
abruptly at boundaries or interfaces. According to Postulate
2, f̂ e�r, τ� is differentiable with respect to τ for all τ > 0,
whereas f̂m�r, τ� is differentiable with respect to r everywhere
except at boundaries and interfaces. According to Postulate 3,
f̂ e�r, τ� � f̂m�r, τ� � P�r, t� � M�r, t� � 0 if r is in vacuum.
In the most typical case of piece-wise homogeneous materials,
f̂ e,m�r, τ� are also piece-wise constant as functions of r and zero
in vacuum. The more exotic case of media whose properties
change smoothly in space can also be accounted for by the
constitutive relations (13) and (14).

Sometimes the term σE�r, t� is added to the right-hand
side in Eq. (13), but we show in Section 7 that it can be ab-
sorbed in ∂P�r, t�∕∂t without loss of generality even in the
static limit.

To derive macroscopic Maxwell’s equations, we add Eqs. (6)
and (10) together and substitute expression (13) for Jind.
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This yields

∇ × �B − 4πM� � 1

c
∂�E� 4πP�

∂t
� 4π

c
Jext, (15a)

∇ × E � −
1

c
∂B
∂t

: (15b)

We then define the auxiliary fields D � E� 4πP and
H � B − 4πM, and arrive at the conventional form of macro-
scopic Maxwell’s equations:

∇ ×H � 1

c
∂D
∂t

� 4π

c
Jext, ∇ × E � −

1

c
∂B
∂t

: (16)

The permittivity and permeability tensors can be defined in the
frequency domain. Let all fields be Fourier-transformable with
respect to time according to the convention

Ẽ�r,ω� �
Z

∞

−∞
E�r, t�eiωtdt, E�r, t� �

Z
∞

−∞
Ẽ�r,ω�e−iωt dω

2π
,

where Ẽ�r, − ω� � Ẽ��r,ω�, and similarly for other fields.
Then Eq. (16) takes the form

∇ × H̃ � −
ω

c
D̃� 4π

c
J̃ext, ∇ × Ẽ � ω

c
B̃, (17)

where

D̃�r,ω�� ϵ̂�r,ω�D̃�r,ω�, H̃�r,ω�� μ̂−1�r,ω�B̃�r,ω�, (18)

and the permittivity and permeability tensors ϵ̂ and μ̂ are
expressed in terms of the influence functions as, respectively,

ϵ̂�r,ω� � Î � 4π

Z
∞

0

f̂ e�r, τ� exp�iωτ�dτ, (19a)

μ̂�r,ω� �
�
Î � 4π

Z
∞

0

f̂m�r, τ� exp�iωτ�dτ
�
−1

: (19b)

A matrix inversion is implied in Eq. (19b). The same expres-
sions can be obtained for truly monochromatic fields oscillat-
ing at the frequency of ω when Fourier transforms, strictly
speaking, do not exist or exist in the sense of generalized
functions.

This completes the derivation of macroscopic Maxwell’s
equations from their microscopic counterparts. One can argue
that there is no real “derivation” involved. The only approxi-
mation or assumption that we have used was that the induced
current Jind in a continuous medium is expressible in terms of
the fundamental fields E and B according to Eqs. (13) and (14),
respectively.

One point that is frequently discussed in conjunction with
expression (13) is its non-uniqueness or ambiguity [1,28]. By
non-uniqueness, the following mathematical property is meant:
let P 0 � P� ∇ × F and M 0 � M − ∂F∕∂t , where F is an arbi-
trary pseudo-vector field. Then we have ∂P∕∂t � c∇ ×M �
∂P 0∕∂t � c∇ ×M 0. Apparently, there are infinitely many pairs
of fields fP,Mg, which, when substituted into Eq. (13), pro-
duce exactly the same induced current Jind. The question that
arises then is how can we determine P and M uniquely for a
given material and how does this non-uniqueness influence the
determination of the medium parameters ϵ̂ and μ̂ .

The answer is rather simple: there is never a need to deter-
mine P and M from a given Jind, and the macroscopic theory
neither requires nor depends on the existence of a one-to-one
correspondence between Jind and the pair fP,Mg. Rather, in
order for the theory to be consistent, one can expect the fol-
lowing property to hold: for every external excitation Jext, there
is a unique solution to macroscopic Maxwell’s equations, in-
cluding the fundamental fields E and B, and the auxiliary fields
D,H, P, andM. This is indeed the case. It is also required that
the influence functions for a given material be determined
uniquely. In other words, two samples of the same shape and
two different sets of parameters ff̂ e , f̂mg and ff̂ 0

e , f̂
0
mg must be

physically distinguishable unless ff̂ e , f̂mg � ff̂ 0
e , f̂

0
mg. In fact,

an even stronger statement can be made: at any fixed frequency
ω, two samples of the same shape and two different sets of
parameters fϵ̂�ω�, μ̂�ω�g and fϵ̂ 0�ω�, μ̂0�ω�g are physically dis-
tinguishable unless fϵ̂�ω�, μ̂�ω�g � fϵ̂ 0�ω�, μ̂ 0�ω�g. Therefore,
the permittivity and permeability of a material are measurable
quantities.

6. PROPERTIES OF THE EXTERNAL CURRENT
AND SOME OF THEIR CONSEQUENCES

If one wishes to solve macroscopic Maxwell’s equations for an
arbitrary sample of continuous medium, then there must be
some external current in the problem; otherwise, the solution
is trivial. As discussed above, it is often sufficient to know the
external field generated by this external current, not the current
itself. However, the external current must exist as a matter of
principle. Moreover, the external current cannot overlap spa-
tially with the sample under consideration and cannot exchange
any electric charge with it.

The above statement is important. Formally, it is possible to
consider a mathematical model in which the external current in
Eq. (16) or in its frequency-domain version (17) is arbitrary and,
in particular, overlaps with the medium. This model can have
a perfectly valid mathematical solution. However, this solution
does not correspond to any physical system. The current inside
any sample of continuous medium in which macroscopic
Maxwell’s equations are solved is by definition the induced
current, and it is not arbitrary but governed by the constitutive
relations. The latter define the medium’s electromagnetic proper-
ties completely. If one allows some other current (not included
in or not satisfying the constitutive relations), then the medium
is effectively modified, it is no longer the same medium as the
one described by the constitutive relations.

We can further conclude that the model of infinite un-
bounded medium can be introduced in the macroscopic theory
only with adequate care. Indeed, the external current must be
supported somewhere. Since it cannot be supported inside the
medium, it must be supported outside of it. This excludes the
possibility of infinite media in the classical electrodynamics.
However, this model is deeply ingrained in the literature
and it is important to understand when its use is justified.

We start by noting that the solution to macroscopic
Maxwell’s equations in some finite sample occupying the
region Ω can be locally (that is, in V ⊂ Ω) well approximated
by a plane wave of the form Re�Aei�k·r−ωt��. On the other hand,
a plane wave is a mathematical solution to homogeneous
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Maxwell’s equations (with Jext � 0) in an infinite medium.
Therefore, one can forget about the boundaries of Ω and sub-
stitute the above plane-wave ansatz into macroscopic Maxwell’s
equations as if the medium is infinite. This will yield the
dispersion relation and polarization modes of the medium, that
is, the polarization vectors Aα and the corresponding dispersion
relations written implicitly as fα�k,ω� � 0 or explicitly as
ωα � fα�k� or k � qα�ω�, etc. Here α labels the plane-wave
modes. The eigen-solutions thus obtained do not physically ex-
ist in the entire space, but can be good local approximations.
Therefore, the model of infinite medium, as used above, is
applicable and convenient, and for this reason it has gained
wide acceptance.

Problems emerge when the model of infinite medium is
used outside of its range of applicability, i.e., in problems that
involve or depend on the medium impedance. Indeed, the
impedance of an infinite medium is physically unobservable.
For example, consider an isotropic infinite medium character-
ized by scalar permittivity and permeability of, respectively,
ϵ�ω� and μ�ω�. The dispersion relation for this medium can
be obtained by using a plane-wave ansatz and is of the form
k2 � �ω∕c�2ϵ�ω�μ�ω�. Note that this dispersion equation
depends on the product of ϵ�ω� and μ�ω� but not on these
functions individually. In other words, the impedance is
unobservable if we exclude the medium boundaries from
consideration.

We have discussed the condition of non-overlap of the ex-
ternal current and the material medium, and the limitations of
the model of infinite media because mathematical models that
transcend these limitations in various ways have been ubiqui-
tous in the recent literature. It is useful, however, to trace some
of the relevant ideas to the theory of electromagnetic nonlocal-
ity (spatial dispersion), which was developed in the 1960s, pri-
marily, in the former USSR. For example, the proposition that
an external current can spatially overlap with a sample of con-
tinuous medium in which macroscopic Maxwell’s equations are
being solved (and which, on top of that, is assumed to be in-
finite), can be traced to the well-known book Crystal Optics
with Spatial Dispersion and Excitons [29] by Agranovich and
Ginzburg (first published in 1965). On pages 24 and 25 of
the cited English translation of the book, Agranovich and
Ginzburg discuss the Fourier-space representation of the tensor
ϵ̂�ω, k� in nonlocal materials, where ω and k are the Fourier
variables reciprocal to t and r, respectively, and it is worth
adducing here the relevant text with only minor omissions
(made for economy of space and displayed as […]):

The variables ω and k on which the tensor ϵ̂�k,ω� depends are,
generally speaking, independent variables. This fact follows from
the definition (�), but sometimes this does not seem to be as
clear as it might be. The point is that in optics we often deal
with the propagation of waves in the absence of external sources
in the medium itself. In this case, the wave vector depends on ω
[…] If, however, k � k�ω�, spatial dispersion may seem to be
equivalent to frequency dispersion. The answer to the question
this poses is in the following. The tensor ϵ̂�k,ω� is introduced
for fields of the general form when the medium contains sources
Jext and ρext […] Under these conditions a field E can be
produced with any independent values of ω and k.

ϵ̂�k,ω� �
Z

∞

0

dτ

Z
d3rei�k·r−ωτ�ϕ̂e�r, τ�, ���

D�r, t� �
Z

t

−∞
dt 0

Z
d3r 0ϕ̂e�r − r 0, t − t 0�E�r 0, t 0�: ����

Here equations to which the quote refers have been written out
using slightly different notations. Note that ϕ̂e�r, τ� is not the
same function as f̂ e�r, τ� in Eq. (14a). In the case of ϕ̂e, r de-
notes a shift of the coordinate, whereas in the case of f̂ e, r is the
position in space. One can say that the more general form of
the influence function f̂ e , which is applicable to the case of a
spatially nonlocal medium, is f̂ nl

e �r, r 0, τ�. In a spatially uni-
form medium, when both arguments r and r 0 are sufficiently
far from its boundaries, f̂ nl

e becomes a function of the shift
r − r 0 so that we can write f̂ nl

e �r, r 0, τ� ≈ ϕ̂e�r − r 0, τ�. In the
case of a strictly local medium, f̂ nl

e �r, r 0, τ� � f̂ e�r, τ�δ�r − r 0�.
The problem with the above quote is that it conflates two

different statements, one of which is correct and the other is
not. The correct statement is that ϵ̂�k,ω� is a well-defined
function of the mathematically independent arguments k
and ω. Indeed, the relation (��) is a valid generalization of
the constitutive relations (14a) to the case of nonlocal media,
as long as point r is sufficiently far from the boundaries of the
media. It is also true that the function ϕ̂e�r, t� can be Fourier-
transformed according to (�). The functions ϕ̂e�r, τ� and
ϵ̂�k,ω� are Fourier images of each other; whatever information
is contained in one of them is also contained in the other. One
can use ϵ̂�k,ω� to find the dispersion relation. Obviously, one
needs to know ϵ̂�k,ω� for all values of its arguments for this
purpose.

The quoted text becomes problematic when it suggests that,
since ϵ̂�k,ω� is a function of its two mathematically indepen-
dent arguments, there must exist physical fields inside the
medium that “probe” any particular combination of k and
ω directly. It is further suggested that, otherwise, nonlocality
is indistinguishable from frequency dispersion. This point is
interesting and deserves discussion. Consider for simplicity
an isotropic non-chiral medium. Then the dispersion relation
takes the form

k2 � �ω∕c�2ϵ⊥�k,ω�, (20)

where the scalar function ϵ⊥ depends on the magnitude of k
but not on its direction. Note that ϵ⊥�k,ω� is often referred to
as the transverse permittivity. It describes the response of the
medium to transverse plane waves. In the nonlocal theory,
the wave number of a plane wave k defines a preferred direction
in space. For this reason, the nonlocal permittivity ϵ̂�k,ω� can
be a tensor with two different “transverse” and “longitudinal”
principal values even in a completely isotropic medium. The
corresponding functions ϵ⊥�k,ω� and ϵk�k,ω� are, however,
scalars and depend only on the magnitude of k but not on
its direction. In the vast majority of natural materials, longi-
tudinal waves are not supported and therefore ϵk does not enter
the dispersion relation. If the medium is not isotropic, then its
description can become much more complicated. For example,
the crystallographic axes can also serve as preferred directions
in space (in monocrystalline solids). Different directions of pro-
pagation in such media are not equivalent. This form of non-
locality can result in dispersion relations and an isofrequency
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surface that cannot be obtained in any purely local
medium [30].

Returning to the discussion of dispersion relations in non-
local media, the solution to Eq. (19) can be written as
k�ω� � �ω∕c�η�ω�, where η�ω� is some function. In this case,
nonlocality is indeed indistinguishable from frequency
dispersion. In particular, the dispersion relation in the nonlocal
medium characterized by some η�ω� is indistinguishable from
that in a purely local medium with ϵ�ω�μ�ω� � η�ω�. The au-
thors of the quoted text above find this fact to be problematic
for the theory. However, there is nothing wrong or surprising in
it. The reason why nonlocality appears to be indistinguishable
from frequency dispersion is that the discussion was limited so
far to infinite media. As soon as one considers an actual prob-
lem with physical boundaries, it would become apparent that
the solutions in the nonlocal sample characterized by some
η�ω� and the local sample with ϵ�ω�μ�ω� � η�ω� are not
the same. In fact, in the latter case the solutions will depend
on ϵ�ω� and μ�ω� separately.

Returning to the question of external currents, we note that
the theory of nonlocality does not depend in any way on the
existence or feasibility of external currents overlapping with the
medium. The nonlocal permittivity tensor ϵ̂�k,ω� can be
computed by Fourier transforming the influence function,
and the latter can be obtained, for example, from some micro-
scopic model, symmetry considerations, or phenomenology. A
method for computing this tensor in photonic crystals that is
completely independent of the external current and does not
require its consideration or introduction, has been described
in Refs. [19,30]. On the other hand, introducing the external
current overlapping with the medium will result in solutions
that can never be excited in the actual sample. These solutions
are perfectly valid mathematically, but they are solutions to a
model that does not describe the physical reality. Potentially,
one can use these solutions to compute the tensor ϵ̂�k,ω�
for arbitrary values of the arguments. This is not a mistake.
However, treating plane waves with arbitrary k and ω as physi-
cal solutions that can exist in the medium, and computing for
them various physical observables (e.g., energy-related quan-
tities that are quadratic in the fields), is, in fact, a mistake.
In the author’s opinion, it is better to avoid confusion and
not introduce external currents that overlap with the medium
at all, as this is not required in any reasonable calculations and
since these currents do not exist in nature. This is especially
important in the theory of homogenization, where the so-called
“current-driven model” has gained popularity in recent years.

7. ZERO FREQUENCY LIMIT AND STEADY
CURRENTS

The last question we wish to address is whether the term σE
must be explicitly included in the expression for the in-
duced current [Eq. (13)] or can always be absorbed in the
term ∂P∕∂t.

First, let us consider the question in the frequency domain.
We still use the Fourier convention (18). Applying this conven-
tion to Eq. (13), we obtain

J̃ind�r,ω� � −iωP̃�r,ω� � c∇ × M̃�r,ω�: (21)

Let the medium be non-magnetic so that M̃ � 0. Recalling the
definitions of the permittivity [Eq. (19a)], we can also rewrite
this expression in the form

J̃ind�r,ω� � −iω
ϵ̂�r,ω� − 1

4π
Ẽ�r,ω�: (22)

Let ϵ̂ inside a homogeneous sample occupying the region Ω be
given by the well-known Drude formula

ϵ̂�r,ω� � Î
�
1 −

ω2
p

ω�ω� iγ�

�
for r ∈ Ω: (23)

Here Î is the unit tensor, ωp is the plasma frequency, and γ is
the relaxation constant. Substituting Eq. (23) into Eq. (22) and
taking the limit ω → 0, we find that

J̃ind�r, 0� �
ω2
p

4πγ
Ẽ�r, 0�: (24)

We see that, in the case of the Drude permittivity, the expres-
sion ∂P∕∂t has a well-defined static limit of the form σE, where
σ � ω2

p∕4πγ, and this limit indeed has the form of Ohm’s law.
The above result may seem counter-intuitive. One might

think that, in the case of a steady current, nothing is changing
inside the material through which the current is flowing, so that
P � const and ∂P∕∂t � 0. For this reason, the belief that the
term σE must be explicitly included in Eq. (13) is rather
widespread. However, it is simply not true that a steady current
implies that P � const.

To illustrate the above point, consider the simple circuit
shown in Fig. 2. Here the electric charge accumulated in
two conducting spheres, �Q�t� and −Q�t�, is slowly discharg-
ing through a resistive wire. The distance between the charged
spheres, Δ�t�, can be changed by some external force of non-
electromagnetic nature. We will initially consider the case when
Δ�t� is fixed and constant, and then relax this condition. For
simplicity, we also assume that the wire is uniform, that is, it is
made of the same material and has a constant cross section. If
the wire’s resistance is sufficiently large, then the current flow-
ing through the circuit would change in time very slowly and,
in some time interval, it can be considered as constant.

Let us now assume that the current density inside the wire
can be written in the form Jind � ∂P∕∂t. We will show that this
does not result in any contradictions. If the above assumption is
true, then the induced charge can be computed from the con-
tinuity equation and is given by ρind � −∇ · P. In particular,
the charge in the spheres is induced: it was accumulated due

( )Q t+ ( )Q t–

( )tΔ
A B

( )I t

Fig. 2. Electric charge stored in two conducting spheres is slowly
discharging through a resistive wire. The two wires connected to
the charged spheres can swing in the plane of the drawing about
the points A and B, thus changing the distance between the spheres,
Δ�t�, arbitrarily.
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to the action of some external current or field in the distant past
and is now slowly discharging through the system in complete
agreement with macroscopic Maxwell’s equations. Then the
total dipole moment of the system is

dtot�t� �
Z
V
P�r, t�d3r, (25)

where V is the spatial region occupied by the wire and spheres.
This is a well-known result; it is valid for all objects that are
electrically neutral as a whole. Therefore, the vector of polari-
zation in the system is nonzero. Let the polarization of the wire
be given by the vector P�l, t� of l-independent amplitude
P�t�, where l is the coordinate along the wire, with l � 0
being the coordinate just at the point where the wire is attached
to the negatively charged sphere and l � L being the coordi-
nate at the point where the wire is attached to the positively
charged sphere, and L is the total length of the wire.
Obviously, the vector of polarization is always oriented along
the wire and points in the direction from the negative charge
toward the positive charge. Therefore, the amplitude of polari-
zation is constant along the wire at any given moment of time,
but the direction can change. Then it is not difficult to find that

dtot�t� � P�t�Δ�t�S: (26)

Here S is the wire’s cross-section area, and this result applies to
any geometry of the wire, even if it can bend out of plane.

On the other hand, the dipole moment of the system can be
computed geometrically and is equal to

dtot�t� � Q�t�Δ�t�: (27)

Comparing Eqs. (26) and (27), we find that

P�t� � Q�t�∕S: (28)

Thus, if the chargeQ�t� changes in time, so does the amplitude
of polarization of the wire, P�t�.

Let us first consider the case when the distance between the
charged spheres is fixed so that Δ�t� � Δ0. Then the current
flowing through the wire is I�t� � _Q�t�, where the prime de-
notes differentiation with respect to time. On the other hand,
the current density in the wire is Jind�l, t� � _P�l, t�. The total
current through any cross section of the wire is given by
I�t� � SJ ind�t�, where J ind�t� is the amplitude of the induced
current density—just like the amplitude of P�l, t�, it is
l-independent. We thus find that

I�t� � SJ ind�t� � S _P�t� � S� _Q�t�∕S� � _Q�t�, (29)

which is in full agreement with the former result. Here we have
used Eq. (28) to replace _P�t� with _Q�t�∕S.

We thus see that the polarization in the wire actually
changes at the same rate as the charge accumulated in the
spheres. Now, if the dependence Q�t� is linear in some time
interval, e.g., Q�t� ≈ Q0-at for t1 < t < t2, then the current
in that interval is constant. We therefore have an example
where the physical state of a given piece of wire does not change
at all, yet its polarization is changing. How is it possible?

The answer is that the vector of polarization is an auxiliary
quantity and it is not defined locally by the physical state of
the material. In particular, P is not the differential density
of dipole moment (if that quantity could even be defined
unambiguously). However, the integral relation (26) between

the total dipole moment of an object and its vector of polari-
zation holds.

One can argue that the current will never be truly constant
in the above scheme because the voltage between the charged
spheres will continuously drop. While this is not a strong argu-
ment (theoretically, the current can change as slowly as one
wishes, although there might be some practical limitations),
we can use some external non-electromagnetic force to change
the distance between the charged spheres, Δ�t�, in such a way
that the voltage drop between the two spheres remains con-
stant. Obviously, the distance must be increased to this end
and some positive mechanical work must be spent. This is,
in fact, the simplest possible realization of a generator: it uses
some outside mechanical work converted to electromagnetic
energy that keeps the current flowing through the wire strictly
constant. Note that allowing Δ�t� to change slowly (so that no
noticeable magnetic field is generated) does not influence any
of the above arguments.

We finally note that the function ϵ̂�r,ω� has a simple pole at
ω � 0 and for all values of r for which the medium is con-
ducting. The residue at that pole defines the conductivity ten-
sor at r, σ̂�r� (up to the numerical factor of 4π ). In the time
domain, the influence function of a conducting medium has a
contribution of the form f̂ e�r, τ� � σ̂�r�Θ�τ�, where Θ�x� is
the unit step function.

8. SUMMARY

In the above sections, we have considered several fundamental
questions of classical electrodynamics. It might be convenient
to summarize some of the key points here.

First, the distinction between free and bound charges (cur-
rents) is the legacy of old physics and is not needed by the
theory. The distinction can be used without making any sub-
stantive errors, but potential for such errors exists, especially
when the concepts are used by beginning physicists. The uti-
lization of these concepts often results in formulas that are
lengthier or look more complicated than what is necessary.
A lack of an unambiguous definition (which we argue cannot
be given) complicates things further. The author argues that the
notions of free and bound charges can be safely abandoned.

Second, the distinction between external and induced
charges (currents) is much more fundamental and is, in fact,
unavoidable. However, the definition of external currents is sit-
uative rather than physical. The same current (say, in a trans-
mitting antenna) can be viewed as external in one problem but
induced in another. Students should develop a solid physical
intuition in this regard.

Third, macroscopic Maxwell’s equations can be derived
from several simple phenomenological postulates, which do
not involve any field averaging. In fact, the field of any collec-
tion of point charges cannot be averaged due to the divergence
of the relevant integrals.

Fourth, as follows from the definition of external current, it
cannot spatially overlap with a material medium in which
macroscopic Maxwell’s equations are considered or solved.

Fifth, as follows from the previous statement, the model
of infinite unbounded medium has serious limitations and
does not allow a complete description of electromagnetic
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phenomena occurring in continuous media. Consideration of
boundaries is important and in many instances unavoidable.
One particular example of a problem in which the considera-
tion of boundaries is crucial is the so-called problem of
homogenization.

Finally, there is no physical or mathematical need to con-
sider the conductivity current σE separately as a “free current.”
In some problems the conductivity current is external, whereas
in other problems it is induced. If the latter is the case, then the
conductivity current can be absorbed in the term ∂P∕∂t even in
the static limit.
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