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We investigate the ability of polarization filtering to improve direct imaging of absorbing objects which are buried
within scattering environments. We extend on previous empirical investigations by exploiting an efficient
perturbation-based formalism, which is applicable to arbitrarily arranged sources and detectors with arbitrary
polarizations. From this approach, we are able in some cases to find certain non-trivial linear combinations of
polarization measurement channels that maximize the object resolution and visibility. © 2017 Optical Society of
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1. INTRODUCTION

Analysis of diffuse, multiply scattered light propagating
through turbid media [1,2] has long been used in optical
tomography to non-invasively retrieve information about
optical properties of interest, such as the three-dimensional dis-
tributions of the absorption and scattering coefficients [3–5].
Neglecting the effects of phase and interference, multiply scat-
tered light can be described by the radiative transport equation
(RTE) or, at a less fundamental level, by the diffusion equation,
which is an approximation to the former. Optical tomography
frequently relies on the diffusion equation (e.g., [6,7]) since
inversion of the RTE is a complicated mathematical task.
There exists, however, a persistent interest in imaging through
turbid media in the mesoscopic scattering regime or beyond the
limitations of the diffusion approximation, which include the
requirement that the scattering be much stronger than absorp-
tion, the requirement of sufficiently large source-detector sep-
arations, and neglect of light polarization. If these conditions
are not met, the diffusion approximation is inapplicable and
the RTE must be used instead.

Many numerical and analytical approaches to solving the
RTE have been explored in the past. The commonly used
numerical methods are based on using discrete ordinates for
the angular variable and discrete difference or finite element
discretization for the spatial variable, or on Monte Carlo sim-
ulations. The advantage of numerical methods is generality and
accurate handling of the medium boundaries while the disad-
vantage is high, often unmanageable computational complex-
ity. Therefore, several analytical methods for solving the
RTE have been developed. Cumulant expansion of the

time-dependent RTE Green’s function was proposed in [8]
for an infinite medium. Later this method was generalized
to account for light polarization [9] and to media with planar
boundaries [10]. In [10], the sensitivity kernel (the weight
function) of linearized optical tomography has also been com-
puted. However, calculation of the cumulant expansion past
second order is rather complicated. In addition, the boundary
conditions used in [10] are appropriate for the diffuse propa-
gation regime but not compatible mathematically with the
more complicated half-range RTE boundary conditions. A dif-
ferent analytical approach based on the method of rotated refer-
ence frames (MRRF) was developed in [11–13]. In the MRRF,
there is no restriction on the order of expansion and the rig-
orous half-range boundary conditions of the RTE are used.
However, the limitation is that the MRRF constructs an expan-
sion in a finite orthonormal basis of functions that are not
square-integrable. This results in numerical instabilities.
Although this problem was rectified in later research [14], it
can be concluded that numerical methods and, in particular,
Monte Carlo simulations retain their significance and utility
in the mesoscopic scattering regime.

In this paper, we utilize a recently developed Monte Carlo-
based method for computing the sensitivity kernels of optical
tomography [15]. With the improvements described in [15],
we can perform such calculations with sufficient efficiency.
The main goal of the simulations reported below is to show
how polarization filtering and computational post-processing
of data can be used to improve the visibility of objects buried
within multiply scattering environments directly, without
solving a complicated inverse problem.
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So far, there have been few studies of polarization filtering
in tomography. Inversion of the RTE has been reported using
both numerical [16–18] and analytical [19] methods. However,
the vast majority of these implementations, and all those
exploiting the diffusion equation, are limited to the use of un-
polarized light and polarization-insensitive measurements. We
note that the standard diffusion equation does not account for
polarization of light. Generalization of the diffusion theory for
polarized light can potentially be considered by computing the
first two angular moments of the vector RTE (vRTE). How-
ever, this approach appears to be problematic due to the very
nature of the diffusion approximation: it assumes that the light
at any given point in space is almost isotropic, yet the spatial
regions where this condition is satisfied also tend to be vacant of
any preferred orientation of linear polarization [20]. There are
additional difficulties related to computing angular moments of
functions involving four-dimensional Stokes vectors, which
must be defined in a special reference frame for each propaga-
tion direction, and a large number of coupled equations that
can be formally derived by this approach. It appears that at-
tempts to use the diffusion theory to describe polarization
would be impractical for all but the circular component of
polarization, which may persist long after isotropization of pho-
ton direction in certain media [21,22]. On the other hand, the
vRTE is sufficiently flexible and contains a description of
polarization that is adequate for the purposes of imaging.

The fact that polarization and the vRTE are rarely exploited
in optical tomography could be thought of as a shortcoming
given that in the context of non-tomographic imaging in turbid
media, it is well established that the use of polarized light can
remove some of the blurring effects of multiple scattering. This
has been demonstrated for imaging through a variety of scat-
tering media, such as fog [23], water [24], and tissues [25].
Crucial for direct imaging is the extraction of ballistic light
and other “short-path” photons from the diffuse background.
Correspondingly, numerous gating techniques have been
proposed in order to extract the non-diffuse photons.

Schmitt et al. [26] showed that short-path photons can be
extracted through subtraction of two orthogonal polarization
measurements. They then demonstrated increased image con-
trast for 1D scanning of absorbing objects. Similarly, Emile et al.
[27] selected polarization-maintaining photons through
polarization modulation and obtained 1D profiles of embedded
objects. Following the same ideas, Mujumdar and Rama-
chandran [28] improved the experimental setup, generating
2D images on a CCD camera without the need to scan.
Demos and Alfano [25] have shown the usefulness of consid-
ering separately the parallel and perpendicular polarization
components of light pulses in backscattering. Silverman and
Strange [29] found an increase in visibility when imaging ob-
jects through a scattering medium composed of latex spheres in
water. They also showed better image contrast with circular
polarization compared to linear polarization. Likewise, Lewis
et al. [30] reported increased target visibility for circular polari-
zation when imaging through polystyrene sphere suspensions.
Ni et al. used time-gating and early-arriving photon detection
to improve the information content in the state of polarization
of light passing through turbid media [31] with the application

to wireless communication through the atmosphere. More
recently, Miller and Dereniak et al. [32] used circular polariza-
tion for imaging through fog. Da Silva et al. used elliptically
polarized light to vary imaging depth [33]. Further, Sridhar
and Da Silva [34] investigated the use of elliptically polarized
channels to increase imaging contrast in tissues.

The above-mentioned works have demonstrated experimen-
tally the deblurring effect of polarization gating. However, far
fewer theoretical investigations of polarization gating have been
performed. In one such study, Tyo [35] has calculated analyti-
cally and numerically the point spread function of linearly
polarized light (at the detector in the transmission geometry).
It was shown that a significant narrowing of the point spread
function was achieved when the difference of the field compo-
nents is considered instead of their sum. Later work by
Moscoso et al. showed similar findings, and also highlighted
the dependence on the type of scattering material [36].

In this work we seek a deeper understanding of the effects of
polarization gating for direct imaging by combining some
elements and mathematical approaches that are used in tomo-
graphic modalities of optical imaging with polarization-gating
techniques that are employed in non-tomographic imaging. In
particular, we utilize the recently developed numerical tech-
nique [15], which allows one to efficiently compute the sensi-
tivity kernel for polarization-resolved optical tomography by
Monte Carlo simulations. This provides insight into the effect
of perturbations at all locations within a medium. We then in-
vestigate various physical polarization gates or linear combina-
tions thereof and find those that result in the strongest
deblurring of images in both transmission and reflection
geometries. We show that the combinations of polarization
measurement channels which maximize the image quality
are at times non-trivial and depend on the type of media
and imaging geometry.

We stress that the scanning-based approach to imaging of
turbid media demonstrated in this study does not require sol-
ution of an ill-posed inverse problem and is in this sense direct.
Yet, while our approach is not tomographic, we make a step
toward defining sensitivity kernels that are the least ill-posed
and, therefore, most conductive for performing tomographic
reconstructions.

The remainder of this paper is organized as follows. In
Section 2 we define the sensitivity kernel for polarization-
selective optical tomography. In Section 3 we consider scanning
of a plane-parallel sample by an axially aligned source-detector
pair in the transmission geometry. Reflection geometry is fur-
ther considered in Section 4. The summary and discussion are
given in Section 5.

2. POLARIZATION-DEPENDENT SENSITIVITY
KERNEL

Consider a slab of scattering material occupying the region
0 < z < L. Inside the medium, the vector specific intensity
I�r; ŝ� � �I ; Q; U ; V � describing the four Stokes components
obeys the stationary vRTE [37]. Here, r is the vector of posi-
tion, ŝ is a unit vector specifying the direction in space, and all
four Stokes components are functions of these two variables,
with dimensionality of power per surface area per unit solid
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angle. Below, we will use calligraphic capital letters to denote
various four-component vectors, such as the Stokes vector of
specific intensity.

Referring to Fig. 1, let a collimated, continuous-wave laser
source described by δ�r − ra�δ�ŝ − ŝa�Sin be incident on the
medium, where Sin is a vector describing an arbitrary polari-
zation state of the source. Note that Sin has the dimensionality
of power. A detector then measures the specific intensity of
light exiting the medium at a different point on the slab surface,
rb, and in the direction of ŝb. We will explore both the trans-
mission and reflection geometries, which are illustrated in
Figs. 1(a) and 1(b), respectively. Further, we may place a polari-
zation filter in front of the detector whose effect on the specific
intensity can be characterized by the projection onto a dimen-
sionless output state vector Sout. If we define this state vector to
have unit magnitude, then the measured signal is the scalar
product 1

2Sout · I�rb; ŝb�.
If the medium is not spatially uniform, the measured signal

will depend on the location and strength of any inhomogene-
ities that are present. We assume that the inhomogeneities are
purely absorbing so that we can write for the scattering and
absorption coefficients of the medium μs�r� � μ̄s and
μa�r� � μ̄a � δμa�r�, where μ̄s and μ̄a are constant back-
ground values of the respective coefficients and δμa�r� is the
absorptive inhomogeneity. We further assume that δμa�r� is

sufficiently small, either in magnitude or in its support, so that
the vRTE can be linearized in δμa. Then, within the accuracy of
the first Born approximation, we have

I�rb; ŝb� � I0�rb; ŝb� −
Z

K �rb; ŝb; ra; ŝa; r�Sinδμa�r�d3r;

(1)

where

K �rb; ŝb; ra; ŝa; r� �
Z

G0�rb; ŝb; r; ŝ�G0�r; ŝ; ra; ŝa�d2s (2)

is the sensitivity kernel of optical tomography [15], a quantity
that is central to imaging. Also, G0�r; ŝ; r 0; ŝ 0� is the 4 × 4
Green’s function for the vRTE in the homogeneous reference
medium with δμa � 0 and, finally, I0 is the specific intensity
in the reference medium. For the latter quantity, we can write

I0�rb; ŝb� � G0�rb; ŝb; ra; ŝa�Sin: (3)

We can now define the 4 × 4 matrix data function Φ by the
relation

ΦSin ≡ I0 − I : (4)

This data function depends on the positions and collimation
directions of the source and detector, that is,
Φ � Φ�rb; ŝb; ra; ŝa�. We then have the following equation
coupling the inhomogeneities of the medium to the data
function:Z

K �rb; ŝb; ra; ŝa; r�δμa�r�d3r � Φ�rb; ŝb; ra; ŝa�; (5)

which is a generalization of the linearized equation of optical
tomography that was derived in [38] for the scalar RTE. The
most obvious difference here is that both K and Φ are now
matrices. While the first element Φ11 has the same interpreta-
tion as in the scalar problem (as the shadow in the measured
intensity created by the absorptive heterogeneities), the remain-
ing elements contain additional information. The scalar
quantity 1

2Sout ·ΦSin is the difference between the physical
measurement channels recorded for the homogeneous and
the perturbed medium. Individually, these channels are positive
scalars for any physically accessible states Sin and Sout, and the
subtraction of two such measurements (resulting in the shadow
1
2Sout ·ΦSin) corresponds to various linear combinations of the
elements of Φ. Note that, while these individual measurements
are positive scalars, the elements of Φ can be positive or neg-
ative [15]. Another substantial difference is that, in the scalar
problem, the diffusion approximation can be introduced in the
appropriate limit, significantly simplifying the computation of
the sensitivity kernel [39]. In contrast, a diffusion limit for
Eq. (5) is not known and there are technical difficulties in de-
riving a diffusion approximation for this quantity. In addition,
we wish to exploit the information contained in the additional
elements of Φ, which are most significant in the sub-diffusion
regime. In this case, K can be computed by solving vRTE for a
given reference medium and Φ (or some linear combination of
its elements) can be obtained by performing several physical
measurements.

In what follows, we use Monte Carlo simulations and the
technique developed in [15] to compute the Green’s function

Scanning source

Aligned detector

Scanning source-detector
pair

Buried absorber
(in x-y plane)

Buried absorber
(in x-y plane)

(a)

(b)

Fig. 1. Geometries of scanned images of buried absorbers. (a) On-
axis transmission geometry with normally aligned source and detector.
(b) Backscattering using a scanning source-detector pair separated by a
distance jrabj in the Y direction. Source is normally incident while the
detector collects light in the direction ŝb.
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G0 and the sensitivity kernel K numerically. We then substi-
tute some “objects,” that is, model functions δμa�r� into Eq. (5)
and compute the dependence of the data function on the
positions of the source and detector. The advantage of this
approach is that, once K is computed for a given medium
and imaging geometry, we can simulate easily any individual
measurement channel or a combination of such channels. In
this way, we can, in some cases, obtain the image of δμa�r�
directly, that is, without inverting Eq. (5). To achieve this re-
sult, we will examine which matrix element of K (or a linear
combination thereof ) is closest to a delta function at the loca-
tion of interest within the medium and, therefore, provides the
sharpest point spread function for imaging. This result, in turn,
informs us of which physical measurement channels and which
post-processing should be used to achieve the greatest
resolution of a buried object at a given location.

3. SCANNING WITH ALIGNED SOURCE AND
DETECTOR IN TRANSMISSION GEOMETRY

In this section, we use Monte Carlo simulations to compute the
sensitivity kernel and the data function in the transmission
geometry for the case when the source and detector are aligned
directly on axis. Referring to Fig. 1(a), a collimated laser light
source is normally incident on the upper surface of the
medium, and a detector is arranged to collect light leaving
the slab on axis to the source at the lower surface. This
source-detector pair is scanned in the XY -plane. Note that
this data collection scheme is not equivalent to wide-front

illumination of the medium and taking a photograph of the
other side. The target is a purely absorbing planar object located
in the mid-plane of the slab. In the simulations, the width of
the target in the Z direction was equal to one voxel used for
accumulating the Monte Carlo statistics. We emphasize that no
depth resolution is obtained or sought in these simulations.

Figures 2(a)–2(d) show the dependence of the data function
Φ on the lateral position �x; y� of the source-detector pair for an
object shaped as the letter “F,” and Figs. 2(e)–2(h) show the
dependence of the matrix kernel K on �x; y� for z � L∕2 with
the source-detector axis being fixed at the center of the field of
view. The two left columns [panels (a), (b), (e), (f )] correspond
to a medium containing Rayleigh scattering particles (the scat-
tering asymmetry parameter is g � 0 in this case) with an op-
tical depth of L � 20l�, where l� � 1∕�μ̄a � �1 − g�μ̄s � is the
transport mean free path. The right two columns [panels (c),
(d), (g), (h)] are for a medium containing large spherical par-
ticles (which we will refer to as “Mie” particles) with highly
forward-peaked scattering characterized by the asymmetry
parameter g � 0.95, and a slab depth of L � 1l�. We note
that the single scattering matrix of such particles can be com-
puted from Mie theory, given their size, and refractive index
relative to the background medium [40]. The Mie particles
in this example have a size parameter ka � 7.15, where k is
the wavenumber in the background material of the slab and
a is the particle radius. Further, the refractive index contrast
is ns∕nb � 1.037, where ns and nb are the sphere and the back-
ground refractive indices, respectively. Note that the physical
thickness of both media is the same and is equal to 20∕μ̄t .
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Fig. 2. Sensitivity to a buried object within a Rayleigh scattering medium of optical depth L � 20l� [first two columns, panels (a),(b),(e),(f )] and
within a Mie scattering medium of optical depth L � 1l� [second two columns, panels (c),(d),(g),(h)]. The physical depth of both media is the same
and equal to 20∕μ̄t . The top row of images [panels (a)–(d)] displays various matrix elements of the data functionΦ obtained by scanning the source-
detector pair in the XY -plane for a buried object shaped as the letter “F.” The second row of images [panels (e)–(h)] shows the corresponding matrix
elements of the sensitivity kernel K within the object plane, at z � L∕2, for a single, centrally located position of the source and detector. All figures
are normalized to their respective kernel element K 11 summed over the entire object plane.
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Here μ̄t � μ̄a � μ̄s is the attenuation coefficient, which is
assumed to be the same in both cases. Additionally, the scatter-
ing albedo is μ̄s∕μ̄t � 0.99 in both media. Thus, the effects of
absorption do not play a significant role in this study. We note,
however, that stronger values of absorption (a smaller albedo)
can result in a similar deblurring effect, as was demonstrated
in [41].

The various images in Fig. 2 correspond to different linear
combinations of the elements of Φ and K , where all such
elements have been normalized to the sum of K 11 over the
entire object plane. The Φ11 element represents the difference
in intensity (the shadow) between the case where the absorber is
present and the case of homogeneous medium, given an unpo-
larized illumination and an unfiltered detection. This yields a
significantly blurred shadow of the absorber in both Rayleigh
and Mie-type media. The linear combination Φ41 �Φ44 rep-
resents the shadow for the measured Stokes component V , and
an incident right-handed circularly polarized source. This signal
is related to photons that have preserved their right-handed hel-
icity and, in agreement with previous studies [26,36], this im-
age is sharper in the case of the Rayleigh medium [panel (b)]
due to the rapid randomization of polarization for the photons
that propagate off axis (particularly, over long optical paths).
This means that this component of polarization filters out
the non-ballistic trajectories. Similar results are obtained for
linear polarizations in the Rayleigh case (not shown here).
For the Mie scattering medium, the elements relating to the
circular-polarized component [panel (d)] appear to be almost
identical to that of the unpolarized case. A similar result was
found in [26] for a medium containing large particles, and
it was explained by the effect of circular polarization memory
[21,22,42,43], which preserves the helicity of incident light
over significant distances in such media, even if propagating
off axis. Thus, for media having intrinsically high scattering
asymmetry, measurements involving the circular component
of polarization alone are not likely to significantly improve
the resolution of buried objects compared to polarization-
insensitive measurements, unless the medium contains particles
that can destroy circular polarization memory while maintain-
ing a high asymmetry [44].

The data in Figs. 2(a)–2(d) are presented in a fashion similar
to the earlier investigations mentioned above, where shadows of
buried objects are observed with various polarization filters.
However, due to the way in which we have formulated the
problem, we can gain further insight by investigating what
is happening within the medium. In Figs. 2(e)–2(h), we display
the elements of the sensitivity kernel, K , computed in the ob-
ject plane, that is, at z � L∕2, for a fixed source-detector pair
positioned in the center of the field of view. These functions
were used to produce the shadows of the absorber presented
in Figs. 2(a)–2(d), where they are convoluted with the buried
object during the scanning process to provide the images we
have just discussed. Thus, the closer to a delta function the
dependence of these kernel elements on �x; y� is within the
object plane, the sharper the shadow of an absorber will be
at the detector. For the Rayleigh case, it can be seen that, while
the unpolarized element K 11 is quite broad, the circular
component K 41 � K 44 is much more localized near the axis

of the source-detector pair [panels (e) and (f )]. In the Mie
case, the unpolarized and the circularly polarized kernel
elements are equally broad [panels (g) and (h)]. While this re-
sult is not unexpected [26,36], our ability to efficiently
compute the sensitivity kernel elements at the object location
will provide valuable insight into how different linear combi-
nations of polarization measurements can better resolve the
embedded absorber, as we will see throughout the remainder
of this paper.

In the next demonstration shown in Fig. 3, we consider the
same Mie-scattering medium as above, but use various linear
polarization filters. As in the previous example, the upper
row of Fig. 3 shows the matrix elements of Φ measured for
a buried object shaped as the letter “F,” and the lower row
shows the corresponding elements of K in the object plane
at z � L∕2. Note that the two figures for the unpolarized case
[panels (a) and (e)] are identical to the previous Mie example,
and are repeated here for direct comparison. The matrix
elements related to linear polarization channels are shown in
panels (b) and (c) for Φ and in panels (f ) and (g) for K . Here
we display the linear combinations Φ21 �Φ22 and Φ21 −Φ22

and the corresponding combinations for K , which are rel-
evant to imaging with the Stokes Q component. For example,
a measurement with the incident beam linearly polarized along
the X -axis and a linear filter in front of the detector which is
fully transmissive to X -polarized light will yield the combina-
tion 1

2 �Φ11 �Φ12 �Φ21 �Φ22� (linear co-polarized channel).
If the detector is rotated to be fully transmissive to Y -polarized
light, the measurement will yield 1

2 �Φ11 �Φ12 −Φ21 −Φ22�
(linear cross-polarized channel). Subtraction of these two chan-
nels results in the shadow of the Q component of the Stokes
vector for X -polarized input, Φ21 �Φ22. Performing a similar
set of measurements, but with the incident Y -polarized light
yields the combination Φ21 −Φ22. Now, looking at the images
in panels (b) and (c), we see that these are blurred in an asym-
metric fashion, which mirrors the asymmetry in the corre-
sponding images in panels (f ) and (g). However, when the
latter two images are summed together, resulting in the image
shown in panel (d), the asymmetry is reduced and the object
becomes more visible. This is due to the increase in sharpness of
the resulting kernel element K 21, as can be seen in panel (h).
The lower magnitude azimuthal features of K 21 can be seen to
produce some artifacts in panel (d), yet the outline of the target
is still clearly visible. To obtain the image in panel (d) physi-
cally, we must perform the measurement of the Stokes compo-
nent Q when the incident light is linearly polarized in the X
direction (involving two physical measurements), perform a
separate measurement for incident linear polarization along
Y (involving two physical measurements), and sum the two
images together. Thus, although this imaging modality does
require multiple measurements and some post-processing of
data, it can still be considered direct, as it does not involve sol-
ution of an ill-posed inverse problem.With this demonstration,
it becomes clear that if we can find some linear combination of
kernel elements that produce a sharp point spread function in
the object plane, we can improve the sharpness of the corre-
sponding linear combination of the data matrix elements.
As a consequence, the visibility of the buried object is then
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improved. We will see more examples of this in the backscat-
tering geometry in the next section.

One should keep in mind that the use of polarizing elements
results in signals of relatively lower intensity as compared to
unpolarized analysis. To elaborate on the feasibility of the vari-
ous imaging channels discussed above, we have computed the
ratio ρ � �K 21 � K 22�∕K 11 for slabs of various thickness L.
The quantity ρ, similar to a degree of polarization, but of
the shadow of an inhomogeneity, is computed in the central
pixel (on the source-detector axis) and in the mid-plane of
the slab, z � L∕2. The dependence of ρ on the slab width
L is shown in Fig. 4. As expected, ρ decreases rapidly with
L. If we consider the ratio ρ � 0.01 as the limit of detectability
of the signal (which assumes we can observe a shadow 2 orders

of magnitude lower than the unpolarized shadow), then the
total slab thickness after which the use of linear polarization
filters is no longer possible is ∼l� for this Mie medium (with
g � 0.95) in the transmission geometry.

4. SCANNING IN THE BACKSCATTERING
GEOMETRY

In this section we investigate the sensitivity to buried objects as
measured by a scanning source-detector pair in the backscatter-
ing configuration. This geometry is of particular interest in ap-
plications involving biomedical imaging, as it is most suitable
for non-invasive monitoring of superficial layers of soft tissues.
Referring to Fig. 1(b), a collimated source is normally incident
on the medium surface and a collimated detector is arranged to
collect light exiting at some distance from the source and in the
direction ŝb. This arrangement is held fixed while the source-
detector pair is scanned across the medium surface. In this ex-
ample, we consider a medium with similar properties to that of
Intralipid, which is a common phantom material used to
approximate scattering in biological tissues. The medium used
in the simulation consists of a polydispersion of spheres with an
exponential distribution in size and the refractive index contrast
ns∕nb � 1.11. The resulting scattering asymmetry parameter
of this medium is g � 0.75 at the wavelength λ � 633 nm,
which is in agreement with previously measured Intralipid
properties [45]. Additionally, the scattering albedo was set to
μ̄s∕μ̄t � 0.99, the same as in the transmission geometry.

We first display in Fig. 5 the sensitivity kernel elements in
the object plane (at z � L∕2) for the detection angle of θ �
10° to the normal, a source-detector separation of 0.32l�, and a
total slab thickness of L � 3.6l�. In this configuration, the axis
of the incident source and the axis of the detector intersect in
the object plane at z � 1.8l�. This arrangement is chosen to
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maximize the effect of a perturbation on the single scattering
contribution at the detector. If, instead, the axes are not over-
lapping at the object location, the scanning process will result in
two copies of the buried object (with a spacing directly relating
to the source-detector misalignment in the object plane) or, for
deeper objects, the result is a significant increase in blurring,
with the features of the object being elongated in the direction
of the source-detector separation.

In Fig. 5, various sensitivity kernel elements are plotted as
functions of the coordinate y for x � 0 and z � L∕2. We dis-
play the elements in this case as one-dimensional scans so that
we can see small details in the functions more clearly. The K 11

element, corresponding to unpolarized illumination and detec-
tion, can be seen to have the most broad distribution, as was
also the case in the transmission geometry. A central peak can
still be observed at the point where the source and detector
intersect. This is due to single scattering, which dominates
for sufficiently shallow locations (given that the detector con-
ditions allow it), as can be shown analytically [46]. The central
peak of the K 41 � K 44 kernel elements, corresponding to the
Stokes V -component and incident right-handed circularly po-
larized light, is seen to be negative. This is expected because
single scattering at a large scattering angle (170° in this case)
results in a flip of helicity for this particular medium. All such
elements relating to polarized contributions can also be seen to
have significantly sharper peaks than the unpolarized K 11

element, suggesting the effective gating of single-scattered pho-
tons. These other elements, however, still exhibit some broad,
low-magnitude tails, which are due to multiply scattered pho-
tons. The tails naturally tend to blur the image recorded by
scanning the source-detector pair. Therefore, we wish to find
some linear combination of these curves that corresponds to the
central peak being as close to a delta function as possible. We
were able to find that, for this medium, the linear combination
2K 22 � 2K 33 � 8.5�K 41 � K 44� (shown by the solid red line
in the figure) can achieve just that.

To verify that the corresponding combination of the ele-
ments of Φ increases the resolution of a buried object, we com-
pare the corresponding matrix data elements to other linear
combinations. In Fig. 6, we show these various data matrix el-
ements for a buried object, this time in the shape of a cross.
Here we see in panel (b) that the Φ11 element, relating to
polarization-insensitive imaging, is again the most blurred case.
Panels (c)–(f ), relating to various linear polarization channels,
show a small improvement relative to the unpolarized case,
yet each exhibits a noticeable asymmetry, which can skew
the interpretation of the target. Panel (f ), which results from
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circular polarization channels, shows a higher symmetry
and a somewhat improved level of visibility of the object.
However, as predicted, the case with the greatest visibility
of the buried absorber is that of the combination
2Φ22 � 2Φ33 � 8.5�Φ41 �Φ44�, which is shown in panel
(h). In addition to a sharp peak in the object plane, the cor-
responding linear combination of sensitivity kernel elements
also results in a highly symmetric point spread function in
the object plane. To physically attain the linear combination
shown in panel (h), a series of 10 different measurements must
be performed (for both the background medium and the
medium containing the target). However, to put this in more
simple terms, the image in panel (h) is simply obtained by com-
bining the images in other panels according to the rule (c)−(d)
+(e)−(f )+8.5(g). We found that, for the considered medium
type and the detection angle of 10°, this linear combination
of the Φ components was the most effective for a range of slab
thicknesses, where the example shown with L � 3.6l� was to-
ward the upper limit for which a clear direct image of the object
was still visible.

5. SUMMARY AND DISCUSSION

In this work, we have used the efficient numerical tools recently
developed in [15] to demonstrate the potential of polarization
filtering in the context of imaging through turbid media.

While not all of the results shown are surprising (e.g., using
circular or linear polarization in transmission through Rayleigh-
type media [26,36]), we have gone a step further than simply
using polarized light for illumination and polarization filters for
detection. First, our simulations involve a collimated source-
detector pair scanned over the surface of a plane-parallel
medium either in the transmission geometry (on axis) or in
the reflection geometry. Second, to achieve the best images,
we analyze the sensitivity kernel, K , within the medium, at
the location of the buried object. This informs us on which
post-processing of the scan data recorded via several physical
measurement channels is required. For example, to achieve
the result shown in Fig. 6(h), 10 separate scans should be per-
formed for both the background (reference) medium and the
medium containing the target.

The task of determining the optimal combination of the
physical measurement channels is non-trivial and the simula-
tion technique developed in [15] can help seeking such combi-
nations. One important result is that the choice of the optimal
combinations depends strongly on the types of medium and on
the imaging geometry. In the transmission geometry, with on-
axis imaging of media containing optically large particles char-
acterized by forward-peaked Mie scattering, the use of linear
polarization filters is optimal. We have found that the best lin-
ear combination of channels is achieved by measuring the dif-
ference in intensity between cross-polarized and co-polarized
channels (Stokes Q component). In other words, we first
illuminate the medium by an X -polarized beam and perform
two scans with X - and Y -polarized linear filters at the detector.
Then the same two scans are repeated for the Y -polarized
incident beam, requiring four separate scans in total. We
emphasize that the data recorded in these four scans are
not redundant, as is clearly demonstrated by comparing

Figs. 3(b) and 3(c). In the case of backreflection geometry
for an Intralipid-like medium, discussed in Section 4, we found
that 10 independent scans involving linear and circular polari-
zation filters are required to achieve the optimal result.

With reference to media containing optically small Rayleigh
scatterers, these are in some sense easier to image with polari-
zation gating, especially in the transmission geometry, due to
the rapid polarization randomization of non-ballistic photons.
Our results indicate that polarization gating can be useful in
such media up to the depth of ∼20l�. In this case, obtaining
depth resolution is also feasible by varying the angles of inci-
dence and detection. Additionally, the problem of backscatter-
ing in such media is similar to the problem of inverting the
broken-ray transform [46]. What is achieved by polarization
gating is the increased precision of the broken-ray transform
description, which relies on detection of singly scattered light.
Inversion of the broken-ray transform is possible if many scans
are performed with different source-detector separations, so
that some depth resolution can be achieved.

In summary, by manipulating the contribution of the vari-
ous sensitivity kernel elements in the object plane via simple
linear combinations, we can find the optimal set of physical
measurements and post-processing of the recorded data that
will result in the clearest image of the buried absorber. This
technique offers a more rational approach toward customizing
a polarization-filtering scheme for a given medium and imaging
geometry than simply trialling large numbers of physical mea-
surements with no information as to the effect this can have on
the resulting images.
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