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Inverse problem in optical diffusion tomography.
IV. Nonlinear inversion formulas
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We continue our study of the inverse scattering problem for diffuse light. In contrast to our earlier work, in
which we considered the linear inverse problem, we now consider the nonlinear problem. We obtain a solution
to this problem in the form of a functional series expansion. The first term in this expansion is the pseudo-
inverse of the linearized forward-scattering operator and leads to the linear inversion formulas that we have
reported previously. The higher-order terms represent nonlinear corrections to this result. We illustrate our
results with computer simulations in model systems. © 2003 Optical Society of America
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1. INTRODUCTION
This paper is the fourth in a series devoted to the inverse
scattering problem (ISP), which arises in the context of to-
mographic imaging with diffuse light. In Papers I–III of
the series,1–3 we developed the scattering theory of diffus-
ing waves in inhomogeneous media, established condi-
tions under which the existence and the uniqueness of so-
lutions to the linearized inverse problem are guaranteed,
constructed the singular-value decomposition (SVD) of
the forward-scattering operator under conditions of weak
scattering, and used these results to obtain explicit inver-
sion formulas for the case of the linearized ISP. The pur-
pose of this paper is to extend these results to the nonlin-
ear case.

We begin by recalling the relevant mathematical for-
malism from Papers I–III. We assume that the energy
density u(r, t) of diffuse light in an inhomogeneous me-
dium obeys the diffusion equation

]u~r, t !

]t
5 ¹ • @D~r!¹u~r, t !# 2 a~r!u~r, t ! 1 S~r, t !,

(1)

where a(r) and D(r) are the position-dependent absorp-
tion and diffusion coefficients and S(r, t) is the power
density of the source. We further assume that the source
is harmonically modulated with angular frequency v. In
addition to Eq. (1), the energy density must satisfy bound-
ary conditions on the surface of the medium (or at infinity
in the case of free boundaries) of the general form

u 1 ln̂ • ¹u 5 0, (2)
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where l is the extrapolation length4 and n̂ is an outward-
pointing normal. Note that we obtain purely absorbing
boundaries when l 5 0 and purely reflecting boundaries
when l → `.

As shown in Papers I and II, the Green’s function
G(r1 , r2) for the frequency-domain diffusion equation
obeys the integral equation

G~r1 , r2! 5 G0~r1 , r2! 2 E d3rG0~r1 , r!V~r!G~r, r2!,

(3)

where G0 is the Green’s function for a homogeneous me-
dium with absorption a0 and diffusion constant D0 . We
have also introduced the notation

V~r! [ da~r! 2 ¹•dD~r!¹, (4)

where da(r) 5 a(r) 2 a0 and dD(r) 5 D(r) 2 D0 . The
unperturbed Green’s function G0(r, r8) obeys the bound-
ary condition (2) and satisfies

~¹2 2 k2!G0~r, r8! 5 2
1

D0
d ~r 2 r8!, (5)

where the diffuse wave number k is given by

k2 5
a0 2 iv

D0
. (6)

The Green’s function may be directly related to the in-
tensity measured by a point detector when the medium is
illuminated by a point source. It can be shown that the
change in the intensity of transmitted light (at the modu-
lation frequency v) due to spatial fluctuations in a(r) and
D(r) is given by the integral equation2
2003 Optical Society of America
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f~r1 , r2! 5 bE G0~r1 , r!V~r!G~r, r2!d3r. (7)

Here the data function f(r1 , r2) is proportional to the
change in intensity relative to a reference medium with
absorption a0 and diffusion constant D0 , r1 and r2 denote
the coordinates of the source and the detector, and

b 5 H 1 for free boundaries

~1 1 ,* /, !2 for boundary conditions

of the type ~2 !

(8)

with ,* 5 3D0 /c.
The forward problem in diffusion tomography is de-

fined as the problem of computing the data function f
from the scattering potential h 5 (da, dD). More pre-
cisely, the integral equation (7) may be regarded as defin-
ing a nonlinear operator K from the Hilbert space of scat-
tering potentials, H1 , into the Hilbert space of scattering
data, H2 . The fact that K is nonlinear may be under-
stood by examining the perturbation expansion for f in
powers of V. Using the series expansion for the Green’s
function G, which can be obtained by iterating the inte-
gral equation (3), and the definition of the data function
(7), we obtain the required expansion:

f~r1 , r2! 5 bE d3rG0~r1 , r!V~r!G0~r, r2!

2 bE d3rd3r8G0~r1 , r!V~r!G0~r, r8!

3 V~r8!G0~r8, r2! 1 ¯ . (9)

If only the first term in the series is retained, we refer to
this as the weak-scattering approximation.

The inverse problem in diffusion tomography consists
in recovering h from measurements of f. The standard
numerical approach to this nonlinear problem is to em-
ploy a functional Newton’s method.5 This results in an
iterative algorithm of the form

hn11 5 hn 1 Mn
1~f 2 K@hn# !, n 5 1, 2,..., (10)

where Mn
1 denotes the pseudoinverse of the functional de-

rivative

Mn 5
dK

dh
U

h5hn

. (11)

The Newton–Kantorovich method is a variant of New-
ton’s method in which the functional derivative Mn

1 is re-
placed by M1

1 for all n. In general, this leads to an algo-
rithm with slower convergence than Newton’s method.
However, the Newton–Kantorovich method is of interest,
since it is possible to obtain an analytic expression for M1

1

when h1 [ 0.
In this paper we consider an alternative to the use of

Newton’s method. In particular, we construct a formally
exact analytic solution to the nonlinear ISP. This solu-
tion, which we refer to as the inverse scattering series,
has the form of a functional series expansion for h in pow-
ers of the data function f. The first term in the expan-
sion corresponds to the pseudoinverse solution to the lin-
earized inverse problem. The higher-order terms may be
interpreted as nonlinear corrections to the SVD inversion
formulas reported in Paper III. We will also show that
summing the inverse scattering series to all orders is
equivalent to solving the ISP by the Newton–Kantorovich
method.

Series solutions to several nonlinear ISPs have been re-
ported in the literature. These include quantum-
mechanical and acoustic inverse backscattering6,7 and
nonlinear travel-time tomography.8,9 The formal inver-
sion of functional expansions such as the Volterra series is
also well-known in nonlinear control theory. It is impor-
tant to note that although the algebraic structure of the
inverse scattering series in diffusion tomography is simi-
lar to that in quantum mechanics or acoustics, its analytic
structure is quite different. This reflects the underlying
physical difference between the short-range propagation
of diffusing waves in diffusion tomography and the long-
range propagation of waves in quantum mechanics or
acoustics.

The remainder of this paper is organized as follows. In
Section 2 we derive the inverse scattering series for diffu-
sion tomography in its most general form, independent of
geometry and the type of boundary conditions. In Sec-
tion 3 we consider the inverse problem in the biplanar ge-
ometry. Finally, Section 4 describes numerical results for
the nonlinear reconstruction of a spherical inhomogeneity
in the biplanar geometry. Two appendixes present some
mathematical properties of the inverse scattering series
and the derivation of the data function for a spherical in-
homogeneity in the biplanar geometry with free bound-
aries.

2. INVERSE PROBLEM
In this section we present the construction of the inverse
scattering series for diffusion tomography. We then de-
scribe the connection to the Newton–Kantorovich
method.

A. Inverse Scattering Series
The scattering series (9) can be rewritten in the form

f~r1 , r2! 5 E d3rK1
i ~r1 , r2 ; r!h i~r! 1 E d3rd3r8

3 K2
ij~r1 , r2 ; r, r8!h i~r!h j~r8! 1 ¯,

(12)

where

h~r! 5 S h1~r!

h2~r! D 5 S da~r!

dD~r! D , (13)

the action of the operator V has been taken into account,
and summation over repeated indices is implied with i, j
5 1, 2. The components of the operators K1 and K2 are
given by

K1
1~r1 , r2 ; r! 5 bG0~r1 , r!G0~r, r2!, (14)

K1
2~r1 , r2 ; r! 5 b¹rG0~r1 , r! • ¹rG0~r, r2!, (15)

K2
11~r1 , r2 ; r, r8! 5 2bG0~r1 , r!G0~r,r8!G0~r8, r2!,

(16)
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K2
12~r1 , r2 ; r, r8!

5 2bG0~r1 ,r!¹r8G0~r, r8!• ¹r8G0~r8, r2!, (17)

K2
21~r1 , r2 ; r, r8!

5 2b¹rG0~r1 , r!• ¹rG0~r, r8!G0~r8, r2!, (18)

K2
22~r1 , r2 ; r, r8!

5 2b¹rG0~r1 , r! • ¹r@¹r8G0~r, r8!• ¹r8G0~r8, r2!#. (19)

The components of Kn are given by

Kn
i1 ... in~r1 , r2 ; R1 ,..., Rn!

5 ~21 !n11b (
a1 ,...,an

] i121G0~r1 , R1!

]R1a1

i121

] i11i222G0~R1 , R2!

]R1a1

i121
]R2a2

i221

3 ¯ 3
] in21 1 in22G0~Rn21 , Rn!

]Rn21,an21

in2121
]Rnan

in21

] in21G0~Rn , r2!

]Rnan

in21 ,

(20)

where a1 ,...,an label Cartesian components of the vectors
R1 ,...,Rn and no summation should be performed over in-
dices that are not explicitly present in the sum (i.e., for
ik 5 1).

Observe that Eq. (12) is a functional power-series ex-
pansion, each term of which is multilinear in h. Thus we
can expand f in tensor powers of h:

f 5 K1h 1 K2h ^ h 1 ¯ . (21)

Here K1 is a linear operator that maps the Hilbert space
H1 into the Hilbert space H2 , and K2 may be interpreted
as a tensor operator that maps H1 ^ H1 into H2 . Equa-
tions (9) and (21) are analogous to the Born series in
quantum scattering theory. Alternative perturbation ex-
pansions such as the Rytov series may also be considered.

If the spatial fluctuations in a and D are sufficiently
small, the series (21) may be truncated after its first term.
This results in an effective linearization of the forward-
scattering problem with f 5 K1h. The corresponding
linear ISP has the solution h 5 K1

1f, where K1
1 denotes

the pseudoinverse of K1 . To construct the solution to the
nonlinear ISP, we act on Eq. (21) with the pseudoinverse
operator K1

1 and use the identity K1
1K1 5 IH1

. We thus
obtain

h 5 K1
1f 2 K1

1K2h ^ h 1 ¯ . (22)

Next, by iterating this result, we find that

h 5 K1
1f 2 K1

1K2K1
1

^ K1
1f ^ f 1 ¯, (23)

which is a functional expansion for h in tensor powers of
f. We will refer to Eq. (23) as the inverse scattering se-
ries for diffusion tomography.

Several comments on the above result are necessary.
First, Eq. (23) provides a formally exact solution to the in-
verse problem in diffusion tomography. It may be viewed
as a nonlinear inversion formula whose first term coin-
cides with the pseudoinverse solution to the linearized
ISP. The higher-order terms represent systematically
improvable nonlinear corrections, which, in principle, can
be computed to arbitrarily high order. Thus it is neces-
sary only to solve the linear ISP in order to formally solve
the nonlinear ISP. Second, Eq. (23) may also be obtained
by formal inversion of the functional power series (9).
This results in an explicit formula for the coefficient Kn of
the nth term in Eq. (23):

Kn 5 2S (
p51

n21

Kp (
i11¯1ip5n

Ki1
^ ¯ ^ KipDK1 ^ ¯ ^ K1 ,

(24)

where K1 5 K1
1 (see Appendix A). Third, it may be seen

that the coefficients of all the higher-order terms in Eq.
(23) have K1

1 as a prefactor. As a result, to any finite or-
der, the spatial resolution of images reconstructed by us-
ing the nonlinear theory can never exceed the resolution
of images reconstructed by linear means alone. Fourth,
the short-range propagation of diffusing waves implies
that the forward-scattering problem in diffusion tomogra-
phy is weakly nonlinear. This is precisely the condition
under which the inverse scattering series may be ex-
pected to exhibit fast convergence. Note that a detailed
analysis of the convergence of the inverse scattering se-
ries is beyond the scope of this paper. Finally, the ap-
proach to the ISP based on Eq. (23) differs from Newton-
type methods. This follows from the fact that such
methods require the forward problem to be solved for each
iteration.

B. Relation to Newton’s Method
We will now show that summing the inverse scattering
series to all orders is equivalent to the Newton–
Kantorovich method. To see this, we rearrange Eq. (22)
as follows:

h 5 K1
1~f 2 K2h ^ h 1 ¯ ! (25)

5 K1
1$f 2 ~K@h# 2 K1h!% (26)

5 h 1 K1
1~f 2 K@h#! (27)

[ T@h#, (28)

where in Eq. (26) we have used the functional expansion
for the forward-scattering operator K. Equation (28) im-
plies that the ISP may be reduced to the problem of find-
ing the fixed point of the nonlinear transformation T.
The fixed point may be obtained by iteration of hn11
5 T@hn#, or, more explicitly,

hn11 5 hn1K1
1~f 2 K@hn# !, n 5 1, 2,... . (29)

Equation (29) coincides with the Newton–Kantorovich
method if the functional derivative M1 5 K1 . Evidently,
this condition is obeyed if the initial condition in the
Newton’s-method iteration (10) is chosen to be h1 [ 0,
that is, if the initial condition corresponds to a homoge-
neous medium.

3. NONLINEAR INVERSION IN THE
PLANAR GEOMETRY
The inverse scattering series was developed in a form
that is independent of geometry. We now specialize to
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the case of the planar geometry. Other cases including
the cylindrical and spherical geometries may also be con-
sidered.

A. Inversion Formulas
In the planar geometry measurements are taken on two
parallel planes. Sources are taken to be located on the
z 5 0 plane, and detectors on the plane z 5 L. The me-
dium to be imaged lies between the planes in the region
0 , z , L. In this geometry the unperturbed Green’s
function is given by the plane-wave decomposition

G0~r, r8! 5 E d2q

~2p!2 g~q; z, z8!exp@iq • ~r 2 r8!#,

(30)

where we have used the notation r 5 (r, z). In the case
of free boundaries, the function g(q; z, z8) is given by1

g~q; z, z8! 5
exp@2Q~q!uz 2 z8u#

2Q~q!D0
, (31)

and in the case of boundary conditions of the type (2) by2
g~q; z, z8! 5
l

D0

sinh@Q~q!~L 2 uz 2 z8u!# 1 Q~q!l cosh@Q~q!~L 2 uz 2 z8u!#

sinh@Q~q!L# 1 2Q~q!l cosh@Q~q!L# 1 @Q~q!l#2 sinh@Q~q!L#
, (32)
where

Q~q! [ ~q2 1 k2!1/2 (33)

and we have assumed that either r or r8 lies on one of the
measurement planes.

We will find it advantageous to rewrite the inverse
scattering series (23) in the form

h 5 h~1 ! 1 h~2 ! 1 ¯, (34)

h~1 ! 5 K1
1f, (35)

h~2 ! 5 2K1
1K2h~1 !

^ h~1 !, (36)

where h (1) is the solution to the linearized ISP and h (2) is
the first nonlinear correction. In the planar geometry,
since the measurement planes have translational symme-
try, it is natural to express Eqs. (35) and (36) in the Fou-
rier basis of two-dimensional plane waves. In this repre-
sentation Eqs. (35) and (36) become

h~1 !~r! 5 E d2q1d2q2K1
1~r; q1 , q2!f~q1 , q2!, (37)

h~2 !~r! 5 E d2q1d2q2E d3r8d3r9K1
1~r; q1 , q2!

3 K2~q1 , q2 ; r8, r9!h~1 !~r8!h~1 !~r9!. (38)

Here

f~q1 , q2! 5 E d2r1d2r2 exp@i~q1 • r1 1 q2 • r2!#

3 f~r1 , z1 , r2 , z2!, (39)
K~q1 , q2 ; •! 5 E d2r1d2r2 exp@i~q1 • r1 1 q2 • r2!#

3 K~r1 , z1 , r2 , z2 ; •!. (40)

Note that according to Eqs. (37) and (38), once
K1

1(r; q1 , q2) is determined, the inverse problem is
solved in principle.

B. Singular-Value Decomposition of K1
1

The SVD of the pseudoinverse operator K1
1 is given by

K1
1~r; q1 , q2! 5 E 1

s
fs~r!gs* ~q1 , q2!ds, (41)

where s is the singular value associated with the singular
functions fs and gs . The singular functions are eigen-
functions with eigenvalues s2 of the positive self-adjoint
operators K1* K1 and K1K1* :

K1* K1fs 5 s 2fs , (42)

K1K1* gs 5 s 2gs . (43)
In addition, the singular functions are related by

K1fs 5 sgs , (44)

K1* gs 5 sfs . (45)

To proceed further, we require an explicit expression for
K1(q1 , q2 ; r). This is obtained by using the definitions
of G0 from Eq. (30) and K1 from Eqs. (14) and (15) to carry
out the Fourier transformation in Eq. (40):

K1~q1 , q2 ; r! 5 k~q1 , q2 ; z !exp@i~q1 1 q2! • r#,
(46)

where the components of k are given by

k1~q1 , q2 ; z ! 5 bg~q1 ; z1 , z !g~q2 ; z, z2!, (47)

k2~q1 , q2 ; z ! 5 bF ]g~q1 ; z1 , z !

]z

]g~q2 ; z, z2!

]z

2 q1 • q2 g~q1 ; z1 , z !g~q2 ; z, z2!G .

(48)

Using Eq. (46), we find that the matrix elements of the
operator K1K1* are given by

K1K1* ~q1 , q2 ; q18 , q28 !

5 E d2Qd ~Q 2 q1 2 q2!d ~Q 2 q18 2 q28 !

3 MS 1

2
~q1 2 q2!,

1

2
~q18 2 q28 !; QD , (49)
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where

M~P, P8; Q! 5 ~2p!2E
0

L

dzk~Q/2 1 P, Q/2 2 P; z !

3 k* ~Q/2 1 P8, Q/2 2 P8; z !. (50)

To find the singular functions gs , we make the ansatz

gQQ8~q1 , q2! 5 E d2PCQ8~P; Q!d ~q1 2 Q/2 2 P!

3 d ~q2 2 Q/2 1 P!, (51)

where Q and Q8 are two-dimensional wave vectors.
Equation (43) now implies that

E d2P8M~P, P8; Q!CQ8~P8; Q! 5 sQQ8
2 CQ8~P; Q!,

(52)

that is, CQ8(P; Q) is an eigenfunction of M(P, P8; Q) la-
beled by Q8 with eigenvalue sQQ8

2 . Note that since M(Q)
is self-adjoint, the CQ8(P; Q) may be taken to be ortho-
normal. The singular functions fQQ8 may be found from
Eq. (45) by direct calculation:

fQQ8~r! 5
1

sQQ8
E d2P exp~2iQ • r!

3 k* ~Q/2 1 P, Q/2 2 P; z !CQ8~P; Q!.

(53)

It follows that the SVD of K1
1 is given by the expression

K1
1~r; q1 , q2! 5 E d2Qd2Q8

1

sQQ8

fQQ8~r!gQQ8
* ~q1 , q2!.

(54)

The above expression for the SVD of K1
1 may be simpli-

fied by using the spectral decomposition

M21~P, P8; Q! 5 E d2Q8
1

sQQ8
2 CQ8~P; Q!CQ8

* ~P8; Q!

(55)

and the explicit expressions for the singular functions.
Equation (54) thus becomes

K1
1~r; q1 , q2!

5 E d2Qd2Pd2P8 exp~2iQ • r!M21~P, P8; Q!

3 k* ~Q/2 1 P, Q/2 2 P; z !d ~q1 2 Q/2 2 P!

3 d ~q2 2 Q/2 1 P!. (56)

Using this result, along with Eq. (37), we obtain h (1)(r),
the solution to the linearized ISP:

h~1 !~r! 5 E d2Qd2Pd2P8 exp~2iQ • r!M21~P, P8; Q!

3 k* ~Q/2 1 P, Q/2 2 P; z !

3 f~Q/2 1 P, Q/2 2 P!. (57)

Note that the above inversion formula agrees with the re-
sults of Ref. 10. However, the derivation in Ref. 10 is
based on a direct calculation of the pseudoinverse solution
rather than a construction of the SVD of the linearized
forward-scattering operator.

4. NUMERICAL RESULTS
We now illustrate the inversion formulas derived in this
paper with numerical examples. We will work in the pla-
nar geometry with free boundary conditions. In addition,
we assume a priori that there are no inhomogeneities in
the diffusion coefficient (dD 5 0). This allows the use of
a single modulation frequency, which we set to zero. In
this case the linearized inversion formula (57) can be
written in the form

da~1 !~r! 5 E d2Qd2Pd2P8 exp~2iQ • r!M21~P, P8; Q!

3 k1* ~Q/2 1 P, Q/2 2 P; z !

3 f~Q/2 1 P, Q/2 2 P!, (58)

where

M~P, P8; Q! 5 ~2p!2E
0

L

dzk1~Q/2 1 P, Q/2 2 P; z !

3 k1* ~Q/2 1 P8, Q/2 2 P8; z !. (59)

In practice, this formula must be discretized. Namely,
we chose the vectors Q to occupy a square lattice with
unit step size Dq 5 L21 inside the circle uQu < 40Dq.
The vectors P, P8 were chosen on a one-dimensional
lattice coinciding with the x axis; the spacing was
Dp 5 5Dq 5 5L21, and 0 < uPu , 40L21. Thus a total
of eight different vectors P were used (including P50).
Note that for numerical calculation of M21, the operator
M becomes a square matrix, which can be diagonalized by
the methods of linear algebra. To avoid numerical insta-
bility, the calculation of M21 must be regularized. In
particular, we replace 1/s by R( s), where R is a suitable
regularizer. The effect of regularization is to limit the
contribution of small singular values to the reconstruc-
tion. The simplest way to do this is to simply cut off all s
below some cutoff sc . That is, we set

R~ s! 5
1

s
u~ s 2 sc!, (60)

u denoting the usual Heaviside step function.
The forward data were calculated for a spherical ab-

sorbing inhomogeneity. The data function f(q1 , q2) is
given in Appendix B. The diffuse wave numbers are
given by k1

2 5 a0 /D0 outside the sphere and k2
2 5 (a0

1 a)/D0 inside the sphere. Thus, inside the sphere, we
have da 5 a 5 D0(k2

2 2 k1
2), and we have chosen D0

5 1, k1 5 2pL21. Reconstructions were carried out in
the volume 2L < x, y < L, 0 , z , L, with the center of
the absorbing sphere placed at the point (0, 0, L/2). The
sphere’s radius was taken to be R 5 0.4L, and the corre-
sponding size parameter of the sphere was k1R 5 0.4.

The results of linear reconstruction (da (1)) are shown
in Fig. 1. In the case k1 5 0.99k2 , the weak-scattering
approximation is quite accurate. As a result, the quality
of reconstructed images is high, even to lowest order in
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Fig. 1. Linearized inversion with da(r) 5 da (1)(r). Tomographic slices are drawn at different depths z for an absorbing sphere with
different values of k2 . The solid black circles indicate the physical boundary of the absorbing sphere. The reconstructed images are
normalized by the ‘‘true’’ value of da, D0(k2

2 2 k1
2). A linear gray scale is employed; white corresponds to 1 and black to 0.
da. As the mismatch of the absorption inside and outside
the sphere becomes larger, the quality of the linearized in-
version decreases. In particular, a false dark area in the
center of the sphere develops. In the case k1 5 0.5k2
(da/a0 5 3), only a thin outer shell is reconstructed,
while the inside area of the sphere is almost completely
black. This is explained by the fact that in the weak-
scattering approximation the inhomogeneities are probed
by the unperturbed incident field. However, the field in-
side areas of greater absorption, such as the absorbing
sphere in this numerical example, differs from the inci-
dent field. In essence, the field does not penetrate into
areas with very high absorption. The linearized recon-
struction ‘‘interprets’’ this fact as the absence of inhomo-
geneity. Note that although linearized inversion is not
accurate when da/a0 . 1, it still reconstructs the correct
shape of an inhomogeneity. Thus, although the internal
region of the absorbing sphere in the case k1 5 0.5k2 is
not reconstructed, the overall spherical shape is recon-
structed correctly. It is expected that this is a general
property of the linearized reconstruction and is not lim-
ited to spherical shapes.

We now consider the first nonlinear correction da (2),
which is given by

da~2 !~r! 5 2E d2Qd2Pd2P8 exp~2iQ • r!M21~P, P8; Q!

3 k1* ~Q/2 1 P, Q/2 2 P; z !

3 f ~2 !~Q/2 1 P, Q/2 2 P!, (61)

where
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f ~2 !~q1 , q2! 5 E d3rd3r8K2
11~q1 , q2 ; r, r8!

3 da~1 !~r!da~1 !~r8!. (62)

Here K2
11(q1 , q2 ; r1 , r2) is obtained by Fourier transfor-

mation of Eq. (16):

K2
11~q1 , q2 ; r, r8!

5
G0~r, r8!

~2pD0!2Q~q1!Q~q2!
exp@i~q1 • r 1 q2 • r8!#

3 exp@2Q~q1!uz 2 z1u2Q~q2!uz8 2 z2u#. (63)

The quantity f (2)(q1 , q2) is calculated by numerical in-
tegration using the precomputed function da (1).

The reconstructed absorption coefficient with the first
nonlinear correction (da 5 da (1) 1 da (2)) is shown in
Fig. 2. As can be seen by comparing the panels with k1
5 0.8k2 and k1 5 0.9k2 in Figs. 1 and 2, the effect of the
first nonlinear correction is to fill in the voids that are
seen in the linearized reconstruction. To illustrate this
point more quantitatively, we plotted the reconstructed
function da, with and without the first nonlinear correc-
tion, as a function of the x coordinate on the one-
dimensional line determined by z 5 constant, y 5 0.
The results are shown in Fig. 3. The effect of filling in
the void in the center of the sphere is especially well
manifested in the case k1 5 0.9k2 .

As expected, the first nonlinear correction had no sig-
nificant effect in the cases k1 5 0.99k2 and k1 5 0.5k2 .
In the first case the linearized inversion already provides
accurate results, and all higher-order corrections are
small. In the second case the weak-scattering approxi-
mation is strongly violated for the forward problem, and
very-high-order corrections must be included to obtain
convergence (provided that the series converges at all).

5. DISCUSSION
We have analyzed the nonlinear ISP for diffusing waves
in inhomogeneous media. In particular, we have ob-
Fig. 2. First nonlinear correction da(r) 5 da (1)(r) 1 da (2)(r). The same parameters as those in Fig. 1 were employed.
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tained a formally exact solution to this problem in the
form of a functional series expansion. The first term in
the expansion corresponds to the pseudoinverse solution
to the linearized ISP; the higher-order terms represent
nonlinear corrections. It is important to note that the
methods developed in this paper are very general and ap-
ply to the ISP for any strongly damped wave such as eva-
nescent waves or thermal waves.11–14

There are several issues that are important for experi-
mental applications of the nonlinear inversion formulas.
The simulations presented here consider only the case of
complete data, that is, data continuously measured over
the surface of the medium. However, experiments are
necessarily limited to a finite amount of discrete data.
Thus the effects of sampling and limited data must be
considered. Results in this direction for the linear ISP
have been reported in Ref. 15. In future work we intend
to consider the corresponding question for the nonlinear
ISP. It is also necessary to consider nonlinear corrections
beyond first order. This is especially important for the
reconstruction of large extended objects with high con-
trast. A related question is how to recover the properties
of the medium with a certain spatial resolution. Here
the effects of sampling and limited data are important
considerations.

APPENDIX A: INVERSION OF SERIES
In this appendix we show that the inverse scattering se-
ries (23) may be obtained by formal inversion of the
forward-scattering series

Fig. 3. Reconstructed function da(r) calculated along the line
z 5 constant (as indicated in the legend), y 5 0, x P @2L, L#.
Long-dashed curves: da 5 da (1) (linearized inversion), solid
curves: da 5 da (1) 1 da (2) (first nonlinear correction), short-
dashed curves: true profile of da.
f 5 K1h 1 K2h ^ h 1 K3h ^ h ^ h 1 ¯ . (A1)

To proceed, we assume that h may be expressed as a func-
tional expansion in f:

h 5 K1f 1 K2f ^ f 1 K3f ^ f ^ f 1 ¯, (A2)

where K1 is a linear operator that maps the Hilbert space
H2 into the Hilbert space H1 and Kn is a tensor operator
that maps H2 ^ ¯ ^ H2 (n copies) into H1 for n > 2. To
find the K’s, we substitute the expression (A1) for f into
Eq. (A2) and equate terms with the same tensor power of
h. We thus obtain the relations

K1K1 5 I, (A3)

K2K1 ^ K1 1 K1K2 5 0, (A4)

K3K1 ^ K1 ^ K1 1 K2K1 ^ K2

1 K2K2 ^ K1 1 K1K3 5 0, (A5)

(
p51

n21

Kp (
i11¯1ip5n

Ki1
^ ¯ ^ Kip

1 KnK1 ^ ¯ ^ K1 5 0, (A6)

which may be solved for the K’s, with the result

K1 5 K1
1 , (A7)

K2 5 2K1K2K1 ^ K1 , (A8)

K3 5 2~K2K1 ^ K2 1 K2K2 ^ K1 1 K1K3!K1 ^ K1 ^ K1 ,
(A9)

Kn 5 2S (
p51

n21

Kp (
i11¯1ip5n

Ki1
^ ¯ ^ KipDK1 ^ ¯ ^ K1 .

(A10)

It can be seen that the above expressions for K1 and K2
agree with Eq. (23). In addition, Eq. (A10) provides a
general formula for the coefficients of the higher-order
terms in Eq. (23). We note that this formula implies that
the nonlinear correction of order n involves all forward
operators up to order n.

APPENDIX B: DATA FUNCTION FOR A
SPHERICAL INHOMOGENEITY
In this appendix we present derivation of the real-space
data function for an absorbing spherical inhomogeneity in
an infinite medium and calculate its Fourier transform.
The real-space data function for a single spherical inho-
mogeneity was found earlier in Ref. 16.

Consider a spherical inclusion whose properties differ
from those of the surrounding homogeneous background.
We assume that dD 5 0 and da 5 a 5 constant inside a
spherical region ur 2 r0u , R. We will work in a refer-
ence frame whose origin coincides with the center of the
sphere, r0 . In this case the Green’s function can be rep-
resented as

G~r, r8! 5 (
l50

`

(
m52l

l

gl~r, r8!Ylm* ~ r̂8!Ylm~ r̂!, (B1)
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where the Ylm’s are spherical harmonics. If both the
sources and the detectors are located outside the sphere
(r, r8 . R), then

gl~r, r8! 5
2k1

pD0
@il~k1r,!kl~k1r.! 2 Flkl~k1r !kl~k1r8!#,

(B2)

where kl(x) and il(x) are the modified spherical Bessel
and Hankel functions of the first kind, respectively, r,

and r. are the lesser and the greater of r and r8, the Mie
coefficient Fl is given by

Fl 5
k2il~k1R !il8~k2R ! 2 k1il~k2R !il8~k1R !

k2il8~k2R !kl~k1R ! 2 k1il~k2R !kl8~k1R !
, (B3)

and k1 and k2 are the wave numbers outside and inside
the sphere:

k1
2 5

a0 2 iv

D0
, k2

2 5
a0 1 a 2 iv

D0
. (B4)

By observing that in an infinite medium the unperturbed
Green’s function G0(r, r8) can be written as

G0~r, r8! 5
2k1

pD0
(
l50

`

(
m521

l

i l~k1r,!kl~k1r.!

3 Ylm* ~ r̂8!Ylm~ r̂!, (B5)

we see that the first term in Eq. (B2) can be identified as
the incident field, while the second term represents the
scattered field. Consequently, the data function
f(r1 , r2) is given by

f~r1 , r2! 5
2k1

pD0
(
l50

`

(
m52l

l

Flkl~k1r1!kl~k1r2!

3 Ylm* ~ r̂2!Ylm~ r̂1!. (B6)

The above expression is valid in a reference frame whose
origin is at the center of the sphere. The corresponding
expression in an arbitrary reference frame is obtained by
making the transformation r1,2 → r1,2 2 r0 .

We now calculate the Fourier-transformed data func-
tion f(q1 , q2), which is defined by

f~q1 , q2! 5 E d2r1d2r2 exp@i~q1 • r1 1 q2 • r2!#

3 f~r1 , z1 , r2 , z2!. (B7)

We will show that

f~q1 , q2!

5
p2

2D0k1Q~q1!Q~q2!

3 exp@i~q2 2 q1! •rc 2 Q~q1!uz0 2 z1u 2 Q~q2!uz2 2 z0u#

3 (
l50

`

~2l 1 1 !FlPlS q1 • q2 1 g ~z1 , z2!Q~q1!Q~q2!

k1
2 D ,

(B8)
where the Pl(x) are the Legendre polynomials and

g ~z1 , z2! 5 H 1 if z1 5 z2

21 if z1 Þ z2
. (B9)

Note that the arguments of the Legendre polynomials in
Eq. (B8) can be greater than unity; however, the Mie co-
efficients Fl decay with l faster than exponentially, so that
the convergence of the series is guaranteed. To derive
Eq. (B8), we start by expanding f(r1 , r2) in a three-
dimensional Fourier integral. To this end we define
Ilm

1 (p1) and Ilm
2 (p2) such that

kl~k1r1!Ylm~ r̂1! 5 E d3p1

~2p!3 Ilm
1 ~p1!exp~2ip1 • r1!, (B10)

kl~k1r2!Ylm* ~ r̂2! 5 E d3p2

~2p!3 Ilm
2 ~p2!exp~2ip2 • r2!, (B11)

Ilm
1 ~p1! 5 E kl~k1r !Ylm~ r̂!exp~ip1 • r!d3r,

(B12)

Ilm
2 ~p2! 5 E kl~k1r !Ylm* ~ r̂!exp~ip2 • r!d3r.

(B13)

The integrals (B12) and (B13) are evaluated by using the
identity

exp~ip • r! 5 4p(
l50

`

(
m52l

l

i lj l~ pr !Ylm* ~p̂!Ylm~ r̂!, (B14)

where the jl(x) are spherical Bessel functions of the first
kind. After expanding the exponents in Eqs. (B12) and
(B13) according to Eq. (B14) and integrating over the an-
gular variables, we obtain

Ilm
1 ~p1! 5 4pilYlm~p̂1!E

0

`

r2kl~k1r !jl~ p1r !dr, (B15)

Ilm
2 ~p2! 5 4pilYlm* ~p̂2!E

0

`

r2kl~k1r !jl~ p2r !dr. (B16)

The one-dimensional integrals are easily calculated by us-
ing the formula

E
0

`

x2kl~ax !jl~bx !dx 5
p

2a

~b/a !l

a2 1 b2 . (B17)

Combining the above results, we can write the three-
dimensional Fourier expansion of f(r1 , r2):

f~r1 , r2!

5
1

~2p!3D0k1
(
lm

~21 !lFl

3 E d3p1d3p2

~ p1p2 /k1
2!l

~ p1
2 1 k1

2!~ p2
2 1 k1

2!
Ylm~p̂1!Ylm* ~p̂2!

3 exp$2i@p1 • ~r1 2 r0! 1 p2 • ~r2 2 r0!#%, (B18)

where we have made the shift r1,2 → r1,2 → r0 . Thus ex-
pression (B18) is valid in an arbitrary reference frame.
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Next, we decompose the three-dimensional vectors as
p1 5 2q1 1 t1êz , p2 5 q2 1 t2êz , and r0 5 r0 1 z0êz .
When we take into account that p1,2

2 5 q1,2
2 1 t1,2

2 , this im-
mediately leads to the following expression for the two-
dimensional Fourier transform of f(r1 , r2):

f~q1 , q2! 5
2p exp@2i~q1 1 q2! • r0#

D0k1

3 (
lm

~21 !lFlJlm
1 ~q1!Jlm

2 ~q2!, (B19)

where

Jlm
1 ~q1! 5 E

2`

`

dt
~Aq1

2 1 t2/k1!l

q1
2 1 t2 1 k1

2 YlmS 2q1 1 têz

Aq1
2 1 t2 D

3 exp@it~z0 2 z1!#, (B20)

Jlm
2 ~q2! 5 E

2`

`

dt
~Aq2

2 1 t2/k1!l

q2
2 1 t2 1 k1

2 Ylm* S q2 1 têz

Aq2
2 1 t2D

3 exp@it~z0 2 z2!#. (B21)

Although the integrands in Eqs. (B20) and (B21) contain
square roots, they are analytic functions of t. This can be
seen by examining the explicit expressions for the spheri-
cal harmonics in terms of the associated Legendre polyno-
mials and observing that the square roots in question are
raised to an even power for any l and m. Therefore Eqs.
(B20) and (B21) can be evaluated by analytic continuation
of the integrands into the complex plane and contour in-
tegration. The result is

Jlm
1 ~q1! 5

pil

Q~q1!
YlmS 2q1 1 i sgn~z0 2 z1!Q~q1!êz

ik1
D

3 exp@2Q~q1!uz0 2 z1u#, (B22)

Jlm
2 ~q2! 5

pil

Q~q1!
Ylm* S q2 1 i sgn~z0 2 z2!Q~q2!êz

ik1
D

3 exp@2Q~q2!uz0 2 z2u#. (B23)

Note that the spherical harmonic functions in the above
expressions are analytically continued to complex angles;
the arguments of Ylm in Eqs. (B22) and (B23) are complex
unit vectors with the property a • a51.

Finally, we use the addition theorem to perform the
summation over the index m in Eq. (B19):

(
m52l

l

YlmS 2q1 1 i sgn(z0 2 z1)Q(q1)êz

ik1
D

3 Ylm* S q2 1 i sgn~z0 2 z2!Q~q2!êz

ik1
D

5
2l 1 1

4p
Pl~cos u!, (B24)

where u is the angle between the two complex vector ar-
guments of the spherical harmonic functions in Eq. (B24).
The cosine of this angle is obviously given by
cos u 5
q1 • q2 1 sgn~z0 2 z1!sgn~z0 2 z2!Q~q1!Q~q2!

k1
2 .

(B25)

Taking into account that sgn(z0 2 z1)sgn(z0 2 z2)
5 g (z1 , z2), we obtain the result (B8).
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