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1. INTRODUCTION
This paper is the third in a series devoted to the inverse
scattering problem (ISP) for diffuse light. The study of
this problem is of fundamental importance for the devel-
opment of image reconstruction algorithms in optical dif-
fusion tomography. For a sample of the current activity
in this field, see, for example, Refs. 1 and 2; a more de-
tailed review of the relevant literature has been given in
Ref. 3. Here we only note that the standard approach to
image reconstruction is based on numerical methods that
involve, either explicitly or implicitly, minimization of cer-
tain functionals.4 Although this approach is extremely
flexible and allows for the consideration of scattering me-
dia with arbitrarily shaped boundaries, it is inefficient
computationally, particularly when a large number of
source–detector pairs is employed for three-dimensional
imaging. In Refs. 3 and 5, we have developed the scat-
tering theory of diffusing waves in inhomogeneous media
and investigated the mathematical structure of the lin-
earized ISP. In this paper we exploit these results to ob-
tain a general class of inversion formulas for the ISP that
are based on the singular-value decomposition (SVD) of
the linearized forward-scattering operator. The inver-
sion formulas rely on the existence of certain symmetries
of the surface of the scattering medium and lead to com-
putationally efficient and numerically stable reconstruc-
tion algorithms. We have previously reported inversion
formulas in the planar geometry with free boundaries6

and for the case of arbitrary boundary conditions.7 In
the present work we give a detailed derivation of the in-
version formulas and generalize them to the cylindrical
and spherical geometries. Numerical reconstructions are
1084-7529/2003/050890-13$15.00 ©
performed in the planar and cylindrical cases. We con-
sider the linearized ISP within the first Born approxima-
tion; generalization to the nonlinear ISP will be discussed
in the fourth paper of this series.

We begin by recalling the relevant mathematical for-
malism. We assume that the energy density u(r, t) of
diffuse light in an inhomogeneous medium obeys the dif-
fusion equation

]u~r, t !

]t
5 ¹ • @D~r!¹u~r, t !# 2 a~r!u~r, t ! 1 S~r, t !.

(1)

Here a(r) and D(r) are the position-dependent absorption
and diffusion coefficients, and S(r, t) is the power density
of the source. Note that a and D are related to the ab-
sorption and reduced-scattering coefficients ma and ms8 ,
which appear in the radiative transport equation, by a
5 cma and D 5 c/3(ma 1 ms8), where c is the speed of
light in the medium. We further assume that the source
is harmonically modulated with frequency v. In addition
to Eq. (1), the energy density must satisfy boundary con-
ditions on the surface of the medium (or at infinity in the
case of free boundaries). In general, we will consider
boundary conditions of the form

u 1 ln̂ • ¹u 5 0, (2)

where l is the extrapolation length.8 Note that we obtain
purely absorbing boundaries in the limit l 5 0 and purely
reflecting boundaries in the limit l → `.

As shown in Papers I and II of this series, the diffusion
equation (1) may be solved with the use of an appropriate
Green’s function. The Green’s function may be directly
2003 Optical Society of America
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related to the intensity measured by a point detector
when the medium is illuminated by a point source. In
the first Born approximation, the change in intensity of
transmitted light (at the modulation frequency) due to
spatial fluctuations in a(r) and D(r) is given by the inte-
gral equation5

f~r1 , r2! 5 bE G0~r1 , r!V~r!G0~r, r2!d3r. (3)

Here the data function f(r1 , r2) is proportional to the
change in complex intensity relative to a reference me-
dium with absorption a0 and diffusion constant D0 ,
da(r) 5 a(r) 2 a0 , dD(r) 5 D(r) 2 D0 , and r1 and r2
denote the coordinates of the source and the detector, re-
spectively. We have also found it useful to introduce the
notation

V~r! [ da~r! 2 ¹ • dD~r!¹, (4)

b 5 H 1 for free boundaries

~1 1 ,* /, !2 for boundary conditions

of the type ~2 !

, (5)

where ,* 5 3D0 /c. The unperturbed Green’s function
G0(r, r8) satisfies

~¹2 2 k2!G0~r, r8! 5 2
1

D0
d ~r 2 r8!, (6)

where the diffuse wave number k is given by

k2 5
a0 2 iv

D0
(7)

and G0(r, r8) satisfies the boundary condition (2).
Equation (3) is the main integral equation that will be

inverted in this paper. The approach that we will follow
involves constructing the SVD of the integral operator de-
fined by Eq. (3). The SVD provides a precise character-
ization of the ISP and may be used to derive an inversion
formula that leads to a computationally efficient and nu-
merically stable algorithm. We have previously de-
scribed SVD inversion formulas for the cases of the planar
measurement geometry with free boundaries6 and for
boundary conditions of the form (2).7 In this paper we
generalize the results of Refs. 6 and 7 to the cylindrical
and spherical geometries and present important calcula-
tional details for the planar geometry. We also imple-
ment the SVD inversion formula in the cylindrical geom-
etry and present reconstructions of the absorption and
diffusion coefficients using two modulation frequencies.

The remainder of this paper is organized as follows.
Section 2 contains a derivation of an SVD inversion for-
mula for discretized one-dimensional integral equations,
a mathematical tool that is used in subsequent sections.
In Sections 3, 4, and 5, we derive inversion formulas for
the planar, cylindrical, and spherical measurement geom-
etries, respectively. Finally, Section 7 describes simu-
lated reconstructions in the cylindrical geometry.
2. SINGULAR-VALUE DECOMPOSITION
FOR ONE-DIMENSIONAL INTEGRAL
EQUATIONS
The ISP consists in reconstructing da(r) and dD(r) from
the data function f(r1 , r2). To this end we will con-
struct the pseudoinverse solution to the integral equation
(3). In this section we consider an intermediate step in
the calculation, namely, the SVD for one-dimensional in-
tegral equations with discrete data. We begin by briefly
reviewing the SVD of linear operators on Hilbert spaces.9

A. Singular-Value Decomposition
Let A denote a linear integral operator with the kernel
A(x, y) that maps the Hilbert space H1 into the Hilbert
space H2 . By the SVD of A, we mean a representation of
the form

A~x, y ! 5 (
n

sngn~x !fn* ~ y !, (8)

where sn is the singular value associated with the singu-
lar functions fn and gn . The $ fn% and the $ gn% are ortho-
normal bases of H1 and H2 , respectively, and are eigen-
functions with eigenvalues sn

2 of A* A and AA* :

A* Afn 5 sn
2 fn , (9)

AA* gn 5 sn
2 gn . (10)

In addition, the fn and the gn are related by

Afn 5 sn gn , (11)

A* gn 5 sn fn . (12)

The pseudoinverse solution to the equation Af 5 g is
defined to be the minimizer of iAf 2 gi with smallest
norm. This well-defined element f 1 P @N(A)#' is
unique and may be shown9 to be of the form f 1 5 A1g,
where the pseudoinverse operator A1 is given by A1

5 A* (AA* )21 and @N(A)#' denotes the orthogonal
complement of the null space of A. The SVD of A may be
used to express A1 as

A1~x, y ! 5 (
n

1

sn
fn~x !gn* ~ y !. (13)

B. One-Dimensional Integral Equations
Consider the set of N one-dimensional integral equations
of the form

E
0

L

Kn~z !f~z !dz 5 Fn , n 5 1,..., N. (14)

The functions Kn(z) define a linear operator K that maps
L2(@0, L#) into CN. Using the above results, we may see
that the SVD of K is given by

Kn~z ! 5 (
l

s l~ gl!nfl* ~z !. (15)

Here the singular vectors gl are eigenvectors of M
5 KK* with eigenvalue s l

2, that is, Mgl 5 s l
2gl . The
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matrix elements of M, which is an N 3 N positive-
definite matrix, are given by

Mmn 5 E
0

L

Km~z !Kn* ~z !dz. (16)

The singular functions fl(z) are given by fl 5 K* gl , or,
more explicitly,

fl~z ! 5
1

s l
(

n
Kn* ~z !~ gl!n . (17)

The SVD of K may be used to obtain the pseudoinverse
operator K1, which is given by the expression

Kn
1~z ! 5 (

l

1

s l
~ gl* !nfl~z !. (18)

Using Eq. (17) and the spectral decomposition for M21,
given by

Mmn
21 5 (

l

1

s l
2 ~ gl!m~ gl* !n , (19)

we may rewrite Eq. (18) as

Kn
1~z ! 5 (

m
Km* ~z !Mmn

21 . (20)

Thus the pseudoinverse solution to Eq. (14) is given by

f~z ! 5 (
m,n

Km* ~z !Mmn
21 Fn . (21)

Note that some of the eigenvalues of M can vanish or be
extremely small. The pseudoinverse solution (21) must
then be regularized. This can be achieved, for example,
by setting

Mmn
21 5 (

l
U~ s l 2 e!

1

s l
2 ~ gl!m~ gl* !n , (22)

where U(x) is the step function and e is a small param-
eter.

As an example, consider the case Kn(z) 5 exp(ipnz),
where all discrete values pn are multiples of 2p/L. In
this case Eq. (14) defines a discrete Fourier transform. It
can be easily seen that Mmn 5 Ldmn and Mmn

21

5 L21dmn . Therefore the pseudoinverse solution (21) is
equivalent to the inverse Fourier transform:

f~z ! 5 L21(
n51

N

exp~2ipnz !Fn . (23)

In the case of the discrete Laplace transform @Kn(z)
5 exp(2pnz)#, the matrix M is more complicated: For
purely real pn’s, Mmn 5 $1 2 exp@2( pm 1 pn)L#%/( pm
1 pn). As N increases, the determinant of this matrix
becomes very small. This reflects the ill posedness of the
Laplace transform inversion. In this case the pseudoin-
verse solution must be regularized according to Eq. (22).

Finally, we generalize our results for the case of a one-
dimensional integral equation that contains several un-
known functions and, correspondingly, several different
kernels:
E
0

L

(
p51

P

Kn
~ p !~z !f ~ p !~z !dz 5 Fn , n 5 1,..., N.

(24)

Following the arguments outlined above, the pseudoin-
verse solution is given by

f ~ p !~z ! 5 (
m,n

Km
~ p !* ~z !Mmn

21 Fn , (25)

where

Mmn 5 E
0

L

(
p51

P

Km
~ p !~z !Kn

~ p !* ~z !dz. (26)

3. PLANAR GEOMETRY
We begin the study of the ISP in the planar geometry,
since this is the simplest case to consider. The solution
to the inverse problem with measurements taken on a
single plane with free boundaries was described in Ref. 6.
However, the derivations in Ref. 6 are based on a direct
calculation of the singular functions and are rather com-
plex. Here we present a simplified derivation and gener-
alize the results to the case of two measurement planes
and boundary conditions of the form (2). An account of
the ISP in the slab geometry was also presented in Ref. 7
but with few mathematical details.

A. Single Plane
Consider the physical situation when both sources and
detectors are located on the plane z 5 0 and all inhomo-
geneities are confined to the region 0 , z , L. The
limit L → ` can be considered a special case. In this ge-
ometry the unperturbed Green’s function can be written
as

G0~r, r8! 5 E d2q

~2p!2 g~q; z, z8!exp@iq • ~r8 2 r!#.

(27)

Here q is a two-dimensional vector parallel to the plane
z 5 0, and we have used the notation r 5 (r, z). The
function g(q; z, z8) is given in the case of free boundaries
by3

g~q; z, z8! 5
exp@2Q~q!uz 2 z8u#

2Q~q!D0
(28)

and in the case of boundary conditions of the type (2) by5

g~q; z, z8! 5
1

2Q~q!D0
H exp@2Q~q!uz 2 z8u#

1
Q~q!l 2 1

Q~q!l 1 1
exp@2Q~q!uz 1 z8u#J ,

(29)

where

Q~q! [ Aq2 1 k2. (30)

The definition of the data function (3) contains only
Green’s functions with r1 or r2 on the boundary surface.
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7In this case we can simplify Eqs. (28) and (29) by setting
z8 or z to zero. Then the expression for g becomes

g~q; z, 0! 5 g~q; 0, z ! 5 g̃~q; z !, (31)

where

g̃~q; z ! 5
exp@2Q~q!uzu#

2D0Q~q!
~free boundaries!, (32)

g̃~q; z ! 5
l

D0

exp@2Q~q!uzu#

Q~q!l 1 1
~boundary conditions!.

(33)

We now use the definition (3) to construct the data
function f(r1 , r2), where the two-dimensional vectors r1
and r2 denote the locations of the sources and the detec-
tors, respectively, on the measurement surface z 5 0:

f~r1 , r2! 5 bE d2q1d2q2

~2p!4 E
z . 0

d3rg̃~q1 ; z !

3 exp@iq1 • ~r 2 r1!#V~r!g̃~q2 ; z !

3 exp@iq2 • ~r2 2 r!#. (34)

Next, we Fourier-transform the data function with re-
spect to the two-dimensional variables r1 and r2 accord-
ing to

f~q1 , q2! 5 E d2r1d2r2f~r1 , r2!

3 exp@i~q1 – r1 1 q2 – r2!# (35)

and obtain

f~q1 , q2! 5 bE d3rg̃~q1 ; z !exp~iq1 – r!

3 V~r!g̃~q2 ; z !exp~iq2 – r!. (36)

Now we use the definition of V(r) [Eq. (4)] to rewrite the
integral equation (36) in terms of the unknown functions
da(r) and dD(r). Thus we have

f~q1 , q2! 5 E d3r@kA~q1 , q2 ; z !da~r!

1 kD~q1 , q2 ; z !dD~r!#exp@i~q1 1 q2! • r#,

(37)

where

kA~q1 , q2 ; z ! 5 bg̃~q1 ; z !g̃~q2 ; z !, (38)

kD~q1 , q2 ; z ! 5 bF ]g̃~q1 ; z !

]z

]g̃~q2 ; z !

]z

2 q1 – q2g̃~q1 ; z !g̃~q2 ; z !G . (39)

Let us introduce the change of variables q1 5 q/2
1 pn and q2 5 q/2 2 pn , where q is continuous and
pn (n 5 1,..., N) is an arbitrary set of discrete vectors.
Note that it may be expected that the accuracy of the so-
lution to the ISP should improve when N → ` and the
pn’s span the two-dimensional space of wave vectors, thus
taking into account all values of the four-dimensional
data function f(q/2 1 pn , q/2 2 pn). However, the ill
posedness of the inverse problem constrains the set of
‘‘useful’’ vectors pn . The specific choice of this set is dis-
cussed in Section 6. We can then bring Eq. (37) to the
following form:

Fn~q! 5 E
0

L

dz@Kn
~A !~q; z !a~q; z ! 1 Kn

~D !~q; z !b~q; z !#,

(40)

where

a~q; z ! 5 E d2rda~r!exp~iq – r!,

b~q; z ! 5 E d2rdD~r!exp~iq – r!, (41)

Kn
~A !~q; z ! 5 kA~q/2 1 pn , q/2 2 pn ; z !,

Kn
~D !~q; z ! 5 kD~q/2 1 pn , q/2 2 pn ; z !, (42)

Fn~q! 5 f~q/2 1 pn , q/2 2 pn!. (43)

For fixed q, Eq. (40) is in the form of the one-dimensional
integral equation (24) with two unknown functions.
Therefore it can be solved for a(q; z) and b(q; z) accord-
ing to

a~q; z ! 5 (
m,n

Km
~A !* ~q; z !Mmn

21 ~q!Fn~q!, (44)

b~q; z ! 5 (
m,n

Km
~D !* ~q; z !Mmn

21 ~q!Fn~q!, (45)

Mmn~q! 5 E
0

L

@Km
~A !~q; z !Kn

~A !* ~q; z !

1 Km
~D !~q; z !Kn

~D !* ~q; z !#dz. (46)

The functions a(q; z) and b(q; z) are related to the un-
knowns da(r) and dD(r) by the two-dimensional Fourier
transforms (41), which can be easily inverted. Therefore
we obtain

da~r! 5 E d2q

~2p!2 exp~2iq – r!

3 (
ml

Km
~A !* ~q; z !Mml

21~q!Fl~q!, (47)

dD~r! 5 E d2q

~2p!2 exp~2iq – r!

3 (
ml

Km
~D !* ~q; z !Mml

21~q!Fl~q!. (48)

Restoring the original notation, we obtain the inversion
formulas
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da~r! 5 E d2q

~2p!2 exp~2iq – r!

3 (
m,n

kA* S q

2
1 pm ,

q

2
2 pm ; z D

3 Mmn
21 ~q!fS q

2
1 pn ,

q

2
2 pnD , (49)

dD~r! 5 E d2q

~2p!2 exp~2iq – r!

3 (
m,n

kD* S q

2
1 pm ,

q

2
2 pm ; z D

3 Mmn
21 ~q!fS q

2
1 pn ,

q

2
2 pnD , (50)

Mmn~q! 5 E
0

LFkAS q

2
1 pm ,

q

2
2 pm ; z D

3 kA* S q

2
1 pn ,

q

2
2 pn ; z D

1 kDS q

2
1 pm ,

q

2
2 pm ; z D

3 kD* S q

2
1 pn ,

q

2
2 pn ; z D Gdz. (51)

B. Two Planes
We now consider the case of measurements taken on two
parallel planes z 5 0 and z 5 L. The medium to be im-
aged is located between the planes in the region 0 , z
, L. The unperturbed Green’s function in this case is
given by Eq. (27) with
g~q; z, z8! 5
l

D0

@1 1 ~Ql !2#cosh@Q~L 2 uz 2 z8u!# 2 @1 2 ~Ql !2#cosh@Q~L 2 uz 1 z8u!# 1 2Ql sinh@Q~L 2 uz 2 z8u!#

2D0Q@sinh~QL ! 1 2Ql cosh~QL ! 1 ~Ql !2 sinh~QL !#
(52)
for boundary conditions of the form (2) and by Eq. (28) for
free boundaries. The Green’s functions that enter the
definition of the data function simplify on the measure-
ment surface, which allows us to write

g~q; z, z8!uz850,L 5 g~q; z8, z !uz850,L 5 g̃~q; z, z8!,

(53)

where
g̃~q; z, z8! 5
exp@2Q~q!uz 2 z8u#

2D0Q~q!
~free boundaries!, (54)

g̃~q; z, z8! 5
l

D0

sinh@Q~q!~L 2 uz 2 z8u!# 1 Q~q!l cosh@Q~q!~L 2 uz 2 z8u!#

sinh@Q~q!L# 1 2Q~q!l cosh@Q~q!L# 1 @Q~q!l#2 sinh@Q~q!L#
~boundary conditions!. (55)
Following the same procedure as that in Subsection 3.A,
we arrive at an integral equation of the form (37), where
the functions kA and kD are now given by

kA~q1 , q2 ; z ! 5 bg̃~q1 ; z1 , z !g̃~q2 ; z, z2!, (56)

kD~q1 , q2 ; z ! 5 bF ]g̃~q1 ; z1 , z !

]z

]g̃~q2 ; z, z2!

]z

2 q1 – q2g̃~q1 ; z1 , z !g̃~q2 ; z, z2!G .

(57)

Here we have assumed that the sources and the detectors
are located on the planes z 5 z1 and z 5 z2 , respectively.
Finally, given the expressions for kA and kD , the inver-
sion formulas (49)–(51) can be applied.

C. Singular-Value-Decomposition Structure of the
Inversion Formulas
The SVD structure of the inversion formulas can be easily
appreciated by inserting the spectral expansion for
M21(q), given by

Mmn
21 ~q! 5 (

l

1

sql
2 @cl~q!#m@cl* ~q!#n , (58)

into Eqs. (49) and (50). Here cl(q) is an eigenvector of
M(q) with eigenvalue sql

2 :

(
n

Mmn~q!@cl~q!#n 5 sql
2 @cl~q!#m . (59)
Then Eqs. (49) and (50) can be rewritten as

S da~r!

dD~r! D 5 (
m

1

sm

fm~r!^ gm , f &. (60)

Here m 5 (q, l) is a composite index, the symbol (m

5 ( l* d2q, and sm are the singular values and fm and gm

the singular functions of the integral equation (37). Note
that ^ fm , fm8& 5 d (m 2 m8) and ^ gm , gm8& 5 d (m
2 m8). The singular functions are given by the follow-
ing expressions:
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fql~r! 5
exp~2iq – r!

~2p!2sql
(

n
@cl~q!#n

3 S kA* ~q/2 1 pn , q/2 2 pn ; z !

kD* ~q/2 1 pn , q/2 2 pn ; z ! D , (61)

gql~q1 , q2! 5 (
n

@cl~q!#nd ~q1 2 q/2 2 pn!

3 d ~q2 2 q/2 1 pn!. (62)

Note that from the orthogonality condition of the singular
functions, provided that sm . 0, it can be seen that there
must exist a one-dimensional null space in which sm

5 0. The SVD pseudoinverse solution belongs to the or-
thogonal complement of the null space.

D. Simultaneous versus Separate Reconstruction of da
and dD
It has been pointed out in Papers I and II that simulta-
neous reconstruction of da and dD using scattering data
obtained at a single modulation frequency is underdeter-
mined. To perform simultaneous reconstruction of da
and dD, one needs at least two distinct modulation fre-
quencies. Incorporation of multiple modulation frequen-
cies can be achieved by noting that the functions kA and
kD implicitly depend on v through Eq. (7). Thus the
functions kA and kD can be assigned an additional index
(say, k) that labels the modulation frequency. In this
case M can be viewed as a block matrix: The pair (k, k8)
will label a block corresponding to vk , vk8 .

4. CYLINDRICAL GEOMETRY
We now turn our attention to the cylindrical geometry.
In cylindrical coordinates (z, r, w) the measurement sur-
face is specified by r 5 R, where R is a constant, and the
medium is confined to the region r , R.

The unperturbed Green’s function in cylindrical coordi-
nates can be found, for example, in Refs. 3 and 5. It can
be represented as

G0~r, r8! 5
1

2p (
m 5 52`

` E dq

2p
exp@im~ w 2 w8!

1 iq~z 2 z8!#g~m, q; r, r8!, (63)

where g(m, q; r, r8) is given by a combination of modi-
fied Bessel and Hankel functions of the first kind, Im(x)
and Km(x), respectively:

g~m, q; r, r8!

5
1

D0
Km~Qr . !Im~Qr , ! ~free boundaries!, (64)

g~m, q; r, r8!

5
1

D0
FKm~Qr . !Im~Qr , ! 2

Km~QR ! 1 QlKm8 ~QR !

Im~QR ! 1 QlIm8 ~QR !

3 Im~Qr!Im~Qr8!G ~boundary conditions!, (65)
where the prime denotes differentiation, r . and r , are
the greater and the lesser of r and r8, and Q 5 Q(q) is
given by Eq. (30), where q is now a scalar. When one of
the arguments r or r8 is on the measurement surface,
Eqs. (64) and (65) become

g~m, q; r, R ! 5 g~m, q; R, r! 5 g̃~m, q; r!, (66)

g̃~m, q; r! 5
1

D0
Km~QR !Im~Qr! ~free boundaries!,

(67)

g̃~m, q; r! 5
l

D0R

Im~Qr!

Im~QR ! 1 QlIm8 ~QR !

~boundary conditions!. (68)

The location of the sources and the detectors on the cy-
lindrical measurement surface is characterized by the
pairs of coordinates z1 , w1 and z2 , w2 . The data function
f(z1 , w1 ; z2 , w2) satisfies the integral equation (3),
which, with the use of Eqs. (63) and (66), can be written
as

f~z1 , w1 ; z2 , w2!

5
b

~2p!4 (
m1 ,m252`

`

3 E dq1dq2E
r , R

rdrdwdzg̃~m1 , q1 ; r!

3 exp@im1~ w 2 w1! 1 iq1~z 2 z1!#

3 Vg̃~m2 , q2 ; r!exp@im2~ w2 2 w! 1 iq2~z2 2 z !#.

(69)

As in the planar case, we Fourier-transform the data
function with respect to the variables z1 , w1 , z2 , w2 ac-
cording to

f~m1 , q1 ; m2 , q2!

5 E
2`

`

dz1dz2E
0

2p

dw1dw2f~ w1 , z1 ; w2 , z2!

3 exp$i@q1z1 1 q2z2 1 m1w1 1 m2w2#%. (70)

The transformation (70) can be easily evaluated and
yields

f~m1 , q1 ; m2 , q2!

5 bE rdrdwdz exp@i~m1w 1 q1z !#g̃~m1 , q1 ; r!V

3 exp@i~m2w 1 q2z !#g̃~m2 , q2 ; r!, (71)

where we have used g̃(2m, 2q; r) 5 g̃(m, q; r).
Now we evaluate the action of the operator V, which

leads to
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f~m1 , q1 ; m2 , q2!

5 E
0

R

rdrE
0

2p

dwE
2`

`

dz

3 @kA~m1 , q1 , m2 , q2 ; r!da~r, w, z !

1 kD~m1 , q1 , m2 , q2 ; r!dD~r, w, z !#

3 exp@i~m1 1 m2!w 1 i~q1 1 q2!z#, (72)

where

kA~m1 , q1 , m2 , q2 ; r!

5 bg̃~m1 , q1 ; r!g̃~m2 , q2 ; r!, (73)

kD~m1 , q1 , m2 , q2 ; r!

5 bF ]g̃~m1 , q1 ; r!

]r

]g̃~m2 , q2 ; r!

]r

2 S q1q2 1
m1m2

r2 D g̃~m1 , q1 ; r!g̃~m2 , q2 ; r!G .

(74)

Equation (72) can be easily brought to the form of the
one-dimensional integral equation that was inverted in
Section 2. To this end we introduce new variables n, m,
q, pl according to m1 5 m 2 n, m2 5 n, q1 5 q 2 pl ,
q2 5 pl , where ql (l 5 1,...,N1) is a finite set of discrete
wave numbers and n is an integer from a finite set con-
taining N2 numbers, and obtain

f~m 2 n, q 2 pl ; n, pk!

5 E
0

R

@kA~m 2 n, q 2 pl , n, pl ; r!a~r, m, q !

1 kD~m 2 n, q 2 pl , n, pl ; r!b~r, m, q !]rdr,

(75)

where

a~r, m, q ! 5 E
0

2p

dwE
2`

`

dzda~r, w, z !exp@i~mw 1 qz !#,

(76)

b~r, m, q ! 5 E
0

2p

dwE
2`

`

dzdD~r, w, z !

3 exp@i~mw 1 qz !#. (77)

For fixed m and q, Eq. (75) can be inverted as discussed in
Section 2. The functions da(r) and dD(r) are then ob-
tained by inverting the Fourier transforms (76) and (77).
The final result has the form

da~r, w, z !

5
1

~2p!2r (
m52`

`

exp~2imw!E
2`

`

dq exp~2iqz !

3 (
nl,n8l8

kA* ~m 2 n, q 2 pl , n, pl ; r!Mnl,n8l8
21

~m, q !

3 f~m 2 n8, q 2 pl8 ; n8, pl8!, (78)
dD~r, w, z !

5
1

~2p!2r (
m52`

`

exp~2imw!E
2`

`

dq exp~2iqz !

3 (
nl,n8l8

kD* ~m 2 n, q 2 pl , n, pl ; r!Mnl,n8l8
21

~m, q !

3 f~m 2 n8, q 2 pl8 ; n8, pl8!, (79)

Mnl,n8l8~m, q !

5 E
0

R

@kA~m 2 n, q 2 pl , n, pl ; r!

3 kA* ~m 2 n8, q 2 pl8 , n8, pl8 ; r!

1 kD~m 2 n, q 2 pl , n, pl ; r!

3 kD* ~m 2 n8, q 2 pl8 , n8, pl8 ; r!#dr. (80)

A few comments on the above inversion formulas need
to be made. First, the rows and the columns of the ma-
trix M are labeled by two indices, n and l. Therefore M
can be considered a block matrix. The total number of
elements in M is (N1N2)2. Note that the rows and the
columns of M can also be characterized by two indices in
the case of the planar measurement surface, since the dis-
crete vectors qm are two dimensional in this case and can
be represented as qm 5 êxqmx

1 êyqmy
. Second, the ex-

pression for Mnl,n8l8(m, q) [Eq. (80)] involves integrals
containing products of four Bessel functions or their first
derivatives. These integrals must be computed numeri-
cally.

5. SPHERICAL GEOMETRY
In the spherical geometry with r 5 (r, u, w), the data
function is measured on the surface r 5 R and the me-
dium is located inside the sphere. The unperturbed
Green’s function can be represented as3,5

G0~r, r8! 5 (
l50

`

(
m521

l

g~l; r, r8!Ylm~ r̂!Ylm* ~ r̂8!, (81)

where the Ylm( r̂) are spherical harmonics and r̂ 5 r/r is
a unit vector characterized by the angular variables u and
w. The radial function g(l; r, r8) is given by a linear
combination of modified spherical Bessel and Hankel
functions of the first kind, il(x) and kl(x), respectively:

g~l; r, r8! 5
2k

pD0
il~kr , !kl~kr . !

~free boundaries!, (82)

g~l; r, r8! 5
2k

pD0
F il~kr , !kl~kr . !

2
kl~kR ! 1 klkl8~kR !

il~kR ! 1 klil8~kR !
il~kr !il~kr8!G

~boundary conditions!, (83)
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where r . and r , are the greater and the lesser of r and
r8. As in the cases of the planar and cylindrical geom-
etries, we simplify the above expression by observing that
either r or r8 must be equal to R in the expression for the
data function:

g~l; r, R ! 5 g~l; R, r ! 5 g̃~l; r !, (84)

g̃~l; r ! 5
2k2

pD0
kl~kR !il~kr ! ~free boundaries!,

(85)

g̃~l; r ! 5
l

D0R2

il~kr !

il~kR ! 1 klil8~kR !

~boundary conditions!. (86)

The data function defined on the spherical surface is a
function of the angular variables u1 , w1 and u2 , w2 of the
sources and the detectors, respectively. For simplicity,
we will use the unit vectors r̂1 5 (u1 , w1) and r̂2
5 (u2 , w2). Then the data function can be written as

f~ r̂1 , r̂2! 5 b (
l1 ,l2

(
m1 ,m2

E d3rg̃~l1 ; r !Yl1m1
~ r̂1!

3 Yl1m1
* ~ r̂!Vg̃~l2 ; r !Yl2m2

~ r̂!Yl2m2
* ~ r̂2!. (87)

Instead of Fourier-transforming the data function as in
the planar and cylindrical geometries, we project it onto
spherical harmonics and define

f~l1 , m1 ; l2 , m2!

5 E f~ r̂1 , r̂2!Yl1m1
* ~ r̂1!Yl2m2

~ r̂2!d2r̂1d2r̂2 . (88)

The equation for the projected data function becomes

f~l1 , m1 ; l2 , m2!

5 bE d3rg̃~l1 ; r !Yl1m1
* ~ r̂!Vg̃~l2 ; r !Yl2m2

~ r̂!. (89)

Next, we need to evaluate the action of the operator V
5 da 2 ¹r • dD¹r and bring the integral equation (89)
to one-dimensional form. This task faces two difficulties.
First, the term proportional to da can be trivially calcu-
lated, but it contains the product of two spherical func-
tions, Yl1m1

* ( r̂)Yl2m2
( r̂), in the integrand. In the planar

and cylindrical geometries, we encountered a product of
two exponentials that was trivially expressed as a single
exponential. However, the product of two spherical func-
tions is expressible not as a single spherical function but
rather by a linear combination of spherical functions with
different indices. The problem is mathematically similar
to the addition of two quantized angular momenta. Sec-
ond, evaluation of the term proportional to dD is quite in-
volved. Although, in principle, we can express the opera-
tor ¹r • dD¹r in terms of raising and lowering operators,
L1 and L2 , this approach will lead to the appearance of
spherical functions with magnetic numbers shifted by 0,
61. Instead, we first express the operator in question in
terms of L2, where L 5 2ir 3 ¹ is the angular momen-
tum operator, and then expand the product Yl1m1
* Yl2m2

as
a linear combination of Ylm and note that Ylm is an eigen-
function of L2.

As shown in Appendix A, the term proportional to dD in
Eq. (89) can be written as

E d3rg̃~l1 ; r !Yl1m1
* ~ r̂!~2¹ • dD¹!g̃~l2 ; r !Yl2m2

~ r̂!

5 E d3rdDF ]g̃~l1 ; r !

]r

]g̃~l2 ; r !

]r
2

g̃~l1 ; r !g̃~l2 ; r !

r2

3
L2 2 l1~l1 1 1 ! 2 l2~l2 1 1 !

2 GYl1m1
* Yl2m2

. (90)

Next, we expand Yl1m1
* Yl2m2

as

Yl1m1
* Yl2m2

5 (
lm

Clm
l1m1l2m2Ylm* , (91)

where Clm
l1m1l2m2 is, up to a multiplicative constant, the

Clebsch–Gordan coefficient, which defines the transfor-
mation matrix from the full orthonormal set of (2l1
1 1)(2l2 1 1) states ul1m1l2m2& to an orthonormal set
ulm& (for fixed l1 and l2). Now we can rewrite Eq. (89) as
follows:

f~l1 , m1 ; l2 , m2!

5 b(
lm

Clm
l1m1l2m2E d3rH g̃~l1 ; r !g̃~l2 ; r !da~r!

1 dD~r!F ]g̃~l1 ; r !

]r

]g̃~l2 ; r !

]r
2

g̃~l1 ; r !g̃~l2 ; r !

r2

3
l~l 1 1 ! 2 l1~l1 1 1 ! 2 l2~l2 1 1 !

2 G J Ylm* ~ r̂!.

(92)

The coefficients Clm
l1m1l2m2 5 *Yl1m1

* YlmYl2m2
dV are ex-

pressed in terms of 3j-symbols as

Clm
l1m1l2m2 5 ~21 !m1m2F ~2l1 1 1 !~2l 1 1 !~2l2 1 1 !

4p
G1/2

3 S l1 l l2

0 0 0 D S l1 l l2

2m1 m m2
D . (93)

Now we use the following symmetry and orthogonality
properties of the 3j-symbols:

S l1 l l2

2m1 m m2
D 5 S l1 l2 l

m1 2m2 2m D , (94)

(
m152l1

l1

(
m252l2

l2 S l1 l2 l

m1 m2 2m D S l1 l2 l8

m1 m2 2m8
D

5
d ll8dmm8

2l 1 1
; (95)

and we define a transformed data function
c (l, m; l1 , l2) according to



898 J. Opt. Soc. Am. A/Vol. 20, No. 5 /May 2003 Markel et al.
c ~l, m; l1 , l2!

5 F 4p~2l 1 1 !

~2l1 1 1 !~2l2 1 1 !
G1/2

3 S l1 l l2

0 0 0 D 21

(
m152l1

l1

(
m252l2

l2

~21 !m22m

3 S l1 l2 l

m1 m2 2m Df~l1 , m1 ; l2 , 2m2!. (96)

Then it is easy to see that

c ~l, m; l1 , l2! 5 E
0

R

r2drE dV@kA~l1 , l2 ; r !da~r!

1 kD~l, l1 , l2 ; r !dD~r!#Ylm* ~ r̂!,

(97)

where

kA~l1 , l2 ; r ! 5 bg̃~l1 ; r !g̃~l2 ; r !, (98)

kD~l, l1 , l2 ; r !

5 bF ]g̃~l1 ; r !

]r

]g̃~l2 ; r !

]r
2

g̃~l1 ; r !g̃~l2 ; r !

r2

3
l~l 1 1 ! 2 l1~l1 1 1 ! 2 l2~l2 1 1 !

2 G .

(99)

Equation (97) is inverted as follows. Define

a~l, m; r ! 5 E da~r!Ylm* ~ r̂!dV, (100)

b~l, m; r ! 5 E dD~r!Ylm* ~ r̂!dV, (101)

which satisfy the one-dimensional integral equation

c ~l, m; l1 , l2! 5 E
0

R

r2dr@kA~l1 , l2 ; r !a~l, m; r !

1 kD~l, l1 , l2 ; r !b~l, m; r !#,

(102)

which is inverted for a fixed pair (l, m) as described in
Section 2:

a~l, m; r ! 5
1

r2 (
l1 ,l2 ,l18 ,l28

kA* ~l1 , l2 ; r !

3 Ml1l2 ,l18 l28
21

~l !c ~l, m; l18 , l28 !, (103)

b~l, m; r ! 5
1

r2 (
l1 ,l2 ,l18 ,l28

kD* ~l1 , l2 ; r !

3 Ml1l2 ,l18 l28
21

~l !c ~l, m; l18 , l28 !, (104)
Ml1l2 ,l18 l28
21

~l ! 5 E
0

r

@kA~l1 , l2 ; r !kA* ~l18 , l28 ; r !

1 kD~l, l1 , l2 ; r !kD* ~l, l18 , l28 ; r !#dr.

(105)

The functions da and dD are obtained by substitution of
Eqs. (103) and (104) into Eqs. (100) and (101), respec-
tively, and by using the orthogonality of the spherical
functions, we obtain the inversion formulas:

da~r! 5 (
lm

a~l, m; r !Ylm~ r̂!

5 (
lm

Ylm~ r̂! (
l1 ,l2 ,l18 ,l28 P s~l !

kA* ~l1 , l2 ; r !

r2

3 Ml1l2 ,l18 l28
21

~l !c ~l, m; l18 , l28 !, (106)

dD~r! 5 (
lm

b~l, m; r !Ylm~ r̂!

5 (
lm

Ylm~ r̂! (
l1 ,l2 ,l18 ,l28 P s~l !

kD* ~l, l1 , l2 ; r !

r2

3 Ml1l2 ,l18 l28
21

~l !c ~l, m; l18 , l28 !. (107)

In the above formulas s(l) denotes the set of allowable
values of l1 , l2 (which depends on l). Indeed, the trans-
formed data function c (l, m; l1 , l2) is defined not for all
possible values of its arguments but only when the
3j-symbol

S l1 l l2

0 0 0 D
is not zero; in the opposite case the function
c (l, m; l1 , l2) must be set identically to zero. The con-
ditions for the above 3j-symbol to be nonzero are that
ul1 2 l2u < l < l1 1 l2 (which is the usual condition for
addition of two angular momenta) and also that the sum
l1 1 l2 1 l be an even number (which follows from the
symmetry of 3j-symbols under the reflection of the z axis).
The values of l1 and l2 that satisfy these two conditions
for a given l are illustrated in Fig. 1.

Fig. 1. Set s(l) of allowable values of l1 and l2 for l 5 6. Note
that s(l) is infinite, and the plot must be continued to infinitely
large numbers of l1 and l2 lying on or between the lines l2 5 l1
6 l and l2 5 l 2 l1 as shown.
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Next, we simplify expression (96) for the transformed
data function c. First, we note that the terms in summa-
tion (96) vanish unless m1 1 m2 2 m 5 0. This allows
us to perform one of the summations, and we arrive at the
following expression:

c ~l, m; l1 , l2!

5 F 4p~2l 1 1 !

~2l1 1 1 !~2l2 1 1 !
G1/2S l1 l l2

0 0 0 D 21

3 (
m15max~2l1 , m2l2!

min~l1 , m1l2!

~21 !m1 S l1 l2 l

m1 m 2 m1 2m D
3 f~l1 , m1 ; l2 , m1 2 m !, (108)

where we also took into account the fact that the
3j-symbol

S l1 l2 l

m1 m 2 m1 2m D
vanishes unless 2l1 < m1 < l1 and 2l2 < m 2 m1
< l2 . It is easy to verify that for a given l and an allow-
able pair l1 , l2 from the set s(l) (illustrated in Fig. 1), the
summation in Eq. (108) has at least one nonvanishing
term.

Note that the matrix M(l) depends on l not only be-
cause of the explicit dependence of kD on l but also be-
cause the set of allowable values of l1 , l2 itself depends on
l. If we assume a priori that dD 5 0, the definition of M
does not contain kD [the second term in Eq. (105) must be
omitted in this case]. Although kA does not depend on l
explicitly, the operator M still depends on this parameter
through the dependence s(l). However, in the general
case, M does not depend on the magnetic quantum num-
ber m. Since the only two quantities in Eqs. (106) and
(107) that depend on m are Ylm and c, the summation
over this index (from 2l to l) should be carried out first.

6. DEPTH RESOLUTION
The inversion formulas derived in this paper take advan-
tage of certain geometrical symmetries. The variables on
which the inversion formulas depend are effectively sepa-
rated into ‘‘transverse’’ and ‘‘longitudinal’’ types. Thus,
in the case of the planar geometry, the transverse variable
is r 5 (x, y). For the cylindrical geometry the trans-
verse variables are z and w, and for the spherical geom-
etry they are u and w. We saw that the singular func-
tions are naturally expressed in terms of orthonormal
functions of the transverse variables (exponentials for the
planar and cylindrical geometries and spherical functions
for the spherical geometry). The orthogonality in the
longitudinal variables is, however, achieved by taking a
linear superposition of nonorthogonal functions kA and
kD . The coefficients in this superposition are obtained
by inverting the overlap matrix M, which, in general, has
an extremely small determinant. This fact sets a limit
on the depth resolution, whose origin is due purely to nu-
merical precision. In Refs. 6 and 7, we have studied this
resolution limit in the planar geometry with various types
of boundary conditions and source–detector arrange-
ments. In particular, it was found that the depth resolu-
tion is best in the two-plane detection scheme when the
sources and the detectors are located on different planes.

The mathematical problem of depth resolution is best
revealed by considering the inversion formulas for for-
ward data generated by da and dD that are homogeneous
in the transverse variables. Thus, in the planar geom-
etry, we set

da~r! 5 aAd ~z 2 zA!, dD~r! 5 aDd ~z 2 zD!,

(109)
where 0 , zA , zD , L. We intend to recover the one-
dimensional functions da(z) and dD(z) by using the for-
ward data generated by Eqs. (109):

f~q1 , q2! 5 ~2p!2d ~q1 1 q2!@aAkA~q1 , q2 ; zA!

1 aDkD~q1 , q2 ; zD!#. (110)

Substituting this expression into the inversion formulas
(49) and (50), we obtain

S da
dD D 5 (

m,n
S kA* ~pm , 2pm ; z !

kD* ~pm , 2pm ; z ! D
3 Mmn

21 ~0 !@aAkA~pn , 2pn ; zA!

1 aDkD~pn , 2pn ; zD!#. (111)

For simplicity, we consider the case aD 5 0 and set a pri-
ori dD 5 0. Then the inversion formula becomes

da 5 aA(
mn

kA* ~pm , 2pm ; z !Mmn
21 kA~pn , 2pn ; zA!,

(112)

Mmn 5 E
0

L

kA~pm , 2pm ; z !kA* ~pn , 2pn ; z !dz.

(113)

Now we expand k(pm , 2pm ; z) as

k~pm , 2pm ; z ! 5 (
n

Amnwn~z !, (114)

where wn(z) is a complete orthonormal set and A is a ma-
trix of coefficients. Evidently, M 5 AA* , and thus Eq.
(112) may be rewritten as

da 5 aA(
m,n

wn* ~z !wm~zA!@A* ~AA* !21A#mn . (115)

If A21 exists, then @A* (AA* )21A#mn 5 dmn and the ex-
pression on the right-hand side of Eq. (115) becomes a
delta function. However, the matrix A is not invertible
for any finite number of vectors pm , since it is not square.
Only when pm becomes continuous can A21 be formally
defined. In Refs. 3 and 5, we have shown that A21 exists
in all three geometries (in the continuous limit) by reduc-
ing the relevant integral equation to the Fourier–Laplace
form. Numerically, it is expected that as the number of
discrete vectors pm increases, the function on the right-
hand side of Eq. (115) acquires an increasingly narrow
peak centered near z 5 zA . The minimum width of this
peak is, however, limited by numerical precision rather
than by the number of pm’s.
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Note that a similar analysis of depth resolution with re-
spect to the variables r and r can be applied to the cylin-
drical and spherical geometries, respectively.

To illustrate the nature of the depth resolution, we
present the results of numerical reconstruction of da with

Fig. 2. Depth resolution for free boundary conditions. Left col-
umn: forward data simulated for the infinite plane absorber
(109); right column: forward data generated for the point ab-
sorber (116); top row: sources and detectors on the same plane;
middle row: sources and detectors on different planes; bottom
row: simultaneous SVD solution for sources and detectors on
plane z 5 0, sources and detectors on plane z 5 L, and sources
on plane z 5 0 and detectors on plane z 5 L. Solid curves cor-
respond to zA 5 0.2L, long-dashed curves correspond to zA
5 0.5L, and short-dashed curves correspond to zA 5 0.8L.

Fig. 3. Depth resolution for absorbing boundary conditions; pa-
rameters are the same as those in Fig. 2.
the forward data generated for an infinite planar ab-
sorber (109) and also for a point absorber of the form

da 5 aAd ~z 2 zA!d ~p!. (116)

In the latter case the reconstruction is carried out along
the line r50, which connects the absorber and the two
measurement planes. We used the biplanar geometry
with L 5 ldiff [ 2pk21 and v50. Forty discrete collin-
ear vectors pm 5 êxDp(m 2 1) (m 5 1,..., N, N 5 40)
were used with Dp 5 k21. Note that even though the
vectors pm are restricted to a one-dimensional subspace,
the inverse problem is well defined. It was found that
further increasing the number N or placing the vectors
pm on a two-dimensional surface did not provide in-
creased depth resolution. All curves were normalized to
their maximum values. The regularization parameter
was set to be e 5 10218 in a double-precision code.

The results are shown in Figs. 2–4. Note that the case
of free boundaries for an infinite planar absorber, with the
sources and the detectors located on different planes, is
degenerate, since, as can be easily seen from Eqs. (54) and
(56), kA(pm , 2pm ; z)5constant and the depth resolution
is completely lost. In all other cases the arrangement
when the sources and the detectors are located on differ-
ent planes provides better depth resolution; inclusion of
additional data with the sources and the detectors on the
same plane provides a very moderate increase in resolu-
tion.

7. NUMERICAL RESULTS
We now illustrate the inversion formulas derived in this
paper with numerical examples. Reconstructions with
planar boundaries have been implemented in Refs. 6 and
7, and the depth resolution in this case is illustrated in
Section 6. Here we will focus on the cylindrical geometry

Fig. 4. Depth resolution for reflecting boundary conditions; pa-
rameters are the same as those in Fig. 2.
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including simultaneous reconstruction of the absorption
and diffusion coefficients. Absorbing boundary condi-
tions are used throughout this section.

We begin with the single-frequency case in which dD is
known to be zero a priori. Continuous-wave imaging
(v50) is used. In Fig. 5 we show the reconstruction of da
for forward data generated by a point absorber located at
the point r 5 0.5R, w5p, z 5 0. The following param-
eters were used: The summation over m in Eq. (78) was
from 210 to 10, and the integration over q was from
216R21 to 16R21. Convergence was demonstrated by
both increasing the limits of summation and integration
and decreasing the step size in integration over q. It can
be seen from Eq. (80) that the matrix M is labeled by two
indices: n and k. The one-dimensional vectors pk (k
5 1, 2,...) are parallel to the cylinder axis and are dis-

Fig. 5. Reconstruction of the absorption coefficient da with the
assumption dD 5 0 according to Eq. (78) in the cylindrical geom-
etry. A point absorber is placed at r 5 0.5R, w 5 p, z 5 0.
The slices shown are perpendicular to the cylinder axis and have
different z coordinates as indicated in the figure (the z 5 0 slice
is drawn directly through the absorber). The same linear gray
scale is employed in all the plots.

Fig. 6. Reconstruction of the absorption coefficient da with the
assumption dD 5 0 according to Eq. (78) in the cylindrical geom-
etry. The forward data are generated for a point absorber lo-
cated at w 5 0, z 5 0, and r 5 0.25R, 0.5R, 0.75R as indicated.
Each reconstructed function is normalized to its maximum, and a
linear gray scale is employed.
crete but otherwise arbitrary. In principle, a two-
dimensional parameter space (k, n) can be used to con-
struct M. However, we found that this does not lead to
improved resolution compared with the case when one of
the parameters is fixed. In Fig. 5 we have used n 5 0
and pk 5 R21k, where k 5 0, 61,..., 610. The matrix
elements of M were calculated numerically by using a
sixth-order Simpson’s rule. The diffuse wave number
was set to k 5 2p/R, so that ldiff [ 2p/k 5 R. The to-
mographic slices in Fig. 5 are drawn perpendicular to the
cylinder axis at different values of z. It can be seen from
the figure that the maximum intensity is located in the
correct location and that the resolution is significantly
better than the limit set by the diffuse wavelength ldiff or
the cylinder radius R. The resolution changes when the
absorber is placed at different depths r. This is illus-
trated in Fig. 6. As could be expected, the resolution is
best when the absorber is close to the surface.

Now we turn to the simultaneous reconstruction of da
and dD. We have chosen the first modulation frequency
v1 to be zero, and the second was chosen from the condi-
tion v2 5 a0 , so that k2

2 5 (a0 2 iv2)/D0 5 k1
2(1 2 i),

where k1
2 5 a0 /D0 . For typical biological tissues a0

' 1 GHz. Therefore, if the above condition is satisfied,
the oscillator frequency n2 5 v2/2p is of the order of 100
MHz.

In Fig. 7 we show the simultaneous reconstruction of
da and dD. The upper row of images contains recon-
structions of da, and the bottom row contains reconstruc-
tions of dD. All tomographic slices are drawn in the
z 5 0 plane. In images a and d, the forward data
were generated for a point absorber located at r 5 0.5R,
w 5 p, z 5 0 and a point diffusing inhomogeneity at
r 5 0.5R, w 5 0, z 5 0. In images b and e only the
absorbing inhomogeneity, and in c and f only the diffusion

Fig. 7. Simultaneous reconstruction of da and dD. In images a
and d, the forward data are generated for a point absorber lo-
cated at r 5 0.5R, w 5 p, z 5 0 and a point diffusing inhomo-
geneity located at r 5 0.5R, w 5 0, z 5 0. In images b and e
only the absorbing inhomogeneity, and in c and f only the diffu-
sion inhomogeneity, were used to generate the forward data.
Images a–c (and d–f ) use the same linear gray scale.
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inhomogeneity, were used to generate the forward data.
As can be seen from the figure, both absorption and diffu-
sion coefficients are reliably reconstructed with two
modulation frequencies. It can be noted that the resolu-
tion is somewhat higher for the reconstruction of the dif-
fusion coefficient. As is discussed in Ref. 6, this is ex-
plained by the fact that the diffusing inhomogeneity of
the same ‘‘numerical’’ strength influences the data func-
tion more strongly than an absorbing inhomogeneity.

APPENDIX A: EVALUATION OF THE
ACTION OF THE OPERATOR ¹ " dD¹ IN THE
SPHERICAL GEOMETRY
To evaluate

E d3rg̃~l1 ; r !Yl1m1
* ~ r̂!~2¹ • dD¹!g̃~l2 ; r !Yl2m2

~ r̂!,

(A1)

we act with the operator ¹ in expression (A1) to the left
and simultaneously change the overall sign of the expres-
sion, since ¹ is anti-Hermitian. Thus we arrive at an ex-
pression of the form @¹F(r)# • @¹G(r)#, where F(r)
5 g̃(l1 ; r)Yl1m1

* ( r̂) and G(r) 5 g̃(l2 ; r)Yl2m2
( r̂). We

use the identity

¹F • ¹G 5
~r • ¹F !~r • ¹G ! 1 ~r 3 ¹F ! • ~r 3 ¹G !

r2

(A2)

and the following relations:

r 3 ¹F 5 ig̃~l1 ; r !LYl1m1
* ,

r 3 ¹G 5 ig̃~l2 ; r !LYl2m2
; (A3)

r • ¹F 5 r
]g̃~l1 ; r !

]r
Yl1m1

* ,

r • ¹G 5 r
]g̃~l2 ; r !

]r
Yl2m2

, (A4)

where L 5 2ir 3 ¹. Upon substitution of Eqs. (A3) and
(A4) into Eq. (A2), we obtain

¹F • ¹G 5
]g̃~l1 ; r !

]r

]g̃~l2 ; r !

]r
Yl1m1

* Yl2m2

2
g̃~l1 ; r !g̃~l2 ; r !

r2 LYl1m1
* • LYl2m2

.

(A5)

Next, we act with operator L2 on Yl1m1
* Yl2m2

; i.e.,

L2Yl1m1
* Yl2m2

5 2LYl1m1
* • LYl2m2

1 Yl1m1
* L2Yl2m2

1 Yl2m2
L2Yl1m1

* ,

(A6)
and take into account that both Ylm and Ylm* are eigen-
functions of L2 with eigenvalues l(l 1 1). From Eq. (A6)
it follows that

LYl2m2
• LYl1m1

*

5
1
2 @L2 2 l1~l1 1 1 ! 2 l2~l2 1 1 !#Yl1m1

* Yl2m2
. (A7)

After substitution of Eq. (A7) into Eq. (A5) and Eq. (A5)
into expression (A1), we finally obtain

E d3rg̃~l1 ; r !Yl1m1
* ~r!~2¹ • dD¹!g̃~l2 ; r !Yl2m2

~r!

5 E d3rdDF ]g̃~l1 ; r !

]r

]g̃~l2 ; r !

]r
2

g̃~l1 ; r !g̃~l2 ; r !

r2

3
L2 2 l1~l1 1 1 ! 2 l2~l2 1 1 !

2 GYl1m1
* Yl2m2

.

(A8)
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