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II. Role of boundary conditions
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We consider the inverse problem of reconstructing the absorption and diffusion coefficients of an inhomoge-
neous highly scattering medium probed by diffuse light. The role of boundary conditions in the derivation of
Fourier–Laplace inversion formulas is considered. Boundary conditions of a general mixed type are dis-
cussed, with purely absorbing and purely reflecting boundaries obtained as limiting cases. Four different ge-
ometries are considered with boundary conditions imposed on a single plane and on two parallel planes and on
a cylindrical and on a spherical surface. © 2002 Optical Society of America
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1. INTRODUCTION
There has been considerable recent interest in the inverse
scattering problem for diffuse light. This paper is the
second in a series devoted to this topic. In part I of the
series1 we established general conditions under which the
existence and uniqueness of solutions to the linearized in-
verse problem are guaranteed and discussed various in-
version formulas for imaging in a medium with free
boundaries. Here we generalize these results to the case
of a system in which boundary conditions are imposed at
the measurement surface.

We begin by briefly summarizing the mathematical for-
malism of part I. We assume that the energy density
u(r, t) of diffuse light in a medium with constant refrac-
tive index obeys the diffusion equation

]u~r, t !

]t
5 ¹ • @D~r!¹u~r, t !# 2 a~r!u~r, t ! 1 S~r, t !,

(1)
where a(r) and D(r) are the position-dependent absorp-
tion and diffusion coefficients and S(r, t) is the source.
We further assume that the source is harmonically modu-
lated with frequency v according to S(r, t) 5 S(r)@1
1 A exp(2ivt)#, where A , 1, and the diffusion and ab-
sorption coefficients are represented as sums of their ref-
erence values D0 and a0 and relatively small fluctuations,
according to D(r) 5 D0 1 dD(r) and a(r) 5 a01da(r).
Then, for the frequency component of u(r, t) at the modu-
lation frequency v, Eq. (1) takes the form

~¹2 2 k2!u~r! 5
1

D0
@da~r! 2 ¹ • dD~r!¹#u~r!

2
g ~A !

D0
S~r!, (2)

where

g ~A ! 5 H A if v . 0

1 1 A if v 5 0
, (3)

and the diffuse wave number k is given by

k2 5
a0 2 iv

D0
. (4)
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Hereafter, the explicit dependence of u(r) on v will be
omitted; it is, however, implied by dispersion relation (4).

Equation (2) can be formally solved with use of the
Green’s function G(r, r8) according to

u~r! 5 g ~A !E G~r, r8!S~r8!d3r8, (5)

where G(r, r8) satisfies

F¹r
2 2 k2 2

1

D0
da~r! 1

1

D0
¹r • dD~r!¹rGG~r, r8!

5 2
1

D0
d ~r 2 r8!. (6)

In addition to Eq. (6), the Green’s function must satisfy
boundary conditions on the surface of medium.

Differential equation (6) can be written conveniently in
integral form as

G~r1 , r2! 5 G0~r1 , r2! 2 E G0~r1 , r!@da~r!

2 ¹r • dD~r!¹r#G~r, r2!d3r

2 D0 R
S
@G~r, r2!¹G0~r1 , r!

2 G0~r1 , r!¹G~r, r2!# • n̂d2r, (7)

where the unperturbed Green’s function G0(r1 , r2) satis-
fies

~¹r
2 2 k2!G0~r, r8! 5 2

1

D0
d ~r 2 r8!. (8)

The second integral is evaluated over the surface that
serves as the boundary of the volume in which all inho-
mogeneities are located, and n̂ is an outward-directed
unit vector perpendicular to this surface (see Fig. 1 below
for an illustration). If we choose G0 to satisfy the same
boundary conditions on S as G, then the above surface in-
tegral vanishes. Then Eq. (7) becomes

G~r1 , r2! 5 G0~r1 , r2! 2 E G0~r1 , r!@da~r!

2 ¹r • dD~r!¹r#G~r, r2!d3r. (9)
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It will prove useful to introduce the notation

V~r! [ da~r! 2 ¹r • dD~r!¹r . (10)

With this notation Eq. (9) can be written as

G 5 G0 2 G0VG, (11)

which has the form of the Dyson equation. Note that Eq.
(9), which relates da(r) and dD(r) to G(r1 , r2), is nonlin-
ear. It is useful to linearize Eq. (9), which to first order in
V may be expressed as

G~r1 , r2! 5 G0~r1 , r2! 2 E G0~r1 , r!V~r!G0~r, r2!d3r.

(12)
In this paper we will investigate the inversion of inte-

gral equation (12). More specifically, we will show that it
is possible to uniquely reconstruct da and dD given a set
of measurements obtained from multiple source–detector
pairs located on the boundary of the medium. As in part
I, the planar, cylindrical, and spherical geometries are
considered separately.

The remainder of the paper is organized as follows. In
Section 2 we discuss appropriate boundary conditions and
derive the relation between the experimentally measur-
able intensity and G(r1 , r2). In Section 3 inversion for-
mulas for a single plane and in Section 4 on two parallel
planes are obtained. In Sections 5 and 6 we consider cy-
lindrical and spherical geometries, respectively.

A few comments need to be made about the general ap-
proach adopted in this paper and cross referencing. We
do not consider reconstruction of the diffusion and absorp-
tion coefficients separately, as was done in part I. In-
stead, we always consider the total data function gener-
ated by nonzero da and dD. For this purpose we
introduce the interaction operator V in Eq. (10), which de-
pends on both coefficients. We also do not consider in de-
tail the restriction to three-dimensional submanifolds of
the four-dimensional manifold of arguments of the data
function, changes of variables, and the corresponding Ja-
cobians, since this was considered previously. References
to sections of part I are made as I.X where X is the section
number.

2. BOUNDARY CONDITIONS AND THE
MEASURABLE INTENSITY
The intensity of diffuse light at the point r that flows in
the direction ŝ is given by

I~r, ŝ! 5
1

4p
~cu 2 3D ŝ • ¹u !, (13)

where c is the speed of light in the medium.2,3 Far from
boundaries, the second term in Eq. (13) is usually much
smaller than the first and can be omitted. This is why in
part I of this series1 we assumed that the measured in-
tensity is proportional to the density of diffuse photons, u,
at the point of measurement. Near absorbing bound-
aries, however, the second term can be comparable to or
much larger than the first. Moreover, the two terms are
related to each other at the boundary. Indeed, a general
boundary condition on a smooth surface S can be formu-
lated as
~u 1 l n̂ • ¹u !urPS 5 0. (14)

Here l is the extrapolation distance.4

In the limit l 5 0 we obtain purely absorbing bound-
aries and in the limit l → ` purely reflecting boundaries.
We can use Eq. (14) together with Eq. (13) to obtain the
intensity IS that is measured by detectors located on the
boundary:

IS~r! 5 IS~r, ŝ 5 n̂! 5
c

4p
S 1 1

l *

l
Du~r!, (15)

where l * [ 3D/c, and we have assumed that the detec-
tors measure the energy that flows in the direction nor-
mal to the surface, i.e., in the direction of n̂. It should be
noted that in the limit l → 0, the quantity on the right-
hand side of Eq. (15) stays finite and approaches a well-
defined limit. Note also that we assume that all inhomo-
geneities are confined inside the medium and near the
boundary where the measurements are made D 5 D0 .
Therefore we can use l * 5 3D0 /c in Eq. (15).

We now consider the description of diffuse sources.
Similar to detectors that measure not only the local pho-
ton density but also its gradient, the sources must be
characterized not only by a point on the surface but also
by a direction. In a typical experiment, photons are in-
jected by an optical fiber that is oriented perpendicular to
the boundary of the medium. Propagation of light inside
a fiber is not diffuse. Instead, the fiber acts effectively as
a narrow collimated beam that is described by a source
term of the form (see illustration of the geometry in
Fig. 1):

S~r;r1! 5 g ~A !S0d ~r!f~ uz 2 z1u!. (16)

Here S0 is the total source power, r1 is the point on the
surface at which photons are injected, and r is the com-
ponent of r perpendicular to n̂(r1). Note that quantities
r and z in Eq. (16) are defined in the local coordinate sys-
tem (see Fig. 1) that is completely defined by the point r1
on the surface and the direction of the vector n̂ at this
point. The function f(x) is short ranged (typically expo-
nential), with the following properties:

E
0

`

f~x !dx 5 1, E
0

`

xf~x !dx 5 l * . (17)

In a strongly scattering medium the transport mean free
path l * is usually small compared with characteristic
sizes of the system, a requirement for the diffusion ap-
proximation to be valid. We will use this fact and the
properties of the source function [Eqs. (16) and (17)] to
show that

Fig. 1. Schematic illustration of the boundary conditions im-
posed on the surface S and the local coordinate system used in
Section 2.
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E G~r2 , r!S~r; r1!d3r 5 g ~A !S0S 1 1
l *

l
DG~r2, r1!.

(18)

To prove Eq. (18), we expand the Green’s function in a
Taylor series near the point r 5 r1 . On the line r 5 0
along which integration in Eq. (18) takes place, this ex-
pansion has the form

G~r2 , r! 5 G~r2 , r1! 2 uz 2 z1un̂ • ¹rG~r2 , r!ur5r1
1 ... .

(19)

From boundary condition (14) (which the Green’s function
must satisfy with respect to its both arguments), it fol-
lows that n̂ • ¹rG(r2 , r)ur5r1

5 2(1/l )G(r2 , r1). Substi-
tuting this into Eq. (19), we obtain

G~r2 , r! 5 S 1 1
uz 2 z1u

l
DG~r2 , r1!. (20)

Integration of this formula over z and taking account of
Eq. (17) leads directly to Eq. (18).

The above results allow us to determine the value of
the measured intensity IS(r2) that is produced by a
source at the point r1 , where both r1 and r2 are on the
surface:

IS~r2! 5
cg ~A !S0

4p
S 1 1

l *

l
D 2

G~r1 , r2!. (21)

Omitting the constant factor cg (A)S0/4p, we can define
the data function as the difference in the measured inten-
sity with and without the presence of inhomogeneities:

f~r1 , r2! 5 S 1 1
l *

l
D 2

@G0~r1 , r2! 2 G~r1 , r2!#.

(22)

Finally, using Eq. (12) we arrive at

f~r1 , r2! 5 S 1 1
l *

l
D 2E G0~r1 , r!V~r!G0~r, r2!d3r,

(23)

which is the main equation that will be inverted in this
paper. The data function f(r1 , r2) is directly related to
the measurable quantity IS . It is symmetric with re-
spect to the interchange of sources and detectors.

3. HALF-SPACE GEOMETRY
We now consider boundary conditions of the kind that Eq.
(14) imposed on the plane z 5 0. Without loss of gener-
ality, we assume that all inhomogeneities are located in
the right half-space (z . 0). In this geometry the unper-
turbed Green’s function can be written as

G0~r, r8! 5 E d2q

~2p!2 g~q; z, z8!exp@iq • ~r8 2 r!#.

(24)

Here q is a two-dimensional vector parallel to the plane
z 5 0, and we have used the notation r 5 r 1 zêz , êz be-
ing a unit vector in the z direction. The function
g(q; z, z8) must satisfy the one-dimensional equation
F ]2

]z2 2 Q2~q !Gg~q;z, z8! 5 2
d ~z 2 z8!

D0
, (25)

where

Q~q ! [ ~q2 1 k2!1/2. (26)

As follows from Eq. (25), the function g is a linear combi-
nation of exponentials exp(6Qz) and must, in addition,
satisfy the following conditions:

g~q; 0, z8! 2 l g8~q; 0, z8! 5 0,

g~q; z8 1 e, z8! 2 g~q; z8 2 e, z8! 5 0,

g8~q; z8 1 e, z8! 2 g8~q; z8 2 e, z8! 5 21/D0 ,

g~q; `, z8! , `, (27)

where the prime denotes the first derivative with respect
to z and e is a positive infinitesimal constant.

The solution for g can be readily obtained:

g~q; z, z8! 5
1

2Q~q !D0
H Q~q !l 2 1

Q~q !l 1 1
exp@2Q~q !uz 1 z8u#

1 exp@2Q~q !uz 2 z8u#J . (28)

In the limiting cases l 5 0, `, the Green’s function G0 is
given by a superposition of two free-space Green’s func-
tions following the method of images. In the general case
0 , l , `, the Green’s function G0 cannot be con-
structed by the method of images. However, this method
still applies to its spatial Fourier components, g(q; z, z8),
with the ‘‘reflected charge’’ given by @Q(q)l

2 1#/@Q(q)l 1 1#.
The definition of data function (22) [or (23)] contains

only Green’s functions with r1 or r2 on the boundary sur-
face. In this case we can simplify Eq. (28) by setting z8 or
z to zero. Then the expression for g becomes

g~q; z, 0 ! 5 g~q; 0, z ! [
l

D0
q̃~q; z ! (29)

with

g̃~q; z ! 5
exp@2Q~q !uzu#

Q~q !l 1 1
. (30)

We now proceed with construction of the data function
f(r1 , r2), where the two-dimensional vectors r1 and r2
denote the locations of the sources and detectors, respec-
tively, on the measurement surface z 5 0. We use the
definition (22) of the data function where the integration
over d3r is taken over the region z . 0 and obtain

f~r1 , r2! 5 S l 1 l *

D0
D 2E d3r

d2q1d2q2

~2p!4 g̃~q1 ; z !

3 exp@iq1 • ~r 2 r1!#V~r!g̃~q2 ; z !

3 exp@iq2 • ~r2 2 r!#. (31)

Next we Fourier transform the data function with respect
to the two-dimensional variables r1 and r2 according to
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f~q1 , q2! 5 E d2r1d2r2f~r1 , r2!

3 exp@i~q1 • r1 1 q2 • r2!# (32)

and obtain from Eqs. (32) and (31)

f~q1 , q2! 5 S l 1 l *

D0
D 2E d3rg̃~q1 ; z !

3 exp~iq1 • r!V~r!g̃~q2 ; z !exp~iq2 • r!.

(33)
Now we use the definition of V(r) to rewrite integral
equation (33) in terms of the unknown functions da(r)
and dD(r). The action of the operator ¹r • dD¹r can be
easily evaluated by observing that ¹r is anti-Hermitian
(¹r

† 5 2¹r , where † denotes Hermitian conjugation) and
acts to the left. Thus we have

f~q1 , q2! 5 E d3r@kA~q1 , q2 ; z !da~r!

1 kD~q1 , q2 ; z !dD~r!#exp@i~q1 1 q2! • r#,

(34)
where

kA~q1 , q2 ; z !

5 S l 1 l *

D0
D 2 exp$2@Q~q1! 1 Q~q2!#z%

@Q~q1!l 1 1#@Q~q2!l 1 1#
, (35)

kD~q1 , q2 ; z !

5 S l 1 l *

D0
D 2

3
@Q~q1!Q~q2! 2 q1 • q2#exp$2@Q~q1! 1 Q~q2!#z%

@Q~q1!l 1 1#@Q~q2!l 1 1#
,

(36)
and we have used the explicit expression for g̃(q; z) [Eq.
(30)].

We now investigate the existence and uniqueness of the
solution to the inverse problem. We will prove that if
such a solution exists, it must be unique. The existence
of a solution is guaranteed if the scattering data are ob-
tained in an ‘‘ideal experiment,’’ i.e., are produced by some
functions da and dD according to Eq. (12). We will call
the scattering data from such an experiment ‘‘physically
admissible.’’5 Now consider the inversion of integral
equation (34). We introduce the modified data function

c ~q1 , q2! 5
D0

2@Q~q1!l 1 1#@Q~q2!l 1 1#

~ l 1 l * !2 f~q1 , q2!.

(37)
We see that Eq. (34) may be rewritten in the form

c ~q1 , q2! 5 E d3r exp$i~q1 1 q2! • r

2 @Q~q1! 1 Q~q2!#z%$da~r!

1 @Q~q1!Q~q2! 2 q1 • q2#dD~r!%. (38)

To see that integral equation (38) has no more than one
solution for da and dD, we must show that the null space
of Eq. (38) is trivial. To this end we introduce the change
of variables
q 5 q1 1 q2 , (39)

h1 5 Q~q1!, (40)

h2 5 Q~q2!, (41)
and consider the homogeneous form of Eq. (38), which is
given by

E d3r exp@iq • r 2 ~h1 1 h2!z#H da~r!

1 Fh1h2 2
1

2
~q2 2 h1

2 2 h2
2 1 2k2!GdD~r!J 5 0. (42)

Evidently, if measurements of c (q1 , q2) are made at two
distinct wave numbers k1 and k2 , then Eq. (42) vanishes
for k1 and k2 separately, and thus

E d3r exp@iq • r 2 ~h1 1 h2!z#da~r! 5 0, (43)

E d3r exp@iq • r 2 ~h1 1 h2!z#dD~r! 5 0. (44)

If da and dD have compact support (in physical terms
they have finite range), then the left-hand sides of Eqs.
(43) and (44) are entire functions of the complex variables
q, h1 , and h2 . By analytic continuation, da, dD [ 0 or,
equivalently, the null space of Eq. (38) is trivial, which
proves the uniqueness of the solution to Eq. (38).

An inversion formula for integral equation (38) for
physically admissible scattering data was derived in part
I.1 There it was shown that if Eq. (38) is transformed ac-
cording to Eqs. (39)–(41) and thus holds for all choices of
q, h1 and h2 , it must also hold for the specific choice h1
5 h2 5 h/2. Hence Eq. (38) becomes

c ~q, h/2, h/2! 5 E d3r exp~iq • r 2 hz !

3 Fda~r! 1
1

2
~h2 2 q2 2 2k2!dD~r!G .

(45)
Equation (45) has the structure of a Fourier–Laplace
transformation, which leads to inversion formulas for da
and dD of the form

da~r! 5
1

k1
2 2 k2

2 E d2q

~2p!2 E dh

2pi
exp~iq • r 1 hz !

3 $k1
2ck2

~q, h/2, h/2! 2 k2
2ck1

~q, h/2, h/2!

1 ~h2/2 2 q2/2!@ ck1
~q, h/2, h/2!

2 ck2
~q, h/2, h/2!#%, (46)

dD~r! 5
1

k1
2 2 k2

2 E d2q

~2p!2 E dh

2pi
exp~iq • r 1 hz !

3 @ ck2
~q, h/2, h/2! 2 ck1

~q, h/2, h/2!#,

(47)
where the dependence of c (q1 , q2) on k1 and k2 has been
made explicit. Since Eqs. (46) and (47) constitute the
unique solution to Eq. (38) for the specific choice h1
5 h2 5 h, it follows that no more than one solution will
satisfy Eq. (38) for arbitrary h1 and h2 . Thus the exis-
tence and uniqueness of the solution to the inverse prob-
lem in the planar geometry is established.
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4. SLAB GEOMETRY
We now consider the case when boundary conditions are
imposed on two parallel planes z 5 0 and z 5 L. The
medium to be reconstructed is located between the planes
in the region 0 , z , L. Derivation of the unperturbed
Green’s function is similar to the one outlined in Section
3, except that the last equation in Eq. (27) (the boundary
condition at infinity) is replaced by

g~q; L, z8! 1 l g8~q; L, z8! 5 0. (48)

This leads to the following expression for g:

Using the fact that the Green’s functions that enter the
definition of the data function simplify on the measure-
ment surface allows us to write

g~q; z, z8!uz850,L 5 g~q; z8, z !uz850,L [
l

D0
g̃~q; z, z8!.

(50)
with

g̃~q; z, z8!

5
sinh@Q~L 2 uz 2 z8u!# 1 Ql cosh@Q~L 2 uz 2 z8u!#

sinh~QL ! 1 2Ql cosh~QL ! 1 ~Ql !2 sinh~QL !
.

(51)

The construction of the data function f(r1 , zs ; r2 , zd)
in the slab geometry is analogous to the case of the half-
space geometry, except that it now depends on two addi-
tional parameters, zs and zd , which are the z coordinates
of sources and detectors, respectively. In particular, a
source–detector pair can be located either on the same
plane or on different planes. The expression for the
Fourier-transformed data function is very similar to Eq.
(33):

g~q; z, z8! 5
@1 1 ~Ql !2#cosh@Q~L 2 uz 2 z8u!# 2 @1 2 ~Q

2D0Q@sinh~QL ! 1 2
f~q1 , zs ,q2 , zd! 5 S l 1 l *

D0
D 2E d3rg̃~q1 ; zs , z !

3 exp~iq1 • r!V~r!g̃~q2 ; z, zd!

3 exp~iq2 • r!. (52)

Next we substitute the explicit expression for the opera-
tor V into Eq. (52). Similarly to the case of half-space ge-
ometry, we can act by the operator ¹r to the left (which
results in a change of sign of the corresponding term since
¹r

† 5 2¹r). This yields the following integral equation:

f~q1 , zs ; q2 , zd! 5 E d3r@kA~q1 , q2 , zs , zd ; z !da~r!

1 kD~q1 , q2 , zs , zd ; z !dD~r!#

3 exp@i~q1 1 q2! • r#, (53)
where

kA~q1 , q2 , zs , zd ; z !

5 S l 1 l *

D0
D 2

g̃~q1 ; zs , z !g̃~q2 ; z, zd!, (54)

kD~q1 , q2 , zs , zd ; z !

5 S l 1 l *

D0
D 2F ]g̃~q1 ; zs , z !

]z

]g̃~q2 ; z, zd!

]z

2 q1 • q2 g̃~q1 ; zs , z !g̃~q2 ; z, zd!G . (55)

Let us adduce the limiting expressions for the kernels
kA and kD . For purely absorbing boundaries, the result

2#cosh@Q~L 2 uz 1 z8u!# 1 2Ql sinh@Q~L 2 uz 2 z8u!#

cosh~QL ! 1 ~Ql !2 sinh~QL !#
.

(49)
is

l !

Ql

kA~q1 , q2 , zs , zd ; z ! 5 S l *

D0
D 2 sinh@Q~q1!~L 2 uz 2 zsu!#sinh@Q~q2!~L 2 uzd 2 zu!#

sinh@Q~q1!L#sinh@Q~q2!L#
, (56)

kD~q1 , q2 , zs , zd ; z ! 5 S l *

D0
D 2H Q~q1!Q~q2!D~zs ,zd!cosh@Q~q1!~L 2 uz 2 zsu!#cosh@Q~q2!~L 2 uzd 2 zu!#

sinh@Q~q1!L#sinh@Q~q2!L#

2
q1 • q2 sinh@Q~q1!~L 2 uz 2 zsu!#sinh@Q~q2!~L 2 uzd 2 zu!#

sinh@Q~q1!L#sinh@Q~q2!L#
J . (57)

In the opposite limit of purely reflecting boundaries, we obtain

kA~q1 , q2 , zs , zd ; z ! 5
cosh@Q~q1!~L 2 uz 2 zsu!#cosh@Q~q2!~L 2 uzd 2 zu!#

D0
2Q~q1!Q~q2!sinh@Q~q1!L#sinh@Q~q2!L#

, (58)

kD~q1 , q2 , zs , zd ; z ! 5
1

D0
2 H D~zs , zd!sinh@Q~q1!~L 2 uz 2 zsu!#sinh@Q~q2!~L 2 uzd 2 zu!#

sinh@Q~q1!L#sinh@Q~q2!L#

2
q1 • q2 cosh@Q~q1!~L 2 uz 2 zsu!#cosh@Q~q2!~L 2 uzd 2 zu!#

Q~q1!Q~q2!sinh@Q~q1!L#sinh@Q~q2!L#
J . (59)
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Here D(zs , zd) 5 1 if zs 5 zd and D(zs , zd) 5 21 if zs
Þ zd .

In principle, Eqs. (53)–(55) can be used for the purpose
of reconstruction without any further modifications (e.g.,
by analytic singular-value decomposition6,7). However,
the transverse part of Eq. (53) does not have the Laplace
form that would guarantee the existence and uniqueness
of the solution to the inverse problem. We will show be-
low that it can be brought to the Fourier–Laplace form by
taking a linear superposition of measurements with
sources and detectors located on the same plane and on
different planes. First, for illustrative purposes we com-
pare the kernels kA for the case of one and two boundary
planes. In Fig. 2 these kernels are plotted as functions of
z/L assuming that Q(q1) 5 Q(q2) 5 Q or, using new
variables defined by Eqs. (39)–(41), h1 5 h2 5 h. It can
be seen that the kernels for the half-space and the slab
cases virtually coincide when h is large but deviate sig-
nificantly when it is small or comparable to unity. We
can conclude that for resolution of features on scales
much smaller than L (which corresponds to large h1 , h2)
one can neglect the influence of the second boundary, as-
suming that both sources and detectors are located on the
first boundary. However, reconstruction of the overall
shape of objects on scales of the order of L requires taking
the second boundary into account.

Now we show that integral equation (53) can be
brought to the Fourier–Laplace form. As in part I,1 we

Fig. 2. Kernel kA that appears in the transverse parts of inte-
gral equations (34) (for the half-space geometry) and (53) (for the
slab geometry) as a function of z for (a) purely absorbing and (b)
purely reflecting boundary conditions. The kernels are calcu-
lated for Q(q1) 5 Q(q2) 5 2h. In both cases, sources and de-
tectors are located on the plane z 5 0.
restrict the domain of the data function to q1 5 q2 5 q.
Then it is possible to show that

kA~q, q, 0, 0; z ! 1 a~q !kA~q, q, 0, L; z !

1 b~q !kA~q, q, L, L; z ! 5 c~q !exp~22Qz !, (60)

kD~q, q, 0, 0; z ! 1 a~q !kD~q, q, 0, L; z !

1 b~q !kD~q, q, L, L; z ! 5 @Q2~q ! 2 q1 • q2#c~q !

3 exp~22Qz !, (61)

where

a~q ! 5 22h, b~q ! 5 h2, (62)

c~q ! 5 F l 1 l *

D0~Ql 1 1 !
G2

, (63)

h [
Ql 2 1

Ql 1 1
exp~2QL !. (64)

Therefore by forming a linear combination

c ~q1 , q2! 5
1

c~q !
@ f~q1 , 0; q2 , 0 ! 1 a~q !f~q1 , 0; q2 , L !

1 b~q !f~q1 , L; q2 , L !#uq15q25q , (65)

we see that

c ~q1 , q2! 5 E d3r$da~r! 1 @Q2~q ! 2 q1 • q2#dD~r !%

3 exp@i~q1 1 q2! • r 2 2Q~q !z#. (66)

Note that Eq. (66) has the form of integral equation (38)
with uq1u 5 uq2u 5 q. Thus we obtain the desired
Fourier–Laplace form that upon inversion establishes the
existence and uniqueness of the solution to the inverse
problem.

To conclude this section, we note the limiting forms for
the coefficients a(q), b(q), and c(q). For purely absorb-
ing boundaries we obtain

a~q ! 5 2 exp@2Q~q !L#, (67)

b~q ! 5 exp@22Q~q !L#, (68)

c~q ! 5 ~ l * /D0!2. (69)

For purely reflecting boundaries, the corresponding ex-
pressions are

a~q ! 5 22 exp@2Q~q !L#, (70)

b~q ! 5 exp@22Q~q !L#, (71)

c~q ! 5 @1/D0Q~q !#2. (72)

5. CYLINDRICAL GEOMETRY
We now turn our attention to the cylindrical geometry.
In a cylindrical system of coordinates (z, r, w) the mea-
surement surface is specified by r 5 R, where R is a con-
stant, and the medium is in the region r , R.

We start by deriving the unperturbed Green’s function.
It can be represented as
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G0~r, r8! 5
1

2p (
m52`

` E dq

2p
exp@im~ w 2 w8!#

3 exp@iq~z 2 z8!#g~m, q; r, r8!, (73)

where g(m, q; r, r8) must satisfy the one-dimensional
equation

F1

r

]

]r
r

]

]r
2

m2

r2 2 Q2~q !Gg~m, q; r, r8! 5 2
d ~r 2 r8!

D0r
.

(74)

The solution to Eq. (73) is given by a combination of modi-
fied Bessel and Hankel functions of the first kind, Im(Qr)
and Km(Qr), and must satisfy the following conditions:

g~m, q; 0, r8! , `,

g~m, q; r8 1 e, r8! 2 g~m, q; r8 2 e, r8! 5 0,

g8~m, q; r8 1 e, r8! 2 g8~m, q; r8 2 e, r8! 5 21/D0r8,

g~m, q; R, r8! 1 l g8~m, q; R, r8! 5 0.
(75)

The result is

g~m, q; r, r8!

5
1

D0
FKm~Qr.!Im~Qr,!

2
Km~QR ! 1 Ql Km8 ~QR !

Im~QR ! 1 Ql Im8 ~QR !
Im~Qr!Im~Qr8!G , (76)

where r. and r, are the greater and the lesser of r and
r8. On the measurement surface Eq. (76) becomes

g~m, q; r, R ! 5 g~m, q; R, r! [
l

D0
g̃~m, q; r! (77)

with

g̃~m, q; r! 5
1

R

Im~Qr!

Im~QR ! 1 Ql Im8 ~QR !
, (78)

where we have used the identity

Km~x !Im8 ~x ! 2 Km8 ~x !Im~x ! 5 1/x. (79)

Further derivations are similar to the case of free
boundaries, which is discussed in Section I.4.1 For the
sake of generality, we will use the method of reconstruc-
tion that utilizes two unit vectors (Subsection I.4.D1).
We introduce two different and mathematically indepen-
dent polar angles, w̃1 and w̃2 , and two corresponding unit
vectors, ê1 and ê2 , that are perpendicular to the axis of
the cylinder. Next, we define the Fourier-transformed
data function according to

f~m1 , q1 , w̃1 ; m2 , q2 , w̃2!

5 E
2`

`

dz1dz2E
0

2p

dw1dw2f~ w1 , z1 ; w2 , z2!exp$i@q1z1

1 q2z2 1 m1~ w1 2 w̃1! 1 m2~ w2 2 w̃2!#%, (80)

where f( w1 , z1 ; w2 , z2) is defined in Eqs. (22) and (23).
Transformation (80) can be easily evaluated and yields
f~m1 , q1 , w̃1 ; m2 , q2 , w̃2!

5 S l 1 l *

D0
D 2E d3r exp$i@m1~ w 2 w̃1! 1 q1z#%

3 g̃~m1 , q1 ; r!Vexp$i@m2~ w 2 w̃2!

1 q2z#%g̃~m2 , q2 ; r!. (81)

Next we define a new data function by

c ~q1 , w̃1 ; q2 , w̃2! 5 S D0R

l 1 l * D 2

(
m1 ,m252`

`

$Im1
@Q~q1!R#

1 Ql Im1
8 @Q~q1!R#%$Im2

@Q~q2!R#

1 Ql Im2
8 @Q~q2!R#%

3 f~m1 , q1 , w̃1 ; m2 , q2 , w̃2! (82)

and use the identity

(
m52`

`

Im~w !exp~imu! 5 exp~w cos u! (83)

to show that

c ~q1 , ê1 ; q2 , ê2! 5 E d3r exp@Q~q1!r • ê1 1 iq1z#V

3 exp@Q~q2!r • ê2 1 iq2z#. (84)

Here r 5 r 2 êz(êz • r) is a two-dimensional vector per-
pendicular to the axis of the cylinder characterized by the
polar angle w. As before, we evaluate the action of the
operator V to arrive at

c ~q1 , ê1 ; q2 , ê2! 5 E d3r$da~r! 1 @Q~q1!Q~q2!ê1 • ê2

2 q1q2#dD~r!%exp$@Q~q1!ê1

1 Q~q2!ê2# • r 1 i~q1 1 q2!z%.

(85)

As shown in part I,1 arguments similar to those presented
for the planar case may be used to prove the existence of
the solution to integral equation (85) for physically ad-
missable data. The proof of uniqueness of this solution is
analogous to that presented for the half-space geometry
and will not be further described.

6. SPHERICAL GEOMETRY
In the spherical geometry with r 5 (r, u, w) the data
function is measured on the spherical surface r 5 R and
the medium is located inside the sphere. The unper-
turbed Green’s function can be represented as

G0~r, r8! 5 (
l50

`

(
m52l

l

g~l; r, r8!Ylm~ r̂!Ylm* ~ r̂8!, (86)

where Ylm( r̂) are spherical harmonics and r̂ 5 r/r is a
unit vector characterized by the angular variables u and
w. The radial function g(l; r, r8) satisfies the one-
dimensional equation
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F 1

r2

]

]r
r2

]

]r
2

l~l 1 1 !

r2 2 k2Gg~l; r, r8! 5 2
d ~r 2 r8!

D0r2 .

(87)

The solution to Eq. (87) can be found as a linear combina-
tion of modified spherical Bessel and Hankel functions of
the first kind, il(kr) and kl(kR), and must satisfy the fol-
lowing conditions:

g~l; 0, r8! , `,

g~l; r8 1 e, r8! 2 g~l; r8 2 e, r8! 5 0,

g8~l; r8 1 e,r8! 2 g8~l; r8 2 e, r8! 5 21/D0~r8!2,

g~l; R, r8! 1 l g8~l; R, r8! 5 0. (88)

The resulting expression for g is

g~l; r, r8! 5
2k

pD0
F il~kr,!kl~kr.!

2
kl~kR ! 1 kl kl8~kR !

il~kR ! 1 kl il8~kR !
il~kr !il~kr8!G ,

(89)
where r. and r, are the greater and the lesser of r and r8.
As in the cases of the planar and cylindrical geometries,
we simplify the above expression by observing that either
r or r8 must be equal to R in the expression for the data
function:

g~l; r, R ! 5 g~l; R, r ! [
l

D0
g̃~l; r !, (90)

g̃~l; r ! 5
1

R2

il~kr !

il~kR ! 1 kl il8~kR !
, (91)

where we have used the Wronskian

kl~x !il8~x ! 2 kl8~x !il~x ! 5
p

2x2 . (92)

The data function defined on the spherical surface is a
function of the angular variables u1 , w1 , and u2 , w2 of
sources and detectors, respectively. For simplicity, we
will use the unit vectors r̂1 5 (u1 , w1) and r̂2 5 (u2 , w2).
Then the data function can be written as

f~ r̂1 , r̂2! 5 S l 1 l *

D0
D 2

(
l1 ,l2

(
m1 ,m2

E d3rg̃~l1 ; r !Yl1m1
~ r̂1!

3 Yl1m1
* ~ r̂!Vg̃~l2 ; r !Yl2m2

~ r̂!Yl2m2
* ~ r̂2!. (93)

Instead of Fourier transforming the data function as in
the planar and cylindrical geometries, we project it onto
spherical harmonics and define

f~l1 , m1 ; l2 , m2!

5 E f~ r̂1 , r̂2!Yl1m1
* ~ r̂1!Yl2m2

~ r̂2!d2r̂1d2r̂2 . (94)

The equation for the projected data function
f(l1 , m1 ; l2 , m2) becomes

f~l1 , m1 ; l2 , m2! 5 S l 1 l *

D0
D 2E d3rg̃~l1 ; r !

3 Yl1m1
* ~ r̂!Vg̃~l2 ; r !Yl2m2

~ r̂!. (95)

Now we use the expansion of the plane wave in the form
exp~a • b! 5 4p(
l50

`

(
m52l

l

i l~ab !Ylm* ~ â!Ylm~ b̂! (96)

and properties of the function g̃ [Eq. (91)] to show that the
transformed data function

c ~ ê1 , ê2! 5 ~4p!2R4 (
l1 ,l2

(
m1 ,m2

@il1
~kR ! 1 kl il1

8 ~kR !#

3 @il2
~kR ! 1 kl il2

8 ~kR !#

3 Yl1m1
~ ê1!Yl2m2

~ ê2!f~l1 , m1 ; l2 , m2!

(97)

satisfies the integral equation

c ~ ê1 , ê2! 5 E d3r exp~kê1 • r!V exp~kê2 • r!

5 E d3r@da~r! 1 k2ê1 • ê2dD~r!#

3 exp@k~ ê1 1 ê2! • r#, (98)

where ê1 and ê2 are two arbitrary unit vectors.
As shown in part I,1 the existence of the solution to in-

tegral equation (98) for physically admissible data is
readily established. The proof of uniqueness of this solu-
tion is analogous to that presented for the half-space ge-
ometry and will not be repeated.

In conclusion, we have shown that the linearized in-
verse problem in diffusion tomography has a unique solu-
tion with arbitrary boundary conditions imposed on pla-
nar, cylindrical, and spherical surfaces. This result was
achieved by bringing the integral equations for da and dD
to the Fourier–Laplace form. In general, only one modu-
lation frequency is sufficient for reconstruction of da when
it is known a priori that dD 5 0 and vice versa. For si-
multaneous reconstruction of these two coefficients, mea-
surements with two modulation frequencies are required.
In the next paper in the series we will consider the nu-
merical inversion of the integral equations, using the
method of singular-value decomposition.

ACKNOWLEDGMENTS
This research was supported by grant P41RR02305 from
the National Institutes of Health. The authors would
like to express their gratitude to R. Aronson for his ex-
tremely useful comments on an earlier version of this pa-
per.

The authors can be contacted by e-mail: V. A. Markel,
vmarkel@altai.wustl.edu; J. C. Schotland, jcs@
ee.wustl.edu.

REFERENCES AND NOTES
1. V. A. Markel and J. C. Schotland, ‘‘The inverse problem in

optical diffusion tomography. I. Fourier-Laplace inver-
sion formulas,’’ J. Opt. Soc. Am. A 18, 1336–1347 (2001).

2. A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic, San Diego, Calif., 1978), Vol. 1.



566 J. Opt. Soc. Am. A/Vol. 19, No. 3 /March 2002 V. A. Markel and J. C. Schotland
3. J. Ripoll and M. Nieto-Vesperinas, ‘‘Index mismatch for dif-
fuse photon density waves at both flat and rough diffuse–
diffuse interfaces,’’ J. Opt. Soc. Am. A 16, 1947–1957
(1999).

4. R. Aronson, ‘‘Boundary conditions for diffuse light,’’ J. Opt.
Soc. Am. A 12, 2532–2539 (1995).

5. An explicit characterization of admissible scattering data
for which integral equation (38) is solvable is difficult to
state. An implicit characterization consists of the closure
of the image under the integral operator defined by Eq. (38)
of all functions with compact support in L2.

6. V. A. Markel and J. C. Schotland, ‘‘Inverse scattering for the
diffusion equation with general boundary conditions,’’ Phys.
Rev. E 64, R035601 (2001).

7. J. C. Schotland and V. A. Markel, ‘‘Inverse scattering with
diffusing waves,’’ J. Opt. Soc. Am. A 18, 2767–2777 (2001).


