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Inverse scattering with diffusing waves
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We consider the problem of imaging the optical properties of a highly scattering medium probed by diffuse
light. An analytic solution to this problem is derived from the singular value decomposition of the forward-
scattering operator, which leads to explicit inversion formulas for the inverse scattering problem with diffusing
waves. Computer simulations are used to illustrate these results in model systems. © 2001 Optical Society
of America
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1. INTRODUCTION
There has been considerable recent interest in the prob-
lem of developing tomographic methods for imaging in
highly scattering systems.1–7 In such systems multiple
scattering of light leads to the breakdown of geometrical
optics and presents a fundamental physical obstruction to
optical imaging. Two conceptually different approaches
to this problem are currently under investigation. In the
first approach, referred to as ballistic imaging, unscat-
tered photons are selected by an optical gate and are then
used for image formation.1–6 The intensity of such un-
scattered radiation is highly attenuated, and thus this ap-
proach is subject to practical limitations beyond which
there is no way to improve its performance. The second,
more powerful approach is to directly use the scattered
radiation for image reconstruction.7–21 Here, in the
usual formulation of the image reconstruction problem,
the diffusive nature of multiply scattered light is ex-
ploited to effect an approximate inversion of the forward-
scattering problem by a numerical method. This ap-
proach, however, is severely limited by the computational
complexity of the inversion procedure.

In this paper we describe an analytic inverse scattering
method that may be used to reconstruct the optical ab-
sorption and diffusion coefficients of a highly scattering
system probed by diffusive light. The physical situation
that we consider is illustrated in Fig. 1, where a diffusing
wave is incident upon a highly scattering object. The in-
tensity of the scattered wave is measured on a surface ad-
jacent to the object and is used as the data in the inverse
scattering procedure. The solution to the inverse prob-
lem is then obtained in the form of explicit inversion for-
mulas. The starting point for this development is the
analytic construction of the singular value decomposition
(SVD) of the linearized forward-scattering operator. The
SVD provides a precise characterization of the inverse
problem and leads to an image reconstruction algorithm
with distinct computational advantages. In particular,
the computational complexity scales as O(N log N), where
N is the number of measurements (source–detector
pairs).

The inversion procedure that is described in this paper
is applicable to imaging in many highly scattering sys-
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tems in which the transport of light may be regarded as
diffusive. Such systems are ubiquitous in nature and in-
clude biological tissue, the ocean, the atmosphere, and in-
terstellar media. Diffusion tomography refers to a form
of biomedical imaging that utilizes near-infrared diffuse
light to image tissue structure while simultaneously ob-
taining physiologically and functionally important spec-
troscopic information. A clinical application of current
interest is the imaging of tissue oxygenation in tumors.

It is important to note that although the main focus of
this work is the inverse scattering problem for diffuse
light, the results presented are, in fact, very general.
Similar equations describe the propagation of heat in a
body with fluctuating thermal conductivity or the flow of
steady current in a medium with fluctuating electrical
conductivity. In both situations the proposed solution to
the inverse problem can be used to reconstruct the distri-
bution of these conductivities from an appropriate set of
measurements.

This paper is organized as follows. In Section 2 we de-
rive the integral equations that describe the forward-
scattering problem within the diffusion approximation.
In Section 3 we consider the image reconstruction prob-
lem in the backscattering geometry as a means of intro-
ducing the methods that are further developed in Section
4 to treat the general inverse problem. Computer simu-
lations illustrating the image reconstruction algorithm
are presented in Section 5.

2. INTEGRAL EQUATIONS
Consider an experiment in which light propagates in a
highly scattering medium characterized by an optical ab-
sorption coefficient a(r) and a photon diffusion coefficient
D(r). In this situation the transport of light can be re-
garded as occurring by means of a diffusing wave whose
energy density u(r, t) satisfies the equation

] tu~r, t ! 5 ¹ • @D~r !¹u~r, t !# 2 a~r !u~r, t ! 1 S~r, t !,
(1)

where S(r, t) is the power density of the source. If the
source is amplitude modulated at frequency v, then
2001 Optical Society of America
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S~r, t ! 5 @1 1 A exp~2ivt !#S~r !, (2)

where S(r) is the unmodulated source power density and
A < 1. If u(r, t) is decomposed into a zero-frequency
component u0(r) and a frequency-dependent component
u(r) by

u~r, t ! 5 u0~r ! 1 A exp~2ivt !u~r !, (3)

then u(r) obeys the equation

2¹ • @D~r !¹u~r !# 1 @a~r ! 2 iv#u~r ! 5 S~r !. (4)

It is important to note that the case of pulsed sources with
S(r, t) 5 S(r)d (t) is also readily treated. In this case
the Fourier transform of u(r, t) with respect to t leads di-
rectly to u(r).

The solution to Eq. (4) may be expressed in terms of the
diffusion Green’s function G(r, r8) and is given by

u~r ! 5 E d3r8 G~r, r8!S~r8!, (5)

where G(r, r8) satisfies the equation

@2¹r • D~r !¹r 1 a~r ! 2 iv#G~r, r8! 5 d ~r 2 r8!.
(6)

In an infinite homogeneous medium with absorption a0
and diffusion constant D0 , the Green’s function G0(r, r8)
is given by

G0~r1 , r2! 5
exp~2k0ur1 2 r2u!

4pD0ur1 2 r2u
, (7)

where the wave number

k0
2 5

a0 2 iv

D0
. (8)

For later reference we provide the plane-wave decomposi-
tion of G0(r1 , r2), which is of the form

G0~r, r8! 5
1

2D0
E d2q

~2p!2 Q~q !21

3 exp@iq • ~r 2 r8! 2 Q~q !uz 2 z8u#, (9)

where r 5 (r, z) and r8 5 (r8, z8). This result follows
from the Fourier integral representation of G0(r1 , r2),

Fig. 1. Experimental geometry. The sample occupies the half-
space z . 0 of an infinite medium with sources and detectors lo-
cated on the plane z 5 0 with transverse coordinate r. A typical
photon path is also shown.
G0~r, r8! 5
1

D0
E d3k

~2p!3

exp@ik • ~r 2 r8!#

k2 1 k0
2 , (10)

and the identity

E
2`

` exp~ikzz !

kz
2 1 q2 1 k0

2 dkz 5
p

Q~q !
exp@2Q~q !uzu#, (11)

where

Q~q ! [ ~q2 1 k0
2!1/2. (12)

With the use of standard perturbative methods, the
Green’s function may be obtained from the Dyson equa-
tion

G~r1 , r2! 5 G0~r1 , r2!

2 E d3r@G0~r1 , r !G~r, r2!da~r !

1 ¹rG0~r1 , r ! • ¹rG~r, r2!dD~r !], (13)
where G0(r1 , r2) is the unperturbed Green’s function for
a homogeneous reference medium with absorption a0 and
diffusion coefficient D0 . Here da(r) 5 a(r) 2 a0 and
dD(r) 5 D(r) 2 D0 denote the spatial fluctuations in the
absorption and diffusion coefficients away from their val-
ues in the reference medium.

The transmission T(r1 , r2) of a diffusing wave that is
generated by a point source at r1 and is detected at r2 is
defined as the transmitted intensity of the frequency-
dependent component of the wave normalized by the in-
tensity that would be measured in the reference medium.
Equation (13) may be used to obtain an integral equation
for the transmission of the form

T~r1 , r2! 5 1 2
1

G0~r1 , r2!

3 E d3r@G0~r1 , r !G~r, r2!da~r !

1 ¹rG0~r1 , r ! • ¹rG~r, r2!dD~r !#. (14)
Equation (14) is an exact expression for the transmission
that may be used to generate a perturbation expansion in
da(r) and dD(r). This expansion is analogous to the
Born series and, to lowest order in da(r) and dD(r), leads
to the Born approximation.18 Standard diagrammatic
techniques (as shown in Fig. 2) may be used to resum this
expansion, with the result that, to first order in da and
dD,

2ln T~r1 , r2! 5 E d3r@GA~r;r1 , r2!da~r !

1 GD~r;r1 , r2!dD~r !#, (15)

Fig. 2. Diagrammatic expansions of T and ln T. The solid lines
indicate a factor of G0 , the black circles represent a factor of da
weighted by the appropriate combinatorial factors, with the in-
ternal coordinates integrated, and the white circles indicate an
unintegrated coordinate.
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Fig. 3. Contour plots of (a) GA and (b) GD in an infinite nonabsorbing medium for k0L 5 1, where L denotes the source–detector pair
separation.
where the absorption kernel

GA~r;r1 , r2! 5 2
d ln T~r1 , r2!

da~r !
U

da~r !50,dD~r !50

5
1

G0~r1 , r2!
G0~r1 , r !G0~r, r2! (16)

and the diffusion kernel
GD~r;r1 , r2! 5 2
d ln T~r1 , r2!

dD~r !
U

da~r !50,dD~r !50

5
1

G0~r1 , r2!
¹rG0~r1 , r !

• ¹rG0~r,r2!. (17)

Contour plots of GA(r;r1 , r2) and GD(r;r1 , r2) in an infi-
nite medium are shown in Fig. 3. Equation (15) provides
an explicit solution to the forward problem in diffusion to-
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mography in the form of an integral equation that relates
T(r1 , r2) to da(r) and dD(r).

3. INVERSE PROBLEM
In the diffusive inverse scattering problem, we wish to re-
construct the absorption and diffusion coefficients from
the intensity of the diffusing wave measured on a surface
adjacent to the sample. The approach to this problem
described here leads to the construction of explicit inver-
sion formulas for the integral equation (15) by construct-
ing the SVD of the forward-scattering operator. For sim-
plicity we consider an infinite medium in which the
sources and detectors are located on the plane z 5 0.
Other geometries are also readily treated. To this end
we denote by r1 and r2 the transverse coordinates of
the source and detector, and we put f(r1 , r2)
5 2(G0(r1 , 0;r2 , 0)ln T(r1 , 0;r2 , 0). In this notation
Eq. (15) may be rewritten as an integral equation for the
scattering data f(r1 , r2), which is given by

f~r1 , r2! 5 E d3r@G0~r1 , 0;r !G0~r2 , 0;r !da~r !

1 ¹rG0~r1 , 0;r ! • ¹rG0~r2 , 0;r !dD~r !#.

(18)

The image reconstruction problem now consists of solving
the integral equation (18) for da(r) and dD(r) when
f(r1 , r2) is specified.

We introduce the Fourier transform with respect to r2
of the scattering data, which is defined by

fq~r1! 5 E d2r2 exp~iq • r2!f~r1 , r2!. (19)

Thus Eq. (18) becomes

fq~r1! 5 E d3r@Kq
A~r1 , r !da~r ! 1 Kq

D~r1 , r !dD~r !#,

(20)

where

Kq
A~r1 , r ! 5

1

2D0Q~q !
exp@iq • r 2 Q~q !uzu#

3 G0~r1 , 0;r !, (21)

Kq
D~r1 , r ! 5

1

2D0Q~q !
exp@iq • r 2 Q~q !uzu#

3 @iq 2 Q~q !ẑ# • ¹rG0~r1 , 0;r ! (22)

with q 5 (q, 0). It is important to observe that the de-
scriptions of the scattering experiment in terms of fq(r1)
or f(r1 , r2) are equivalent. Thus da(r) and dD(r) can
be reconstructed from either of the integral equations (18)
or (20). Starting from the latter integral equation, we de-
scribe two approaches to this problem. In the first ap-
proach, for a single fixed value of the wave vector q, we
construct the SVD of the operators Kq

A,D(r1 , r) and use
this result to solve the integral equation (20). In this
situation, however, a difficulty arises; namely, da(r) and
dD(r), which are functions of three variables, are to be
reconstructed from fq(r1), a function of two variables.
As a consequence, the single-wave-vector form of the in-
verse problem is severely ill-posed and leads to recon-
structions with poor depth-dependent resolution. Note
that in the special case in which the medium is separable,
a single wave vector suffices, consistent with the results
of others.22,23 In the second approach, we systematically
improve upon the first by making use of the scattering
data for a finite number of wave vectors. This overcomes
the problem of recovering three-dimensional information
from two-dimensional data.

A. Single-Wave-Vector Solutions
In this subsection we consider the reconstruction of the
absorption and diffusion coefficients from the scattering
data fq(r1) for a fixed value of the wave vector q. We
first discuss the problem of reconstructing the absorption
in a medium with a spatially uniform diffusion coefficient.
In this situation fq(r1) satisfies the integral equation

fq~r1! 5 E d3r Kq
A~r1 , r !da~r !. (23)

To proceed, we require the SVD of the operator Kq
A(r1 , r).

To this end the identity (9) may be used to express
Kq

A(r1 , r) as

Kq
A~r1 , r ! 5 E d2q8 sq8q

A gq8q~r1!fq8q
A* ~r !, (24)

where the singular functions are given by

gq8q~r! 5
1

2p
exp@i~q 1 q8! • r#, (25)

f q8q
A

~r ! 5
Nq8q

2p
exp(i~q8 • r 1 uq8q

A
!

2 $@Q~q !#* 1 @Q~q 1 q8!#* %uzu), (26)

with the corresponding singular values

sq8q
A

5
1

4D0
2Nq8quQ~q !Q~q 1 q8!u

. (27)

Here Nq8q is an appropriate normalization factor (whose
explicit form we will not require), chosen so that
^ fq8q

A ,fq9q
A & 5 d (q8 2 q9), and the phase factor is given by

exp~iuq8q
A

! 5
Q~q !Q~q 1 q8!

uQ~q !Q~q 1 q8!u
. (28)

It is readily verified that Eq. (24) defines the SVD of
Kq

A(r1 , r), since

Kq
A* Kq

Af q8q
A

5 ~sq8q
A

!2f q8q
A , (29)

Kq
Af q8q

A
5 sq8q

A gq8q . (30)

The SVD (24) may now be used to obtain the solution to
the integral equation (23). Since da and fq belong to dif-
ferent Hilbert spaces, a solution to the equation Kq

Ada
5 fq is defined to be a minimizer of iKq

Ada 2 fqi .
Among all such solutions, it is conventional to choose the
one with minimum L2 norm.24 This so-called general-
ized solution is unique and is given by
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da~r ! 5 E d2r1 Kq
A1~r, r1!fq~r1!, (31)

where the generalized inverse of Kq
A is given by

Kq
A1~r, r1! 5 E d2q8

1

sq8q
A gq8q

* ~r1!f q8q
A

~r !. (32)

We now turn to the problem of reconstructing the dif-
fusion coefficient of a medium with a spatially uniform
absorption coefficient. Equation (20) thus becomes

fq~r1! 5 E d3r Kq
D~r1 , r !dD~r !. (33)

As above, it follows that Kq
D(r1 , r) is given by the SVD

Kq
D~r1 , r ! 5 E d2q8 sq8q

D gq8q~r1!f q8q
D* ~r ! (34)

with the singular values

sq8q
D

5 sq8q
A uq • ~q 1 q8! 1 Q~q !Q~q 1 q8!u (35)

and fq
D(r) 5 exp(iuq8q

D )fq
A(r). Here the phase u q8q

D is de-
fined by

exp~iuq8q
D

! 5
q • ~q 1 q8! 1 Q~q !Q~q 1 q8!

uq • ~q 1 q8! 1 Q~q !Q~q 1 q8!u

3 exp~iu q8q
A

!. (36)

Thus the solution to the integral equation (33) is given by

dD~r ! 5 E d2r1 Kq
D1~r, r1!fq~r1!, (37)

where

Kq
D1~r, r1! 5 E d2q8

1

sq8q
D gq8q

* ~r1!f q8q
D

~r !. (38)

Finally, we consider the general case of reconstructing
both the absorption and diffusion coefficients. We re-
quire the solution to the integral equation (20), which is
given by

da 5 Kq
A* ~Kq

AKq
A* 1 Kq

DKq
D* !21fq , (39)

dD 5 Kq
D* ~Kq

AKq
A* 1 Kq

DKq
D* !21fq . (40)

Since Kq
AKq

A* and Kq
DKq

D* commute, we may now use the
SVDs of Kq

A and Kq
D to rewrite Eqs. (39) and (40) as

da~r ! 5 E d2r1E d2q8 sq8q
A

@~ sq8q
A

!2 1 ~ sq8q
D

!2#21

3 gq8q
* ~r1!f q8q

A
~r !fq~r1!, (41)

dD~r ! 5 E d2r1E d2q8 sq8q
D

@~ sq8q
A

!2 1 ~ sq8q
D

!2#21

3 gq8q
* ~r1!f q8q

D
~r !fq~r1!, (42)

which is the inversion formula for the inverse problem
with scattering data determined by a single wave vector.
B. Multiple-Wave-Vector Solutions by Singular Value
Decomposition
In this subsection we consider the reconstruction of da
and dD from p measurements of fq(r1) corresponding to
the wavevectors q 5 q1,..., qp . The image reconstruc-
tion problem thus consists of solving the system of inte-
gral equations

Kqi

A da 1 Kqi

D dD 5 fqi
(43)

with i 5 1,..., p. Equation (43) can be rewritten in the
form

Kf 5 f, (44)

where

K 5 F Kq1

A Kqi

D

] ]

Kqp

A Kqp

D
G , (45)

f 5 (da, dD)T, and f 5 (fq1
,..., fqp

)T. The solution to
Eq. (44) follows from the SVD of the operator K(r1 , r),
which is given by

K~r1 ,r ! 5 E d2q(
l51

p

sqlfql~r1!cql* ~r !. (46)

Here the singular functions fql(r1) 5 (fql1,..., fqlp)T

and cql(r) 5 ( cql
A , cql

D )T and the singular values sql are
defined by

KK* fql 5 sql
2 fql , (47)

with

K* fql 5 sqlcql . (48)

To obtain the fql , we rewrite Eq. (47) as

(
j 5 1

p

~Kqi

A Kqj

A* 1 Kqi

D Kqj

D* !fqlj 5 sql
2 fqli . (49)

Then we use the SVDs (24) and (34) to obtain the identi-
ties

Kqi

A Kqj

A* gqqj
5 x ij

A~q !sqqi

A sqqj

A gqqi
, (50)

Kqi

D Kqj

D* qqqj
5 x ij

D~q !sqqi

D sqqj

D gqqi
. (51)

The overlap functions x ij
A(q) and x ij

D(q) are defined by

^ f qqi

A ,f q8qj

A & 5 x ij
A~q !d ~q 2 q8!, (52)

^ fqqi

D ,fq8qj

D & 5 x ij
D~q !d ~q 2 q8!. (53)

Next, we make the ansatz fqlj 5 clj(q)gqqj
and use Eqs.

(49)–(51) to find that the clj(q) satisfy the equation

(
j

Mij~q !clj~q ! 5 sql
2 cli~q !, (54)

where

Mij~q ! 5 x ij
A~q !s qqi

A s qqj

A 1 x ij
D~q !s qqi

D sqqj

d . (55)

Note that cl(q) is an eigenvector of Mij(q) with eigen-
value sql

2 and that, since Mij(q) is symmetric, we can
choose the cl(q) to be orthonormal. Finally, we use Eq.
(48) to obtain the cql(r), which are given by

c ql
A ~r ! 5

1

sql
(

j
s qqj

A clj~q !f qqj

A ~r !, (56)
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cql
D ~r ! 5

1

sql
(

j
sqqj

D clj~q !fqqj

D ~r !. (57)

The solution to Eq. (44) may now be expressed as

f~r ! 5 E d2r1 K 1 ~r, r1!f~r1!, (58)

where

K 1 ~r, r1! 5 E d2q(
l

1

sql
cql~r !fql* ~r1!. (59)

Using this result, we obtain

da~r ! 5 E d2r1E d2q(
l

1

sql
cql

A ~r !fql* ~r1!f~r1!,

(60)

dD~r ! 5 E d2r1E d2q(
l

1

sql
cql

D ~r !fql* ~r1!f~r1!,

(61)

which are the inversion formulas for the inverse scatter-
ing problem with diffusing waves.

Several comments on the above results are necessary.
First, the solution that we have constructed to the inverse
problem is the unique solution of minimum norm given
the scattering data. This statement follows from the re-
sult that the SVD provides the solution to Eq. (20) that
belongs to the orthogonal complement of the null space.24

It is important to note that the size of the null space is
expected to decrease as the number of wave vectors in-
creases, and thus the inversion procedure is systemati-
cally improvable. Second, the SVD provides considerable
information on the degree of ill-posedness of the inverse
problem through the rate of decay of the singular values.
It also gives insight into how much information is con-
tained in the data by controlling which features of da and
dD can be recovered in a stable way, namely, those that
are close to singular functions cql with correspondingly
large singular values. Third, as discussed above, al-
though the inverse problem is ill-posed, by introducing an
appropriate regularization procedure, we construct a so-
lution that is well behaved. In this context, regulariza-
tion consists of cutting off the wave-vector integrations in
Eqs. (60) and (61) at large uqu. Note that regularization
here has a natural physical interpretation. It simply sets
the transverse spatial resolution of the reconstruction.
Fourth, the diffusion imaging experiment is carried out in
the near field of the diffusing wave, even though it is the
far field of the electromagnetic wave that is measured at
the detector. Thus the expectation from geometrical op-
tics that the spatial resolution of the reconstructed image
should be controlled by the wavelength of the diffusing
wave does not hold.

C. Iterative Multiple-Wave-Vector Solutions
We now consider an alternative approach to the multiple-
wave-vector inverse problem. Rather than solving the
integral equations (43) by SVD, we obtain the solution by
an iterative method. It is useful to rewrite Eq. (43) as

Kqi
f 5 fqi

, (62)
where the vector operator Kqi
5 (Kqi

A ,Kqi

D ). To solve Eq.
(62), we introduce the orthogonal projection operators Pi
onto the affine subspace Fi 5 $ f:Kqi

f 5 fqi
%. Then the

solution to Eq. (62) can be obtained by successive projec-
tions onto the Fi , thereby defining a sequence of func-
tions fn that converges to the solution to Eq. (62). Thus
the solution to Eq. (62) is given by

fn11 5 )
i

Pifn , (63)

with n 5 1, 2,... and f1 arbitrary. To make further
progress, we require an explicit form for the projection op-
erator Pi . This is given by

Pif 5 f 1 Kqi
* ~Kqi

Kqi
* !21~fqi

2 Kqi
f ! . (64)

Using this result and Eq. (63), we obtain the recursion re-
lation

f n
i11 5 f n

i 1 Kqi
* ~Kqi

Kqi
* !21~fqi

2 Kqi
f n

i !, (65)

where fn
1 [ fn and f n

p11 [ fn11 . We now rewrite Eq. (65)
as

dan
i11 5 dan

i 1 Kqi

A* ~Kqi

A Kqi

A* 1 Kqi

D Kqi

D* !21

3 ~fqi
2 Kqi

A dan
i 2 Kqi

D dDn
i !, (66)

dDn
i11 5 dDn

i 1 Kqi

D* ~Kqi

A Kqi

A* 1 Kqi

D Kqi

D* !21

3 ~fqi
2 Kqi

A dan
i 2 Kqi

D dDn
i !. (67)

Finally, we use the SVDs of Kqi

A and Kqi

D to obtain

dan
i11~r ! 5 dan

i ~r ! 1 E d2r1E d2q sqqi

A @~ sqqi

A !2

1 ~ sqqi

D !2#21gqqi
* ~r1!f qqi

A ~r !@ fqi
~r1!

2 Kqi

A dan
i ~r1! 2 Kqi

D dDn
i ~r1!#, (68)

dDn
i11~r ! 5 dDn

i ~r ! 1 E d2r1E d2q sqqi

D @~ sqqi

A !2

1 ~ sqqi

D !2#21gqqi
* ~r1!fqqi

D ~r !@ fqi
~r1!

2 Kqi

A dan
i ~r1! 2 Kqi

D dDn
i ~r1!#, (69)

which provides an iterative solution to the inverse scat-
tering problem with diffusing waves. Observe that each
iteration of the inversion procedure is computed analyti-
cally and is similar in form to that of the single-wave-
vector case considered above. Note that the computa-
tional complexity per iteration is O(N log N), where N is
the number of source–detector pairs. This should be
compared with the O(N2) complexity of numerical itera-
tive algorithms such as the algebraic reconstruction
technique.24 Implementation of this algorithm will be
presented elsewhere.
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4. NUMERICAL RESULTS AND DISCUSSION
A. General Comments on the Reconstruction
Algorithm
To illustrate the inversion formulas derived in this paper,
we consider a few numerical examples. Namely, we will
apply the multiple-wave-vector solutions obtained in Sub-
section 4.B. As follows from Eqs. (60) and (61), after sub-
stitution of the explicit expressions for the singular func-
tions, the inversion formulas for da and dD can be
rewritten as

da~r ! 5 S D0

p
D 2E d2q exp~iq • r!

3 (
k,l

hA~z;q, qk!Akl
21~q !z~q, ql!, (70)

dD~r ! 5 S D0

p
D 2E d2q exp~iq • r!

3 (
k,l

hD~z;q, qk!Akl
21~q !z~q, ql!, (71)

where we have used the following notation:

hA~z;q, qk! 5 exp$2@Q* ~qk! 1 Q* ~q 1 qk!#z%, (72)

hD~z;q, qk! 5 t* ~qk , q !exp$2@Q* ~qk! 1 Q* ~q 1 qk!#z%,

(73)

z~q, qk! 5 Q~qk!Q~qk 1 q !f̂(2~qk 1 q !, qk), (74)

t~qk , q ! 5 qk • ~qk 1 q ! 1 Q~qk!Q~qk 1 q !, (76)

and f̂(q1 , q2) is the Fourier transform of the scattering
data f(r1 , r2).

Several comments on the above equations are neces-
sary. First, they were obtained under the assumption
that da and dD are nonzero only for 0 < z < L. This
corresponds to the experimental situation in which the
object to be imaged is spatially confined. It also improves
the numerical stability of the reconstruction. Math-
ematically, the consequence of this assumption is that the
spatial integrals in the inner products defining the
x ij(q)’s must be evaluated in the region 0 < z < L.
Note that the limit L → ` is well defined, since the real
part of the exponential factor in Eq. (75) is positive. Sec-
ond, the expression Aij

21(q) 5 ( lcli* (q)clj(q)/sql
2 . In fact,

although the matrix A is nonnegative definite, many of its
eigenvalues are extremely small. As a result, inversion
of A is not well defined numerically. However, diagonal-
ization of A is numerically stable. Therefore we use the
above expansion of A21, where the terms with singular
values sql smaller than a certain threshold e are not in-
cluded. This procedure is mathematically analogous to

Akl~q ! 5
1 2 exp$@Q~qk! 1 Q~qk 1 q ! 1 Q* ~ql! 1

Q~qk! 1 Q~qk 1 q ! 1 Q* ~ql! 1 Q
regularization of the SVD and is crucial for the calcula-
tions reported here. Finally, it is important to appreciate
that an image reconstruction algorithm based on Eqs.
(70) and (71) has, with the use of the fast Fourier trans-
form, computational complexity O(N log N), where N is
the number of source–detector paris. This should be
compared with the O(N3) complexity of a direct numeri-
cal inversion of the integral equation (15).

The set of two-dimensional vectors qk is, in principle,
arbitrary. Theoretically, by using a larger number of
qk’s, the inverse problem should become better condi-
tioned. In practice, however, when the dimension of A in-
creases, the number of singular values that are above the
threshold e tends to remain constant. Therefore the
number of useful qk’s is limited. In our numerical ex-
amples, we used a set of approximately 40 qk’s, all of
which were collinear. This choice avoids some additional
degeneracies of A, which originate from the invariance of
A with respect to the transformation qk → 2qk
1 2(qkq)/q/q2.

The inversion formulas (70) and (71) use the Fourier-
transformed rather than the real-space scattering data.
Theoretically, both descriptions are equivalent. How-
ever, in practice, the calculation of the Fourier-
transformed scattering data is limited by the number of
source–detector pairs. In the examples reported here,
we demonstrate the feasibility of the SVD reconstruction
algorithms and avoid the numerical errors associated
with a finite number of source–detector pairs. This is

achieved by solving the forward problem and obtaining
f(q1 , q2) analytically. For this purpose we employed the
solution to the forward-scattering problem produced by a
finite number of pointlike absorbers and scatterers:

da~r ! 5 (
k51

NA

akd ~r 2 rk
A!, (77)

dD~r ! 5 (
k51

ND

Dkd ~r 2 rk
D!. (78)

Here NA and ND are the numbers of absorbers and scat-
terers, respectively, and rk

A(D) are the coordinates of ab-
sorbers (scatterers). We stress that the coordinates of
the absorbers and scatterers are used only for the forward
problem calculation and that no a priori information
about da or dD is used in the inversion procedure. Note
also that the images obtained from the forward data cal-
culated in this way demonstrate the resolution of point
objects.

The Fourier-transformed forward data for da and dD
given by Eqs. (77) and (78) can be easily obtained from
Eq. (18):

* ~ql 1 q !#L%

l 1 q !
@1 1 t~qk , q !t* ~ql , q !#, (75)
Q

* ~q
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Fig. 4. Tomographic images of four pointlike absorbers. The longitudinal ranges of the tomographic slices (all lengths are in centime-
ters) are 210 < x, y < 10. The coordinates of absorbers are x 5 25, y 5 25,z 5 2 (lower left corner); x 5 0, y 5 0, z 5 5 (center);
x 5 5, y 5 25, z 5 5 (lower right corner); and x 5 5, y 5 5, z 5 8 (upper right corner). The reconstruction is done for zero modulation
frequency (v 5 0) with wavelength l 5 2p/k0 5 10. The images are calibrated from 0 (black) to 1 (white) in absolute scale. Here
black corresponds to da 5 0 and white to the maximum absolute value of da obtained for a pointlike absorber located at a particular
depth.
f̂(2~qk 1 q !, qk)

5
1

~2D0!2Q~qk!Q~qk 1 q !
X(

l51

NA

a l exp$2iq • r l
A

2 @Q~qk! 1 Q~qk 1 q !#zl
A% 1 t~qk , q !(

l51

ND

Dl

3 exp$2iq • r l
D 2 @Q~qk! 1 Q~qk 1 q !#zl

D%C.
(79)
Our numerical procedure consists of the following
steps:

• Generate the forward solution for a fixed number of
pointlike absorbers and scatterers.

• Define a set of two-dimensional vectors qk and q [the
latter are used in numerical integration over d2q accord-
ing to Eqs. (70) and (71)].

• Generate the fields h(z; q, qk) and z(q, qk) for the
values of qk and q determined previously.

• Integrate over d2q. For each value of q, the matrix
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A(q) is diagonalized, and the inner product ^h, A21z& is
calculated by using the regularization procedure (only
singular values with sql . e are included in the summa-
tion).

Note that A(q) does not depend on the scattering data.
Therefore, for given discrete values of q and qk , diagonal-
ization of A is performed only once, even for multiple re-
constructions.

B. Reconstruction of da
We start with the reconstruction of da when dD is as-
sumed to be zero. We considered the simplest case of a

Fig. 5. Reconstruction in a one-dimensional geometry with infi-
nitely thin plane absorbers located at different depths z0 .
cw experiment with the ‘‘wavelength’’ of the diffusing
wave as l 5 2p/k0 5 10 cm. This value of k0 is typical
for human tissue with near-infrared light.

Since k0 is real in a cw experiment, the matrix A is real
and symmetric. Therefore we used Jacobi diagonaliza-
tion, which is fast and robust numerically, to calculate its
eigenvalues ( sql

2 ) and eigenvectors @cln(q)#. The regu-
larization constant e was chosen to be 10218. The opti-
mum value of e depends on the numerical precision of the
code and other computational details, such as the off-
diagonal norm tolerance in the Jacobi diagonalization
process. We have used 40 collinear wave vectors qk rang-
ing in absolute length from 0 to 40 cm21, all in the x̂ di-
rection. It may be shown, however, that the recon-
structed images are essentially independent of the
direction of this line. The same results may also ob-
tained when the qk are not collinear but fill a square. In-
tegration over d2q was carried out numerically by using
the simple trapezoidal rule for qx,y ranging from 240 to
40 cm21 with a step of 1 cm21. The transverse dimen-
sions of the sample were taken to be 20 cm 3 20 cm, and
the depth L 5 10 cm.

The reconstructed images are shown in Fig. 4. Four
pointlike absorbers were used to generate the forward
data: one in the z 5 2 cm plane, two in the z 5 5 cm
plane, and one in the z 5 8 cm plane. The tomographic
slices clearly illustrate the depth dependence of the reso-
lution. The first absorber, at z 5 2 cm, is clearly re-
Fig. 6. Simultaneous reconstruction of da and dD for one point absorber and one point scatterer, both located at the depth z 5 2 (all
lengths are in centimeters). The absorber is located in the lower left corner (x 5 25, y 5 25, z 5 2); the scatterer is located in the
upper right corner (x 5 5, y 5 5, z 5 2). Other parameters are the same as those in Fig. 4. The images for da are not calibrated, since
reconstructed da has no maxima in the z direction; calibration of dD images is done as in Fig. 4.
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Fig. 7. Reconstruction in a one-dimensional geometry for different infinitely thin absorbers and scatterers: (a) one absorber at z
5 2 cm; (b) one scatterer at z 5 2 cm; (c) one absorber and one scatterer, both at z 5 2 cm; (d) one absorber at z 5 2 cm and one scat-
terer at z 5 4 cm.
solved, both in the xy plane and in the z direction. Note
that the tomographic slices at z 5 7, 8, and 9 cm show
traces of the three absorbers that are located at z 5 2 and
5 cm. Generally, for depths z . l the resolution is very
poor (data not shown).

To illustrate the nature of the depth resolution, we
have performed reconstructions in the one-dimensional
geometry where da depends only on z. The analog of a
point in this case is an infinitely thin plane absorber lo-
cated at a depth z0 with da(z) 5 a0d (z 2 z0). The
forward-scattering data in this case are given by

f̂(2~qk 1 q !, qk) 5 a0S p

D0
D 2 d ~q !exp@22Q~qk!#

Q2~qk!
.

(80)

The reconstructed profile of da(z) is shown in Fig. 5 for
different values of z0 .

The reconstruction of dD with da assumed to be zero
results in images that are very similar to those shown in
this section. Note that when the Fourier-transformed
scattering data are known analytically, the inversion for-
mulas in both cases can be shown to be mathematically
equivalent.

To summarize, both the lateral and depth resolutions
decrease with depth. This result is expected, since dif-
fusing waves decay exponentially with depth, limiting the
range of accessible transverse wave vectors in the inver-
sion formulas (70) and (71). However, reasonable resolu-
tion can be obtained for z , l, with l as the diffuse wave-
length.

C. Simultaneous Reconstruction of da and dD
Now we turn to the simultaneous reconstruction of da and
dD. Reconstructed images of one pointlike absorber and
one pointlike scatterer located in the z 5 2 cm plane are
shown in Fig. 6. In this case both the lateral and depth
resolutions for dD are approximately the same as those in
Fig. 4. However, the resolution in the da images is sub-
stantially worse. As can be seen from the figure, the slice
where da has maximum intensity does not coincide with
the location of the absorber. Nevertheless, some trans-
verse resolution is retained, and an absorbing inhomoge-
neity can be, in principle, detected in this setting.

The difference in the resolution for da and dD can be
understood as follows. The problem of reconstructing
two functions from one integral equation is essentially
underdetermined. In the integral equation that couples
da and dD, the part proportional to dD is multiplied by a
factor t(qk , q)t* (ql , q)/k2. This term is almost always
much larger than unity. As a result, precision is retained
in the reconstruction of dD but lost for da.

The above feature of simultaneous reconstruction of da
and dD can be easily seen in the one-dimensional geom-
etry described at the end of Subsection 4.B. In Fig. 7 we
show reconstructed images of da and dD for infinitely
thin absorbing and scattering planes that are parallel to
the z 5 0 plane. In Fig. 7(a) the forward data are gen-
erated by only one absorbing plane at z 5 2 cm. Evi-
dently, the image indicates the presence of an absorbing
inhomogeneity and the absence of a diffusing inhomoge-
neity; however, the exact location of the absorbing plane
cannot be determined from this image. In Fig. 7(b) the
forward data are generated by only one scattering plane
at the same depth, z 5 2 cm. In this case the location of
the scattering plane can be determined with high resolu-
tion. Finally, Fig. 7(c) shows images of one absorbing
and one scattering plane located at the same depth, and
Fig. 7(d) does so at different depths.

We note that the resolution for simultaneous recon-
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struction of da and dD can be improved in experiments
involving two different modulation frequencies. The
SVD can be easily generalized to the case of two-
frequency measurements. Indeed, the inversion formu-
las (70) and (71) can be written in terms of the variables
pk(q, k0) 5 Q(qk) 1 Q(qk 1 q). In a one-frequency ex-
periment, the number of different pk’s is the same as the
number of vectors qk . Using an additional modulation
frequency is equivalent to doubling the number of math-
ematically independent variables pk while keeping the
number of vectors qk constant. Thus the rank of the ma-
trix A is effectively doubled, which makes the inverse
problem better conditioned.

In conclusion, we have described an inverse scattering
method for reconstructing the optical absorption and dif-
fusion coefficients of a highly scattering medium probed
by diffusing waves. We emphasize that our approach
represents an analytic rather than a numerical solution
to the image reconstruction problem. The results of this
investigation are of general physical interest, since they
are applicable to imaging with any multiply scattered sca-
lar wave in the diffusion regime.
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