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We develop a theoretical approach to calculating optical properties of carbonaceous soot in the long-
wavelength limit. Our method is based on geometrical renormalization of clusters; it avoids both the
inaccuracy of the dipole approximation in its pure form and the numerical complexity of rigorous direct
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measurements for specific extinction of diesel soot in the spectral region from 0.488µm to 0.857cm per-
formed by Bruce et al. [Appl.Opt., 30, 1537 (1991)]. The theory leads to analytical expressions that are
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1. INTRODUCTION

A. Review of the problem

Understanding the optical properties of carbonaceous soot in
a wide spectral range is important for many application areas,
such as climate research, monitoring of atmospheric pollution,
remote sensing of fires, to name just a few. It has been long rec-
ognized [1–4] that aerosol soot consists of fractal clusters built
of many hundreds or thousands of little nanometer-scale car-
bon spheres (monomers), and the geometrical structure of soot
plays an important role for optical properties. In the visible and
near-infrared spectral regions the electromagnetic interaction
of monomers in a soot cluster is relatively weak, and analyti-
cal perturbative approaches such as the mean-filed approxima-
tion [5] produce sufficiently accurate results. However, as the
wavelength is further increased, the optical constants of black
carbon become more “metallic-like” (dominated by the input
of conduction electrons) [6] which leads to stronger electromag-
netic interaction and the eventual breakdown of the perturba-
tive methods. As a result, the collective optical properties of a
soot cluster become increasingly different from those of isolated
monomers [7, 8]. Experimental measurements of absorption
and extinction efficiencies of diesel soot in a very wide spectral
range (from 0.5µm to 0.857cm) [9] demonstrated that neither
the model of isolated spheres nor of long cylinders can explain
the spectral dependence of the above quantities.

The nonperturbative methods that can account for strong

electromagnetic interaction in the long-wavelength spectral re-
gion include the dipole approximation [5, 10–13] and the fam-
ily of rigorous numerical methods in which the field scattered
by each monomer is expanded into spherical harmonics up to
a certain maximum order [8, 14–19]. However, both methods
have shortcomings. The dipole approximation for aggregated
spheres is accurate only when the spheres are separated by dis-
tances larger than their diameters, or the electromagnetic in-
teraction is weak (the latter situation took place, for example,
in Ref. [5]). The general non-applicability of the dipole approx-
imation to arrays of strongly interacting touching spheres was
verified both theoretically [14, 15] and experimentally [20]. A
simple physical explanation of why the dipole approximation
fails was provided, for example, in Ref. [20].

A rigorous numerical approach to solution of the Maxwell
equations for touching spheres has been developed by differ-
ent authors [8, 14–19]. The essence of this method, which can
be referred to as the “coupled multipoles” method, is to ex-
pand the EM field inside each sphere and the field scattered
by each sphere in vector spherical harmonics, and to match the
boundary condition on all surfaces of discontinuity. Generally,
this method leads to an infinite-dimensional system of linear
equations with respect to the expansion coefficients. In order
to solve this system, one needs to truncate it by assuming that
all the expansion coefficients for spherical harmonics of the or-
der larger than L are zero. Then the total number of equations
scales (for large values of L) as NL2. Although this method
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gives a rigorous numerical solution to the Maxwell equations
in the limit L → ∞, it has a fundamental difficulty: when the
interaction of monomers in a cluster becomes stronger and the
perturbation expansion, correspondingly, less accurate (or even
diverges), the number L required for attaining accurate results
tends to increase [21, 22]. This feature is illustrated in Fig. 3 be-
low. On the other hand, the number N should stay sufficiently
large in order to retain the fractal geometry of samples.

To overcome the inadequacy of the dipole approximation
and the overwhelming computational complexity of the cou-
pled multipole method, we have suggested the geometrical
cluster renormalization method (GCRM) [23, 24]. This ap-
proach allows one to stay in the frame of the dipole approxi-
mation. This paper is focused on application of this method
to carbonaceous soot in the spectral range from, approximately,
0.5µm to 1cm. The results are compared with experimental mea-
surements reported by Bruce et al. [9].

The major advantage of the GCRM is numerical simplicity.
But, in addition to that, useful analytical results can be obtained
in an approximation where the retardation effects are ignored
(the quasistatic limit) and the weighted density of states (WDS)
of the dipole interaction operator is replaced by a step function.
These two approximations lead to an analytical formula which
is very accurate (as verified by comparison to results of direct
numerical calculations within the GCRM) for materials such as
black carbon in the spectral range from the near IR to centime-
ter waves. The availability of an analytical expression allows
one to investigate the dependence of the spectra on important
parameters of the problem and to make conclusions of a more
general applicability.

B. Optical constants of black carbon

Any numerical or analytical calculation requires the knowledge
of optical constants of the soot material. Unfortunately, there is
some uncertainty in this matter. Black carbon can exist in sev-
eral modifications (graphite, amorphous, glassy carbon). We
will use the data by Dalzell and Sarofim [6] who proposed a
three-electron dispersion formula for optical constants and ver-
ified it experimentally in the spectral range 0.4µm < λ < 10µm.
The availability of an analytic expression for the optical con-
stants allowed us to extrapolate them into a much wider spec-
tral range. The important feature of this dispersion formula is
the presence of a free-electron term which dominates the optical
constants at large wavelengths.

The dispersion formula for the dielectric constant ǫ sug-
gested by Dalzell and Sarofim is based on the well-known quan-
tum expression for the complex dielectric function:

ǫ(ω) = 1 − ∑
n

f 2
n

ω2 − ω2
n + iγnω

. (1)

Earlier, Taft and Philipp [25] identified experimentally three
optical resonances in graphite, two of which correspond to
bound electrons and one to conduction electrons. The reso-
nance frequencies are ωc = 0 (conduction electrons), ω1 =
1.25 · 1015sec−1 and ω2 = 7.25 · 1015s−1 (or corresponding wave-
lengths: λc = ∞, λ1 = 1.51µm, λ2 = 0.26µm). The values of the
relaxation constants were found to be γc = γ1 = 6.00 · 1015s−1,
γ2 = 7.25 · 1015s−1. Dalzell and Sarofim assumed that the
same electronic transitions contribute to the dielectric constant
of carbon soot and used the above values of ωn and γn to fit
the formula (1) to their experimental data treating fn’s (which
depend on concentration of optically active electrons) as free

k = Im(m)
n = Re(m)
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Fig. 1. Real and imaginary parts of the complex refraction in-
dex m =

√
ǫ = n + ik as functions of wavelength calculated

using dispersion formula (1).
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Fig. 2. Spectral dependence of the complex variable 1/χ =
−(X + iδ) parameterized by the wavelength λ, where χ =
(3/4π)(ǫ − 1)/(ǫ + 2).

parameters. A very accurate fit to the experimental data for
propane soot was achieved for the following values of fn: fc =
4.04 · 1015s−1, f1 = 2.93 · 1015sec−1, f2 = 9.54 · 1015s−1 in the
spectral range 0.4µm < λ < 10µm. Analogous three-electron
dispersion formulas were used to describe optical constants of
smoke at the flame temperatures [26]. The temperature depen-
dence is mainly governed by the temperature dependence of
the conduction electron relaxation constant: [27] γc ∝ T1/2.

The real and imaginary parts of the complex refraction index
m =

√
ǫ = n+ ik calculated from formula (1) with the constants

specified above are shown in Fig. 1. The low-frequency metal-
lic behavior of the optical constants is clearly manifested for
λ > 100µm: n and k become very close to each other and scale

with wavelength as
√

λ. Mathematically, this happens when
the term i f 2

c /γcω becomes dominant in (1), i.e., for ω ≪ γc.
In Fig. 2 we also show the spectral dependence of two im-

portant optical parameters, X and δ, originally introduced [28]
in Refs. [10, 11]. They are defined as X = −Re[1/χ], δ =
−Im[1/χ], where

χ =
3

4π

ǫ − 1

ǫ + 2
. (2)

The physical meaning of these parameters is that X is the gen-
eralized detuning from the resonance and δ - the generalized
dielectric loss parameter.
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Fig. 3. Specific extinction εe, multiplied by λ2 and averaged
over spatial rotations, as a function of L (Fortran codes cour-
tesy of D. Mackowski). The calculations were performed in the
quasistatic limit for a 3D cluster-cluster aggregate of N = 100
touching spheres shown in the inset.

C. Convergence of the coupled multipoles method

The breakdown of the dipole approximation for clusters of
touching spheres happens even when the overall size of the
clusters is much smaller that the wavelength and the usual qua-
sistatic methods apply [8, 29]. In principle, this problem can be
resolved by using rigorous numerical solution to the Maxwell
equations [8, 14, 29]. However, the convergence of these meth-
ods with the maximum order of spherical harmonics used (L)
is a major problem for large clusters. The number of linear
equations that must be solved in this approach scales as NL2

where N is the number of primary spheres. In this subsection
we demonstrate that such convergence cannot be realistically
achieved for λ > 10µm.

We have used in our calculations a model fractal cluster of
N = 100 primary spheres. The cluster was generated using
the cluster-cluster aggregation process [30, 31] in 3D. We have
calculated the specific extinction εe (per unit volume) defined
as

εe = σe/Vtot , (3)

where σe is the total extinction cross section and Vtot is the total
volume of the cluster (equal to N times the volume of primary
spheres, v). Quasistatic Fortran codes courtesy of D.W. Mack-
owski were used in the calculations (see Refs. [8, 29] for more
details), and the refractive index was calculated using (1).

The results are presented in Fig. 3 where we plot the quan-
tity λ2εe as a function of L for different wavelengths. The spe-
cific extinction is multiplied by λ2 so that the data for different
λ’s can all be compared in the same plot. It can be seen that
a fast convergence is reached for λ = 1µm. (The scale of this
figure does not allow one to see that the convergence is, in fact,
achieved for L > 4 at this wavelength). The convergence for
λ = 10µm is somewhat slower. It is, actually, difficult to judge

from the figure if the result can still change considerably with
increasing L.

But for the wavelengths λ = 102, 103 and 104µm, when the
refractive index of carbon is metallic (see Fig. 1), the conver-
gence is not achieved at all. The quantity λ2εe grows linearly
with L and does not depend noticeably on λ. Extrapolating the
linear growth of λ2εe to larger values of L, and using experimen-
tal values of the the specific extinction, we can roughly estimate
the lower bound of L that is required for convergence. From ex-
perimental data of Bruce et al [9] we find that εe ≈ 0.13µm−1 for
λ ≈ 100µm (to obtain this result, we have used the mass den-

sity of black carbon ρ ≈ 2g/cm3; specific extinction in Ref. [9]
is measured per unit of mass rather than volume). Thus, at
λ ≈ 100µm, we have λ2εe ≈ 1300µm. The linear growth
of λ2εe as a function of L in Fig. 3 can be approximated by
λ2εe = [50 + 20L]µm. If this linear behavior is extrapolated
to larger values of L, the experimental value of λ2εe is reached
at L ≈ 65. However, it is plausible to assume that the slope of
the curve λ2εe(L) will decrease for larger L, and the actual num-
ber of spherical harmonics necessary for convergence is larger
than 65. Even for L ≈ 65 and N = 100, the number of equations
that must be solved is 422, 500. And a larger L is required for
λ > 100µm. This makes the direct numerical approach imprac-
tical for large wavelengths.

It can be seen in Fig. 3 that the dependence εe(L) has a form
of a ladder with alternating steps of different heights. For exam-
ple, εe(4)− εe(3) is much smaller than εe(5)− εe(4). Therefore,
it is generally incorrect to stop iterations at a certain value of
L when the change in εe is less than some small constant. In-
stead, this condition should hold for two consecutive iterations.
Also, even if the above condition is met, it is not always clear
that a relatively large change in εe will not accumulate for larger
values of L. Thus, the convergence criterion should be not the
small change in εe after two consecutive iterations, but rather a
manifested plato in the curve εe(L).

2. THEORY

A. Dipole approximation

In this subsection we briefly describe the dipole approximation
in its generic form and introduce the relevant notations.

The essence of the dipole approximation is to replace each
(finite size) monomer in a cluster by a point dipole with polar-
izability α, located at the point ri at the center of the respective
spherical monomer. The dipole moment of the ith monomer, di,
is proportional to the local field at the point ri which is a super-
position of the incident field and all the secondary fields scat-
tered by other dipoles. Therefore, the dipole moments of the
monomers are coupled to the incident field and to each other as
described by the coupled dipole equation (CDE):

di = α



Einc(ri) +
N

∑
j 6=i

Ĝ(ri − rj)dj



 . (4)

Here the term Ĝ(ri − rj)dj gives the dipole radiation field cre-

ated by the dipole dj at the point ri and Ĝ(r) is the regular part
of the free space dyadic Green’s function:

Gαβ(r) = k3
[

A(kr)δαβ + B(kr)rαrβ/r2
]

, (5)

A(x) = [x−1 + ix−2 − x−3] exp(ix) , (6)

B(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix) , (7)
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where k = 2π/λ is the wavenumber, (Ĝd)α = Gαβdβ, the Greek
indices stand for the Cartesian components of vectors and sum-
mation over repeated indices is implied.

The CDE is a system of 3N linear equations that can be
solved to find the dipole moments di. The cross sections of ex-
tinction and absorption can be found from the optical theorem:

σe =
4πk

|E0|2
Im

N

∑
i=1

di · E∗
inc(ri) , (8)

σa =
4πk

|E0|2
ya

N

∑
i=1

|di|2 , (9)

ya = −Im

(

1

α

)

− 2k3

3
≥ 0 . (10)

For monomers small compared to λ, the polarizability α is given
by [32]:

1

α
=

1

vχ
− i

2k3

3
, (11)

where v = (4π/3)R3
m is the volume of a spherical monomer,

Rm its radius and the susceptibility χ is defined by (2). As fol-
lows from (10), (11) and (2), ya is non-negatively defined for any
physically reasonable ǫ. The ratio 3ya/2k3 characterizes the rel-
ative strength of absorption by a single isolated monomer.

B. The geometrical renormalization of clusters

In this subsection we describe the geometrical cluster renormal-
ization method (GCRM) and its application in the dipole ap-
proximation.

First, we note that most calculations employ computer-
generated samples. The geometry of these samples does not
coincide with that of experimental soot exactly (which is, obvi-
ously, impossible), but rather reproduces certain statistical ge-
ometrical properties of the real soot. Among such properties
are density correlation functions, total volume of the material,
Vtot = Nv, and average radius of gyration, Rg. However, such
characteristics as the number of monomers in a cluster, N, and
monomer radius, Rm, might be considered as not essential. It is
known, for example, that the real carbon monomers are not ac-
tually spherical, and nearest neighbors touch each other not just
at one geometrical point, so that the model of touching spheres
is only an idealization.

Second, as was mentioned above, the dipole approximation
in its pure form underestimates the strength of electromagnetic
interactions between the monomers. In particular, it predicts
the shift of the resonance frequency in small clusters of spheres
to be significantly less than the experimentally measured [20].
In order to correct the interaction strength of the dipole approx-
imation, we can move the monomers closer to each other (of
course, this refers to computer-generated samples) by allow-
ing them to intersect geometrically. However, doing this will
evidently reduce the overall system size (Rg) which is an es-
sential parameter of the problem. The other possible way to
introduce the intersections is to increase the radiuses of the
spheres (Rm) while keeping distance between nearest neigh-
bors (l) unchanged. This will however, lead to an increase of
the total volume of the material. Luckily, for fractal clusters, it
is possible to introduce a simultaneous renormalization of the
sphere radiuses (Rm), the total number of monomers (N) and
the distance between the nearest neighbors (l) in such a way
that the overall volume (Vtot) and the gyration radius (Rg) are

unchanged, and to introduce an arbitrary geometrical intersec-
tion of neighboring spheres. The transformation is

R′
m = Rm

(

ξ

2

)D/(3−D)

, (12)

N′ = N

(

2

ξ

)3D/(3−D)

, (13)

l ′ = ξR′
m , (14)

where ξ is an intersection parameter (1 < ξ < 2, ξ = 2 for touch-
ing spheres and ξ < 2 for geometrically intersecting spheres).
Indeed, it is easy to verify that the gyration radius, which scales
with l and N as

Rg ∝ lN1/D , (15)

and the total volume, which scales with Rm and N as

Vtot ∝ NR3
m , (16)

do not change under the set of transformations defined by (12-
14).

Thus, the main idea of the renormalization approach is to
model an ensemble of real cluster with experimental values
of Rm and N and l = 2Rm by a computer-generated “renor-
malized” ensemble with corresponding parameters R′

m, N′ and
with the geometrical intersection of neighboring spheres: l ′ =
ξR′

m < 2R′
m. It is important to emphasize that the renormal-

ization does not apply to a single random cluster, because it
changes not only the inter-particle separation but also the num-
ber of particles in an individual cluster, but is rather an opera-
tion that creates the renormalized random ensemble for a given
original (experimental) ensemble.

The initial value for ξ can be obtained by analogy with the
discrete dipole approximation (see Refs. [32–34]) in which bulk
non-spherical particles are modeled by arrays of point dipoles
located on a cubic lattice. In the first approximation, the polariz-
ability of the dipoles is taken to be equal to that of an equivalent
sphere with the radius Rm such that its volume is equal to the
volume of a lattice cell, i.e., (4π/3)R3

m = l3. From this equality
we find ξ = l/Rm = (4π/3)1/3 ≈ 1.612.

Another approach to estimating the parameter ξ is based on
the following consideration, which can be also used to justify
the physical plausibility of the renormalization method. It can
be shown [35] that a linear chain of intersecting spheres has the
same depolarization coefficients as an infinite cylinder (within
the dipole approximation) [36] for ξ = [4 ∑

∞
k=1 k−3]1/3 ≈ 1.688.

This value is close to the one obtained above. It is important
to note that two independent depolarization coefficients can si-
multaneously be “tuned” to correct values by adjusting only
one free parameter ξ. As well known, the depolarization coeffi-
cients in ellipsoids (an infinite cylinder being a particular case)
determine the spectral positions of the resonances. Thus, the
renormalization procedure gives the correct spectral locations
of the optical resonances for a one-dimensional chain. The line-
shape of each resonance can be still described incorrectly. How-
ever, in the situation of a large fractal cluster, typical absorption
and extinction spectra are superpositions of many collective res-
onances, and the lineshapes of individual resonance are of little
importance.
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C. The quasistatic limit

The quasistatic limit plays an important role for the long-
wavelength electromagnetic properties of soot. This approxi-
mation is highly accurate in the spectral range under consider-
ation (0.6µm < λ < 1cm) and provides valuable mathematical
simplifications.

When the wavelength is much larger than all characteristic
sizes of the system, the terms proportional to x−1, x−2 in (6), (7)
can be omitted, exp(ix) set to unity and the incident wave in
the right-hand side of (4) replaced by a constant field E0. The
resulting equation can be written in the operator form as

|d〉 = α (|Einc〉+ W|d〉) . (17)

where |d〉 is the 3N-dimensional vector of dipole moments with
components 〈iα|d〉 = diα, and, analogously, |Einc〉 is the vec-
tor of the incident fields with 〈iα|Einc〉 = E0α. The 3N × 3N-
dimensional operator W is real and symmetric in the quasistatic
limit, and therefore Hermitian. Its matrix elements are given by

〈iα|W|iβ〉 = −
δαβ

|ri − rj|3
+

3(ri − rj)α(ri − rj)β

|ri − rj|5
. (18)

Equation (17) can be formally solved using the spectral theorem
as [10, 11]

|d〉 = ∑
n

|n〉〈n|Einc〉
1/α − wn

, (19)

where |n〉 are the eigenvectors of W with corresponding eigen-
values wn. The expression for the extinction cross section (8)
takes the form

σe =
4πk

|E0|2
Im〈Einc|d〉 =

4πkv

|E0|2
Im ∑

n

〈Einc|n〉〈n|Einc〉
1/χ − vwn

, (20)

where we have used (11) for 1/α and neglected, in the qua-
sistatic limit, the term 2k3/3.

In the limit k → 0, the expressions (8) and (9) are exactly
equal [10, 11]. Therefore, the scattering cross section is zero
in this limit. However, σs can be calculated in a higher or-
der perturbation expansion where 2k3/3 is considered to be a
small parameter. If there is no antisymmetrical states in the sys-
tem [37, 38], or if the absorption parameter 3ya/2k3 is large, the
integral scattering cross section is given by

σs =
8πk4

3|E0|2
|D|2 , (21)

where D = ∑i di is the total dipole moment of a cluster. The
above conditions typically hold for carbon soot clusters. For
example, for λ = 1cm and Rm = 50nm we have 3ya/2k3 ≈
1010. This allows us to use expression (21) which implies that
the whole cluster radiates as a single dipole.

The expression for |D|2 can be obtained by using the “ho-
mogeneous” vectors |Oα〉 with components 〈iβ|Oα〉 = δαβ by
observing that Dα = 〈Oα|d〉. This leads to

σs =
8πk4v2

3|E0|2 ∑
α,m,n

〈Einc|m〉〈m|Oα〉〈Oα|n〉〈n|Einc〉
(1/χ∗ − vwm)(1/χ − vwn)

. (22)

D. Weighted density of states and the step-function approxi-

mation

In the quasistatic limit, the extinction cross section can be av-
eraged over spatial rotations of a cluster by taking arithmetic
average of the corresponding expressions for three orthogonal
polarizations of the incident field [10, 11]. Mathematically, this
can be expressed as

σ̄e =
4πkv

3
Im ∑

n,α

〈Oα|n〉〈n|Oα〉
1/χ − vwn

, (23)

where the bar denotes the rotational averaging. Now we intro-
duce the weighted densities of states (WDS) Γαβ(w) and Γ(w)
according to

Γαβ(w) =
1

N ∑
n
〈Oα|n〉〈n|Oβ〉δ(w − wn) , (24)

Γ(w) =
1

3 ∑
α

Γαα(w) . (25)

Then (23) can be written as

σ̄e = 4πkVtotIm
∫ ∞

−∞

Γ(w)dw

1/χ − vw
. (26)

Analogously, the expression for the scattering cross section av-
eraged over rotations can be written in terms of the WDS as

σ̄s =
8πk4V2

tot

9 ∑
αβ

∫ ∞

−∞

Γβα(w1)Γαβ(w2)dw1dw2

(1/χ∗ − vw1)(1/χ − vw2)
. (27)

The normalization rules for the WDS are
∫ ∞

−∞
Γαβ(w)dw = δαβ . (28)

For spherically symmetrical, on average, clusters, we can as-
sume that, in the first approximation, Γαβ(w) = δαβΓ(w). Then
(26) turns to

σ̄s =
8πk4V2

tot

3

∣

∣

∣

∣

∫ ∞

−∞

Γ(w)dw

1/χ − vw

∣

∣

∣

∣

2

. (29)

The WDS calculated for an ensemble of 10 random cluster-
cluster aggregates with N = 1, 000 particles in each aggregate
and fractal dimension D ≈ 1.8 is shown in Fig. 4 as a function
of the dimensionless variable vw. The solid line is obtained by
exact diagonalization of W (18) and smoothing Γ(w) over small
intervals ∆w. The dashed line is the step function approxima-
tion of the WDS which is discussed in detail below.

By comparing Figs. 4 and 2, we see that the the spectral
variable 1/χ does not effectively probe the detailed structure
of Γ(w) when we tune λ. This indicates that the complicated
structure of Γ(w) with multiple maxima and minima is of lit-
tle importance. In the simplest case, one can replace Γ(w) by
a delta-function, which is equivalent to making the mean-field
approximation. However, the mean-filed approximation is inac-
curate in the long-wavelength limit because the variable 1/χ ap-
proaches the real axis for λ > 10µm and the distance |1/χ−wv|
becomes comparable with the effective width of Γ(w).

The next level of approximation is to replace Γ(w) by a step
function. Such approximation is shown in Fig. 4 by the dashed
line which preserves the normalization, the first and second mo-
ments of the exact WDS. Note also that the third moment of
Γ(w) was numerically found to be very small, so that the step
function shown in Fig. 4 effectively conserves the third moment
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Approximation by a step function
Exact diagonalization

Γ0

w0v−w0v

Γ(w)

vw

3210−1−2−3
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0.05

0

Fig. 4. Weighted density of states Γ(w) and its approximation
by a step function with the equivalent normalization, first and
second moments. The numerical diagonalization is performed
for an ensemble of 10 clusters with N = 1, 000. The values of
the constants are vw0 = 2.29 and Γ0 = 1/2w0.

too. Here the constant vw0 was numerically estimated to be
vw0 ≈ 2.29, and Γ0 = 1/2w0. The quantity vw0 is independent
of the system dimensions (such as Rm or l), as one could expect
in the quasistatic limit.

Given the step function approximation for the WDS, it is
easy to obtain analytical expressions for the optical cross sec-
tions. A direct integration according to (26),(29) yields for the
extinction and scattering cross sections:

σ̄e =
2πkVtot

vw0

(

arctan
X + vw0

δ
− arctan

X − vw0

δ

)

, (30)

σ̄s =
2πk4V2

tot

3(vw0)2

[

1

4
ln2 (X + vw0)

2 + δ2

(X − vw0)2 + δ2

+

(

arctan
X + vw0

δ
− arctan

X − vw0

δ

)2
]

. (31)

Now we discuss renormalization of the parameters v and w0

under the set of transformations defined by (12-14). It is easy to

see that the renormalized volume is v′ = v(ξ/2)3D/(3−D). In
general, the eigenvalues of the interaction operator W do not
scale with the parameter l, and it is impossible to write a similar
relation between wn and w′

n. However, this becomes possible in
the quasistatic limit. Then, from the quasistatic expression (18),

it follows that w′
n = wn(l/l ′)3 = wn(2/ξ)9/(3−D). Combining

these two expressions, we obtain v′w′
n = vwn(2/ξ)3. Therefore,

the same transformation applies to vw0: v′w′
0 = vw0(2/ξ)3.

As could be expected, this transformation does not depend on
the fractal dimension D. However, the dependence on D and
other geometrical characteristics of a cluster is retained in the
eigenvalues calculated before the renormalization, i.e., in the
constant vw0. Thus, the intersection procedure effectively in-
creases the normalized eigenvalues and, consequently, the in-
teraction strength. The same tendency holds beyond the qua-
sistatic limit, although the ratio v′w′

n/vwn becomes different for
different n in this case.

In summary, to use the GCRM we simply have to replace the
constant vw0 in (30) and (31) by vw0(2/ξ)3, where vw0 must
be calculated numerically before the renormalization in an en-
semble of clusters of touching spheres (i.e., with l = 2Rm).

The constant vw0 carries essential information about the cluster
geometry. For the cluster-cluster aggregates generated in the
Meakin model [30, 31] with mass-independent sub-cluster mo-
bility we estimated D ≈ 1.8 and vw0 ≈ 2.29. It is well known
that the fractal dimension can depend on the details of the ag-
gregation process. In particular, the dependence of mobility of
sub-clusters on their mass can influence D. In the limiting case
when only sub-clusters built of just one monomer can move
(the Witten-Sander model [39]), a fixed center of aggregation
is formed and the fractal dimension is D ≈ 2.5 (for clusters
embedded in 3D space). We expect that the constant vw0 will
also depend on the details of aggregation. Further investigation
is required to establish the dependence of vw0 on the aggrega-
tion model and wether there is a one-to-one correspondence be-
tween vw0 and D.

3. RESULTS

A. Numerical calculations and comparison to experiment

To verify the validity of analytical formulas (30) and (31) we
have generated on a computer an ensemble of 10 cluster-cluster
aggregates with N = 1, 000 in each on a simple cubic lattice. We
have diagonalized the quasistatic interaction matrix W (18) and
calculated the extinction and scattering cross sections according
to (20) and (22). The results were averaged over cluster orienta-
tions as described in section 2D. We have used the GCRM with
ξ = (4π/3)1/3 ≈ 1.612. The constants Rm and l were renor-
malized according to (12),(14). Note that the specific extinction
εe does not depend in the quasistatic limit on the absolute val-
ues of Rm and l but only on their ratio; the same is true for the
specific scattering εs normalized by k3Vtot. It has been also veri-
fied [23] that εe only very weakly depends on N and, therefore,
on Vtot in the quasistatic limit, as long as N is large enough for
the fractal geometry to be manifested. Since it is the case for
N = 1, 000, there was no need to renormalize the constant N
according to (13). (We emphasize that this is valid only in the
quasistatic limit. The GCRM is more general and can be used be-
yond the quasistatics in which case the dependence on N can be
non-trivial and all three renormalization formulas (12-14) must
be used simultaneously.)

The results for the specific extinction εe and normalized spe-
cific scattering εs/k3Vtot are shown in Figs. 5 and 6. For com-
parison, we also plot in this figures the corresponding values
for unaggregated particles (or in the “noninteracting” limit):

ε
(nonint)
e = 4πkImχ and ε

(nonint)
s /k3Vtot = (8π/3)k |χ|2. Note

that the same “noninteracting” expressions can be obtained in
the Rayleigh-Gans (or, equivalently, first Born) approximation.
An excellent agreement between numerical and analytical re-
sults (with the interactions included) is apparent. At the same
time, the “noninteracting” approximation is seen to become in-
creasingly inaccurate when we move from the near to far IR. A
slightly less accurate fit is obtained for the specific scattering.
This is explained by the fact that in the derivation of (31) we
assumed that the clusters are spherically symmetrical. This is
true only on average, while each individual cluster can deviate
from the spherical symmetry. As a result, the off-diagonal terms
in (27), which are neglected in the further derivations, are not
exactly zero.

In Fig. 7 we compare the analytical formula (30) with the
experimental measurements of the specific extinction by Bruce
et al. [9]. Again, the curve illustrating the “noninteracting”
limit is also shown for comparison. The experimental data in
Ref. [9] are per unit of mass rather than volume. We treated the
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Fig. 5. Specific extinction εe calculated numerically (solid line)
and according to the analytical approximation (30) (circles).

The “noninteracting” limit ε
(nonint)
e = 4πkImχ is shown by the

thin red line.
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Numerical
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Fig. 6. Specific scattering εs normalized by k3Vtot calcu-
lated numerically (solid line) and according to the analyti-
cal approximation (31) (circles). The “noninteracting” limit

ε
(nonint)
s /k3Vtot = (8π/3)k |χ|2 is shown by the thin red line.

mass density of black carbon ρ as an adjustable parameter and
found that the best fit (excluding the last experimental point at
λ = 8750µm) is achieved for ρ ≈ 1.9g/cm3. This is a reason-
able estimate, although the experimental value of ρ in Ref. [9]
is not known. (Compare to the following values: graphite -
2.26g/cm3, buckminster fullerine - 1.69g/cm3, glassy carbon -
from 1.42g/cm3 to 1.54g/cm3.) Note that ρ enters all expres-
sions as a constant factor and does not influence the form of the
wavelength dependence of εe.

The surprisingly good agreement of experimental measure-
ments with the analytical formula, and the reasonable value of
ρ obtained suggest that the GCRM gives accurate results for
carbonaceous soot. We believe that the small deviations seen
in Fig. 7 are due to the insufficient accuracy of the dispersion
formula (1) that was used in all calculations. In particular, the
apparently unmonotoneous behavior near λ = 500µm can be
explained by the presence of an optical resonance at that wave-

Noninteracting
Analytical

Experiment

ξ = 1.612

λ, µm

εe, µm−1

1000010001001010.1

100

10

1

0.1

0.01

0.001

Fig. 7. Specific extinction εe calculated according to the ana-
lytical approximation (30) compared to experimental values
adapted from Bruce et al. [9]. The mass density of black carbon
of ρ = 1.9g/cm3 was used to convert the experimental data
of Ref. 9 to the units shown in the figure. The “noninteracting”

limit ε
(nonint)
e = 4πkImχ is shown by the thin red line.

length; however, (1) does not contain the corresponding term.
The same can be true at λ ≈ 1cm where the monotoneous be-
havior of εe is again interrupted. The optical resonance at this
wavelength can occur, for example, due to interaction with low-
frequency acoustical phonons.

To conclude this section, we note that the computer-
generated samples used for numerical calculation of the WDS
were built on a cubic lattice. However, in real aggregates,
monomers do not occupy lattice sites. The effect of using off-
latice aggregates in the computer simulations is not expected to
be large and will be addressed by us in the future.

B. Long-wavelength optical properties of soots built from

Drudean materials

In this subsection we consider fractal clusters built of a gen-
eral class of materials who’s optical properties are dominated
by free electrons. We already saw that this is the case in black
carbon for λ > 100µm. We will assume the idealized Drudean
form of the dielectric function

ǫ = 1 −
ω2

p

ω(ω + iγ)
(32)

and study the asymptotic behavior of the specific extinction
and scattering using the analytical expressions (30) and (31) to-
gether with the GCRM. As was discussed in section 2D, ap-
plication of the GCRM results in the transformation vw0 →
vw0(2/ξ)3 in the right-hand side of (30) and (31). We will use
the notation C = vw0(2/ξ)3.

We start with the specific extinction εe = σ̄e/Vtot. In the limit
ω → 0, the asymptotic values of X and δ are

X = −X∞ = −4π/3 , (33)

δ = 4πγω/ω2
p . (34)

Then it follows from (30) that

εe =
2πk

C

(

arctan
C + X∞

δ
+ sgn(C − X∞) arctan

|C − X∞|
δ

)

.

(35)
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In the limit δ ≪ |C − X∞| this turns to

εe =
2πk

C

[π

2
(1 + sgn(C − X∞))

−δ

(

1

C + X∞
+

sgn(C − X∞)

|C − X∞|

)]

. (36)

We can identify two separate cases. If C > X∞, the asymptotic
form of εe is

εe =
2π2k

C
∝

1

λ
, if C > X∞ . (37)

In the opposite case we have

εe =
(4π)2γkω

ω2
p(X2

∞ − C2)
∝

1

λ2
, if C < X∞ , (38)

where we have used expression (34) for δ.
We can define the critical value of the parameter vw0 deter-

mined by the condition C = X∞, or

(vw0)c =
4π

3

(

ξ

2

)3

. (39)

If the geometry of clusters is such that vw0 < (vw0)c, the asymp-
tote (38) is valid. The 1/λ2 behavior is characteristic to non-
interacting monomers (e.g., in disaggregated samples). There-
fore, we conclude that in the case vw0 < (vw0)c the EM inter-
action is not important in the long-wavelength regime. In the
opposite case the asymptote (37) is valid, and the EM interac-
tion stays important up to the electrostatic limit ω = 0 which is
manifested in the 1/λ dependence.

The asymptotes (37) and (38) are valid only when δ ≪
|C − X∞|. If the quantity |C − X∞| is itself small, the asymp-
totic behavior of εe is manifested only for λ’s sufficiently large
for the above inequality to be true. In the case C = X∞, the spec-
tral behavior of εe is more complicated. In particular, higher
order terms must be retained in the expression (33) for X.

In our calculations illustrated in the previous subsection, the
numerically estimated value vw0 ≈ 2.29 was larger than the
critical value (vw0)c ≈ 2.19 (assuming ξ = 1.612). Indeed,
the onset of the 1/λ asymptote can be seen in Figs. 5-7 for
λ > 100µm. This means that in the carbon smoke with the ge-
ometry of cluster-cluster aggregates (D ≈ 1.8) and optical con-
stants specified in section 1B, the EM interaction is always im-
portant in the long-wavelength limit. We believe that the value
of ξ, and, consequently, of the critical constant (vw0)c, are uni-
versal for a broad class of soots. However, the quantity vw0

can strongly depend on the sample geometry. Further inves-
tigation is required to establish the numerical value of (vw0)c

with a higher accuracy and to verify the analytical results for
materials with different parameters vw0, γ and ωp.

The mean-field approximation can be obtained from (30) by
either considering the limit of infinitely narrow WDS (w0 → 0)
or large absorption (γ → ∞). In the first case we obtain
εe = 4πkImχ and in the second case εe = 4πk/δ. Obviously,
the latter formula can be obtained from the former by taking
the limit δ ≫ |X|. Note that in the quasistatic limit the mean-
field and the first Born approximations are equivalent due to
the symmetry of the dipole interaction in the near zone.

Now we turn our attention to the specific scattering, εs. Ap-
plying similar analysis to Eq. (30) and assuming that δ ≪
|C − X∞|, we obtain

εs

k3Vtot
=

2πk

3C2

[

ln2 C − X∞

C + X∞
+

(π

2

)2
]

, if C > X∞ ; (40)

εs

k3Vtot
=

2πk

3C2

[

ln2 X∞ − C

X∞ + C
+

(2Cδ)2

(X2
∞ − C2)2

]

, if C < X∞ .

(41)

Note that εe is proportional to Vtot. Therefore, the total power
of scattered light depends on how the soot material is divided
between individual clusters, assuming that the total concentra-
tion of the soot material in the scattering volume is fixed. In the
case C > X∞ the long-wavelength asymptote for the specific
scattering is ε(λ) ∝ 1/λ4. In the opposite case (C < X∞), the
asymptote is more complicated and includes two competing
terms ∝ 1/λ4 and ∝ 1/λ6. The last term is characteristic to non-
interacting monomers and is dominating in the limit C → 0 or
γ → ∞, when the mean-field approximation becomes accurate.

4. SUMMARY AND DISCUSSION

We have built a theory of long-wavelength optical properties
of fractal clusters with optical constants that are dominated by
the input of free electrons in the λ → ∞ limit. Analytical ex-
pressions were derived for the extinction and scattering cross
sections. The theory was applied to fractal carbonaceous soot,
and the results verified by comparison with experimental mea-
surements in a wide spectral range.

Although the carbonaceous soot was the main focus of this
paper, our approach is of a more general applicability. We
have made three main approximations, all of which proved
to be very accurate for the object under investigation, but are
essentially independent of each other. These approximations
are (i) the geometrical renormalization of clusters, (ii) the qua-
sistatic approximation, and (iii) replacing the weighted density
of states by a step function.

The geometrical cluster renormalization method (GCRM) is
applicable beyond the quasistatics, when the retardation effects
are fully included in the consideration. It also does not put
any explicit restrictions on the geometry of samples (as long
as they are fractal with D < 3) or the refractive index of the
material, although this topic is insufficiently investigated at the
present time. The quasistatic approximation is, clearly, appli-
cable when the clusters are small compared to the wavelength,
but can be also very accurate in large clusters with low fractal
dimensions [12] because the near-zone EM interaction is fast
decaying as 1/r3. Finally, the step-function approximation is
applicable only when certain mathematical relations between
the WDS and the complex spectral variable 1/χ hold. Thus, it
puts restrictions on the refractive index and/or geometry. How-
ever, it can be applied beyond the quasistatic limit, although the
analytical expressions in this case become more cumbersome.

We showed that the asymptotic form of the specific extinc-
tion εe(λ) in the limit λ → ∞ can be either 1/λ or 1/λ2. The
cross-over between these two regimes has the nature of a critical
phenomenon and is governed by the parameter vw0 that char-
acterizes the effective width of the WDS. We have identified the
critical value of this parameter, (vw0)c.

This research was supported by Battelle under Con-
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by National Computational Science Alliance under Grant
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ARO under grant DAAG55-98-1-0425). The authors are grate-
ful to C. Bruce for very useful discussions and to D. Mackowski
for making available his Fortran codes.
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