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We develop a theoretical approach to calculating optical properties of carbonaceous soot in the long-wavelength
limit. Our method is based on geometrical renormalization of clusters; it avoids both the inaccuracy of the
dipole approximation in its pure form and the numerical complexity of rigorous direct methods of solving the
EM boundary problem. The results are verified by comparison with the experimental measurements for spe-
cific extinction of diesel soot in the spectral region from 0.488 mm to 0.857 cm that were performed by Bruce
et al. [Appl. Opt. 30, 1537 (1991)]. The theory leads to analytical expressions that are applicable to different
soots, with various geometrical properties and optical constants. We show that the functional form of the
long-wavelength asymptote of the specific extinction can depend critically on a parameter characterizing the
sample geometry, and we identify the critical value of this parameter. © 2001 Optical Society of America
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1. INTRODUCTION

A. Review of the Problem

Understanding the optical properties of carbonaceous soot
in a wide spectral range is important for many areas of
application such as climate research, monitoring of atmo-
spheric pollution, and remote sensing of fires. It has long
been recognized1–4 that aerosol soot consists of fractal
clusters built of many hundreds or thousands of
nanometer-scale carbon spheres (monomers), and the geo-
metrical structure of soot plays an important role in de-
termining the soot’s optical properties. In the visible and
near-infrared spectral regions the electromagnetic inter-
action of monomers in a soot cluster is relatively weak,
and analytical perturbative approaches such as the mean-
field approximation5 produce sufficiently accurate results.
However, as the wavelength is further increased, the op-
tical constants of black carbon become more metalliclike
(dominated by the input of conduction electrons),6 which
leads to stronger electromagnetic interaction and the
eventual breakdown of the perturbative methods. As a
result, the collective optical properties of a soot cluster be-
come increasingly different from those of isolated
monomers.7,8 Experimental measurements of the ab-
sorption and extinction efficiencies of diesel soot in a very
wide spectral range9 (0.5 mm to 0.857 cm) have demon-
strated that neither the model of isolated spheres nor that
of long cylinders can explain the spectral dependence of
the quantities cited above.

The nonperturbative methods that can account for
strong EM interaction in the long-wavelength spectral re-
gion include the dipole approximation5,10–13 and the fam-
ily of rigorous numerical methods in which the field scat-
0740-3232/2001/051112-10$15.00 ©
tered by each monomer is expanded into spherical
harmonics up to a certain maximum order.8,14–19 How-
ever, both methods have shortcomings. The dipole ap-
proximation for aggregated spheres is accurate only when
the spheres are separated by distances larger than their
diameters or when the EM interaction is weak (the latter
situation took place, for example, in Ref. 5). The general
nonapplicability of the dipole approximation to arrays of
strongly interacting touching spheres was verified both
theoretically14,15 and experimentally.20 A simple physi-
cal explanation of why the dipole approximation fails was
provided, for example, in Ref. 20.

A rigorous numerical approach to solution of the Max-
well equations for touching spheres has been developed
by various authors.8,14–19 The essence of this method,
which can be referred to as the coupled-multipole method,
is to expand the EM field inside each sphere and the field
scattered by each sphere in vector spherical harmonics
and to match the boundary condition on all surfaces of
discontinuity. Generally, this method leads to an
infinite-dimensional system of linear equations with re-
spect to the expansion coefficients. To solve this system,
one needs to truncate it by assuming that all the expan-
sion coefficients for spherical harmonics of order larger
than L are zero. Then the total number of equations
scales (for large values of L) as NL2. Although this
method gives a rigorous numerical solution to the Max-
well equations in the limit L → `, it has a fundamental
difficulty: When the interaction of monomers in a cluster
becomes stronger and the perturbation expansion, corre-
spondingly, less accurate (or even diverges), the number
L required for attaining accurate results tends to
increase.21,22 This property is illustrated in Fig. 3 below.
2001 Optical Society of America
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However, the number N should stay sufficiently large to
retain the fractal geometry of samples.

To overcome the inadequacy of the dipole approxima-
tion and the overwhelming computational complexity of
the coupled multipole method, we suggest using the geo-
metrical cluster renormalization method (GCRM).23,24

This approach allows one to stay in the frame of the di-
pole approximation. In this paper we focus on applica-
tion of this method to carbonaceous soot in the spectral
range of approximately 0.5 mm–1 cm. The results are
compared with experimental measurements reported by
Bruce et al.9

The major advantage of the GCRM is its numerical
simplicity. But, in addition, useful analytical results can
be obtained in an approximation in which the retardation
effects are ignored (the quasi-static limit) and the
weighted density of states (WDS) of the dipole interaction
operator is replaced by a step function. These two ap-
proximations lead to an analytical formula that is highly
accurate (as verified by comparison with results of direct
numerical calculations within the GCRM) for materials
such as black carbon in the spectral range from the near
IR to centimeter waves. The availability of an analytical
expression allows one to investigate the dependence of the
spectra on important parameters of the problem and to
make conclusions of a more general applicability.

B. Optical Constants of Black Carbon
Any numerical or analytical calculation requires knowl-
edge of optical constants of the soot material. Unfortu-
nately, there is some uncertainty in this matter. Black
carbon can exist in several modifications (graphite, amor-
phous, glassy carbon). We use the data of Dalzell and
Sarofim,6 who proposed a three-electron dispersion for-
mula for optical constants and verified it experimentally
in the spectral range 0.4 mm , l , 10 mm. The avail-
ability of an analytic expression for the optical constants
allowed us to extrapolate them into a much wider spectral
range. The important feature of this dispersion formula
is the presence of a free-electron term that dominates the
optical constants at large wavelengths.

The dispersion formula for the dielectric constant e sug-
gested by Dalzell and Sarofim is based on the well-known
quantum expression for the complex dielectric function:

e~v! 5 1 2 (
n

fn
2

v2 2 vn
2 1 ignv

. (1)

Earlier, Taft and Philipp25 identified experimentally
three optical resonances in graphite, two of which corre-
spond to bound electrons and one to conduction electrons.
The resonance frequencies are vc 5 0 (conduction elec-
trons), v1 5 1.25 3 1015 s21, and v2 5 7.25 3 1015 s21

(or the corresponding wavelengths: lc 5 `, l1
5 1.51 mm, and l2 5 0.26 mm). The values of the relax-
ation constants were found to be gc 5 g1 5 6.00
3 1015 s21 and g2 5 7.25 3 1015 s21. Dalzell and
Sarofim6 assumed that the same electronic transitions
contribute to the dielectric constant of carbon soot and
used the above values of vn and gn to fit formula (1) to
their experimental data, treating fn (which depend on the
concentration of optically active electrons) as free param-
eters. A highly accurate fit to the experimental data for
propane soot was achieved for the following values of
fn : fc 5 4.04 3 1015 s21, f1 5 2.93 3 1015 s21, and f2
5 9.54 3 1015 s21 in the spectral range 0.4 mm , l
, 10 mm. Analogous three-electron dispersion formulas
were used to describe optical constants of smoke at the
flame temperatures.26 The temperature dependence is
governed mainly by the temperature dependence of the
conduction electron relaxation constant27: gc } T1/2.

The real and imaginary parts of the complex refractive
index m 5 Ae 5 n 1 ik calculated from formula (1) with
the constants specified above are shown in Fig. 1. The
low-frequency metallic behavior of the optical constants is
clearly manifested for l . 100 mm: n and k become very
close to each other and scale with wavelength as Al.
Mathematically, this happens when the term if c

2/gcv be-
comes dominant in formula (1), i.e., for v ! gc .

Fig. 1. Real and imaginary parts of the complex refractive index
m 5 Ae 5 n 1 ik as functions of wavelength calculated from
dispersion formula (1).

Fig. 2. Spectral dependence of complex variable 1/x 5 2(X
1 id) parameterized by wavelength l, where x 5 (3/4p)(e
2 1)/(e 1 2).
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In Fig. 2 we show the spectral dependence of two im-
portant optical parameters, X and d, originally
introduced28 in Refs. 10 and 11. They are defined as X
5 2Re(1/x) and d 5 2Im(1/x), where

x 5
3

4p

e 2 1

e 1 2
. (2)

The physical meaning of these parameters is that X is the
generalized detuning from resonance and d is the gener-
alized dielectric loss parameter.

C. Convergence of the Coupled-Multipole Method
The breakdown of the dipole approximation for clusters of
touching spheres happens even when the overall size of
the clusters is much smaller than the wavelength, and
the usual quasi-static methods apply.8,29 In principle,
this problem can be resolved by using rigorous numerical
solution to the Maxwell equations.8,14,29 However, the
convergence of these methods with the maximum order of
spherical harmonics used (L) is a major problem for large
clusters. The number of linear equations that must be
solved in this approach scales as NL2, where N is the
number of primary spheres. In this subsection we dem-
onstrate that such convergence cannot be realistically
achieved for l . 10 mm.

We used in our calculations a model fractal cluster of
N 5 100 primary spheres. The cluster was generated by
the cluster–cluster aggregation process30,31 in three di-
mensions. We calculated the specific extinction «e (per
unit volume), defined as

«e 5
se

Vtot
, (3)

where se is the total extinction cross section and Vtot is
the total volume of the cluster (equal to N times the vol-
ume of primary spheres, v). Quasi-static Fortran codes
courtesy of D. W. Mackowski were used in the calcula-
tions (see Refs. 8 and 29 for more details), and the refrac-
tive index was calculated with formula (1).

The results are presented in Fig. 3, where we plot the
quantity l2«e as a function of L for several wavelengths.
The specific extinction is multiplied by l2 so that the data
for several values of l can all be compared in the same
plot. It can be seen that a fast convergence is reached for
l 5 1 mm. (The scale of this figure does not allow one to
see that convergence is, in fact, achieved for L . 4 at this
wavelength.) The convergence for l 5 10 mm is some-
what slower. It is, actually, difficult to judge from the
figure if the result can still change considerably with in-
creasing L.

But, for the wavelengths l 5 102, 103, and 104 mm,
when the refractive index of carbon is metallic (see Fig.
1), convergence is not achieved at all. The quantity l2«e
grows linearly with L and does not depend noticeably on
l. Extrapolating the linear growth of l2«e to larger val-
ues of L, and using experimental values of the specific ex-
tinction, we can roughly estimate the lower bound of L
that is required for convergence. From experimental
data of Bruce et al.9 we find that «e ' 0.13 mm21 for l
' 100 mm. (To obtain this result, we used the mass
density of black carbon, r ' 2 g/cm3; specific extinction in
Ref. 9 is measured per unit of mass rather than of vol-
ume.) Thus, at l ' 100 mm, we have l2«e ' 1300 mm.
The linear growth of l2«e as a function of L in Fig. 3 can
be approximated by l2«e 5 @50 1 20 L#mm. If this lin-
ear behavior is extrapolated to larger values of L, the ex-
perimental value of l2«e is reached at L ' 65. However,
it is plausible to assume that the slope of the curve
l2«e(L) will decrease for larger L and that the actual
number of spherical harmonics necessary for convergence
is larger than 65. Even for L ' 65 and N 5 100, the
number of equations that must be solved is 422,500. And
a larger L is required for l . 100 mm. This makes the
direct numerical approach impractical for large wave-
lengths.

It can be seen from Fig. 3 that the dependence «e(L)
has the form of a ladder with alternating steps of differ-
ent heights. For example, «e(4) 2 «e(3) is much smaller
than «e(5) 2 «e(4). Therefore, it is generally incorrect
to stop iterations at a certain value of L when the change
in «e is less than some small constant. Instead, this con-
dition should hold for two consecutive iterations. Also,
even if the above condition is met, it is not always clear
that a relatively large change in «e will not accumulate
for larger values of L. Thus the convergence criterion
should be not the small change in «e after two consecutive
iterations but rather a manifested plateau in the curve
«e(L).

2. THEORY
A. Dipole Approximation
In this subsection we briefly describe the dipole approxi-
mation in its generic form and introduce the relevant no-
tation.

The essence of the dipole approximation is to replace
each (finite-size) monomer in a cluster by a point dipole
with polarizability a, located at point ri at the center of
the respective spherical monomer. The dipole moment of

Fig. 3. Specific extinction «e , multiplied by l2 and averaged
over spatial rotations, as a function of L (Fortran codes courtesy
of D. Mackowski). The calculations were performed in the
quasi-static limit for a three-dimensional cluster–cluster aggre-
gate of N 5 100 touching spheres as shown in the inset.
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the ith monomer, di , is proportional to the local field at
point ri , which is a superposition of the incident field and
all the secondary fields scattered by other dipoles.
Therefore the dipole moments of the monomers are
coupled to the incident field and to each other as de-
scribed by the coupled-dipole equation

di 5 aFEinc~ri! 1 (
jÞi

N

Ĝ~ri 2 rj!djG , (4)

where the term Ĝ(ri 2 rj)dj gives the dipole radiation
field created by dipole dj at point ri and Ĝ(r) is the regu-
lar part of the free-space dyadic Green’s function:

Gab~r ! 5 k3@A~kr !dab 1 B~kr !rarb /r2#, (5)

A~x ! 5 ~x21 1 ix22 2 x23!exp~ix !, (6)

B~x ! 5 ~2x21 2 3ix22 1 3x23!exp~ix !, (7)

where k 5 2p/l is the wave number, (Ĝd)a 5 Gabdb ,
the greek subscripts stand for the Cartesian components
of vectors, and summation over repeated indices is im-
plied.

The coupled-dipole equation is a system of 3N linear
equations that one can solve to find dipole moments di .
The cross sections of extinction and absorption can be
found from the optical theorem

se 5
4pk

uE0u2 Im (
i51

N

di • Einc* ~ri!, (8)

sa 5
4pk

uE0u2 ya (
i51

N

udiu2, (9)

ya 5 2ImS 1

a
D 2

2k3

3
> 0. (10)

For monomers small compared with l, polarizability a is
given by32

1

a
5

1

vx
2 i

2k3

3
, (11)

where v 5 (4p/3)Rm
3 is the volume of a spherical mono-

mer, Rm is its radius, and the susceptibility x is defined
by formula (2). As follows from formulas (10), (11) and
(2), ya is nonnegatively defined for any physically reason-
able e. The ratio 3ya/2k3 characterizes the relative
strength of absorption by a single isolated monomer.

B. Geometrical Renormalization of Clusters
In this subsection we describe the GCRM and its applica-
tion in the dipole approximation.

First, we note that most calculations employ computer-
generated samples. The geometry of these samples does
not coincide exactly with that of experimental soot (which
is, obviously, impossible) but rather reproduces certain
statistical geometrical properties of the real soot. Among
such properties are density correlation functions; total
volume of the material, Vtot 5 Nv; and average radius of
gyration, Rg . However, such characteristics as the num-
ber of monomers in a cluster, N, and monomer radius,
Rm , might be considered not essential. It is known, for
example, that the real carbon monomers are not actually
spherical and that nearest neighbors touch each other not
just at one geometrical point, so the model of touching
spheres is only an idealization.

Second, as was mentioned above, the dipole approxima-
tion in its pure form underestimates the strength of elec-
tromagnetic interactions between the monomers. In par-
ticular, it predicts that the shift of the resonance
frequency in small clusters of spheres will be significantly
less than that experimentally measured.20 To correct the
interaction strength of the dipole approximation, we can
move the monomers closer to one another (of course, this
refers to computer-generated samples) by allowing them
to intersect geometrically. However, doing this will evi-
dently reduce the overall system size (Rg), which is an es-
sential parameter of the problem. The other possible
way to introduce the intersections is to increase the radii
of the spheres (Rm) while keeping the distance between
nearest neighbors (l) unchanged. Doing so will, however,
lead to an increase of the total volume of the material.
Luckily, for fractal clusters it is possible to introduce a si-
multaneous renormalization of the sphere radii (Rm), the
total number of monomers (N) and the distance between
the nearest neighbors (l) in such a way that the overall
volume (Vtot) and the gyration radius (Rg) are unchanged
and to introduce an arbitrary geometrical intersection of
neighboring spheres. The transformation is

Rm8 5 Rm~j/2!D/~32D !, (12)

N8 5 N~2/j!3D/~32D !, (13)

l8 5 jRm8 , (14)

where j is an intersection parameter (1 , j , 2; j 5 2
for touching spheres and j , 2 for geometrically inter-
secting spheres). Indeed, it is easy to verify that the gy-
ration radius, which scales with l and N as

Rg } lN1/D, (15)

and the total volume, which scales with Rm and N as

Vtot } NRm
3 , (16)

do not change under the set of transformations defined by
formulas (12)–(14).

Thus the main idea of the renormalization approach is
to model an ensemble of real clusters with experimental
values of Rm and N and l 5 2Rm by a computer-
generated renormalized ensemble with corresponding pa-
rameters Rm8 and N8, and with the geometrical intersec-
tion of neighboring spheres: l8 5 jRm8 , 2Rm8 . It is
important to emphasize that the renormalization does not
apply to a single random cluster (because it changes not
only the interparticle separation but also the number of
particles in an individual cluster) but is rather an opera-
tion that creates the renormalized random ensemble for a
given original (experimental) ensemble.

The initial value for j can be obtained by analogy with
the discrete-dipole approximation (see Refs. 32–34) in
which bulk nonspherical particles are modeled by arrays
of point dipoles located on a cubic lattice. In the first ap-
proximation, the polarizability of the dipoles is taken to
be equal to that of an equivalent sphere with the radius
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Rm such that its volume is equal to the volume of a lattice
cell, i.e., (4p/3)Rm

3 5 l3. From this equality we find that
j 5 l/Rm 5 (4p/3)1/3 ' 1.612.

Another approach to estimating parameter j is based
on the following consideration which can also be used to
justify the physical plausibility of the renormalization
method. It can be shown35 that a linear chain of inter-
secting spheres has the same depolarization coefficients
as an infinite cylinder (within the dipole approximation)36

for j 5 @4 Sk51
` k23#1/3 ' 1.688. This value is close to the

one obtained above. It is important to note that two in-
dependent depolarization coefficients can simultaneously
be tuned to correct values by adjusting only one free pa-
rameter j. As is well known, the depolarization coeffi-
cients in ellipsoids (an infinite cylinder is a particular
case) determine the spectral positions of the resonances.
Thus the renormalization procedure gives the correct
spectral locations of the optical resonances for a one-
dimensional chain. The line shape of each resonance can
still be described incorrectly. However, in the situation
of a large fractal cluster, typical absorption and extinction
spectra are superpositions of many collective resonances,
and the line shapes of individual resonance are of little
importance.

C. Quasi-Static Limit
The quasi-static limit plays an important role in the long-
wavelength electromagnetic properties of soot. This ap-
proximation is highly accurate in the spectral range un-
der consideration (0.6 mm , l , 1 cm) and provides
valuable mathematical simplifications.

When the wavelength is much larger than all charac-
teristic sizes of the system, the terms proportional to x21

and x22 in Eqs. (6) and (7) can be omitted, exp(ix) set to
unity, and the incident wave on the right-hand side of Eq.
(4) replaced by a constant field E0 . The resultant equa-
tion can be written in operator form as

ud& 5 a~ uE inc& 1 Wud&), (17)

where ud& is the 3N-dimensional vector of dipole moments
with components ^iaud& 5 dia , and, analogously, uE inc& is
the vector of the incident fields with ^iauE inc& 5 E0a .
The 3N 3 3N-dimensional operator W is real and sym-
metric in the quasi-static limit and therefore is Hermit-
ian. Its matrix elements are given by

^iauWuib& 5 2
dab

uri 2 rju3 1
3~ri 2 rj!a~ri 2 rj!b

uri 2 rju5 .

(18)

Equation (17) can be formally solved by use of the spec-
tral theorem as10,11

ud& 5 (
n

un&^nuE inc&

1/a 2 wn
, (19)

where un& are the eigenvectors of W with corresponding ei-
genvalues wn . The expression for the extinction cross
section [Eq. (8)] takes the form

se 5
4pk

uE0u2 Im^E incud& 5
4pkv

uE0u2 Im (
n

^E incun&^nuE inc&

1/x 2 vwn
,

(20)
where we have used Eq. (11) for 1/a and neglected, in the
quasi-static limit, the term 2k3/3.

In the limit k → 0, Eqs. (8) and (9) are exactly
equal.10,11 Therefore the scattering cross section is zero
in this limit. However, ss can be calculated in a higher-
order perturbation expansion, where 2k3/3 is considered
to be a small parameter. If there are no antisymmetrical
states in the system,37,38 or if the absorption parameter
3ya/2k3 is large, the integral scattering cross section is
given by

ss 5
8pk4

3uE0u2 uDu2, (21)

where D 5 S i di is the total dipole moment of a cluster.
The above conditions typically hold for carbon soot clus-
ters. For example, for l 5 1 cm and Rm 5 50 nm we
have 3ya/2k3 ' 1010. This result allows us to use Eq.
(21), which implies that the whole cluster radiates as a
single dipole.

One can obtain the expression for uDu2 by using the ho-
mogeneous vectors uOa& with components ^ibuOa& 5 dab

by observing that Da 5 ^Oaud&, which leads to

ss 5
8pk4v2

3uE0u2 (
a,m,n

^E incum&^muOa&^Oaun&^nuE inc&

~1/x* 2 vwm!~1/x 2 vwn!
.

(22)

D. Weighted Density of States and the Step-Function
Approximation
In the quasi-static limit one can average the extinction
cross section over spatial rotations of a cluster by taking
the arithmetic average of the corresponding expressions
for three orthogonal polarizations of the incident field.10,11

Mathematically, this can be expressed as

s̄e 5
4pkv

3
Im (

n,a

^Oaun&^nuOa&

1/x 2 vwn
, (23)

where the overbar denotes rotational averaging. Now we
introduce the WDS Gab(w) and G(w) according to

Gab~w ! 5
1

N (
n

^Oaun&^nuOb&d ~w 2 wn!, (24)

G~w ! 5
1

3 (
a

Gaa~w !. (25)

Then Eq. (23) can be written as

s̄e 5 4pkVtot Im E
2`

` G~w !dw

1/x 2 vw
. (26)

Analogously, the expression for the scattering cross
section averaged over rotations can be written in terms of
the WDS as

s̄s 5
8pk4Vtot

2

9 (
ab

E
2`

` Gba~w1!Gab~w2!dw1dw2

~1/x* 2 vw1!~1/x 2 vw2!
.

(27)

The normalization rules for the WDS are
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E
2`

`

Gab~w !dw 5 dab . (28)

For clusters that are, on average, spherically symmetri-
cal, we can assume that, in the first approximation,
Gab(w) 5 dabG(w). Then Eq. (26) becomes

s̄s 5
8pk4Vtot

2

3
U E

2`

` G~w !dw

1/x 2 vw
U2

. (29)

The WDS calculated for an ensemble of 10 random
cluster–cluster aggregates with N 5 1000 particles in
each aggregate and fractal dimension D ' 1.8 is shown in
Fig. 4 as a function of the dimensionless variable vw.
The solid curve was obtained by exact diagonalization of
W [Eq. (18)] and smoothing G(w) over small intervals
Dw. The dashed line is the step-function approximation
of the WDS, which is discussed in detail below.

By comparing Figs. 4 and 2, we see that the spectral
variable 1/x does not effectively probe the detailed struc-
ture of G(w) when we tune l. This indicates that the
complicated structure of G(w) with multiple maxima and
minima is of little importance. In the simplest case, one
can replace G(w) by a delta function, which is equivalent
to making the mean-field approximation. However, the
mean-field approximation is inaccurate in the long-
wavelength limit because the variable 1/x approaches the
real axis for l . 10 mm and the distance u1/x 2 wvu be-
comes comparable with the effective width of G(w).

The next level of approximation is to replace G(w) by a
step function. Such an approximation is shown in Fig. 4
by the dashed line, which preserves the normalization
and the first and second moments of the exact WDS.
Note also that the third moment of G(w) was numerically
found to be very small, so the step function shown in Fig.
4 effectively conserves the third moment too. Here the
constant vw0 was numerically estimated to be vw0
' 2.29, and G0 5 1/2w0 . The quantity vw0 is indepen-

Fig. 4. Weighted density of states G(w) and its approximation
by a step function with the equivalent normalization, first and
second moments. The numerical diagonalization was performed
for an ensemble of 10 clusters with N 5 1000. The values of the
constants are vw0 5 2.29 and G0 5 1/2w0 .
dent of the system dimensions (such as Rm and l), as one
could expect in the quasi-static limit.

Given the step-function approximation for the WDS, it
is easy to obtain analytical expressions for the optical
cross sections. A direct integration according to Eqs. (26)
and (29) yields, for the extinction and scattering cross sec-
tions,

s̄e 5
2pkVtot

vw0
S arctan

X 1 vw0

d
2 arctan

X 2 vw0

d
D ,

(30)

s̄s 5
2pk4Vtot

2

3~vw0!2 F1

4
ln2

~X 1 vw0!2 1 d 2

~X 2 vw0!2 1 d 2

1 S arctan
X 1 vw0

d
2 arctan

X 2 vw0

d
D 2G .

(31)

Now we discuss renormalization of the parameters v
and w0 under the set of transformations defined by Eqs.
(12)–(14). It is easy to see that the renormalized volume
is v8 5 v(j/2)3D/(32D). In general, the eigenvalues of the
interaction operator W do not scale with the parameter l,
and it is impossible to write a similar relation between wn
and wn8 ; however, it does become possible in the quasi-
static limit. Then, from quasi-static expression (18), it
follows that wn8 5 wn(l/l8)3 5 wn(2/j)9/(32D). Combin-
ing these two expressions, we obtain v8wn8 5 vwn(2/j)3.
Therefore the same transformation applies to vw0 :
v8w08 5 vw0(2/j)3. As could be expected, this transfor-
mation does not depend on fractal dimension D. How-
ever, the dependence on D and other geometrical charac-
teristics of a cluster is retained in the eigenvalues
calculated before the renormalization, i.e., in the constant
vw0 . Thus the intersection procedure effectively in-
creases the normalized eigenvalues and, consequently,
the interaction strength. The same tendency holds be-
yond the quasi-static limit, although the ratio v8wn8 /vwn
becomes different for different n in this case.

In summary, to use the GCRM we simply have to re-
place the constant vw0 in Eqs. (30) and (31) by vw0(2/j)3,
where vw0 must be calculated numerically before the
renormalization in an ensemble of clusters of touching
spheres (i.e., with l 5 2Rm). The constant vw0 carries
essential information about the cluster geometry. For
the cluster–cluster aggregates generated in the Meakin
model30,31 with mass-independent subcluster mobility we
estimated that D ' 1.8 and vw0 ' 2.29. It is well
known that the fractal dimension can depend on the de-
tails of the aggregation process. In particular, the depen-
dence of mobility of subclusters on their mass can influ-
ence D. In the limiting case when only subclusters built
of just one monomer can move (the Witten–Sander
model39), a fixed center of aggregation is formed and the
fractal dimension is D ' 2.5 (for clusters embedded in
three-dimensional space). We expect that the constant
vw0 will also depend on the details of aggregation. Fur-
ther investigation is needed to establish the dependence
of vw0 on the aggregation model and whether there is a
one-to-one correspondence between vw0 and D.
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3. RESULTS
A. Numerical Calculations and Comparison with
Experiment
To verify the validity of analytical Eqs. (30) and (31) we
generated on a computer an ensemble of 10 cluster–
cluster aggregates with N 5 1000 in each on a simple cu-
bic lattice. We diagonalized quasi-static interaction ma-
trix W [Eq. (18)] and calculated the extinction and
scattering cross sections according to Eqs. (20) and (22).
The results were averaged over cluster orientations as de-
scribed in Subsection 2.D. We used the GCRM with j
5 (4p/3)1/3 ' 1.612. The constants Rm and l were
renormalized according to Eqs. (12) and (14). Note that
the specific extinction «e depends in the quasi-static limit
not on the absolute values of Rm and l but only on their
ratio; the same is true for the specific scattering «s nor-
malized by k3Vtot . It has also been verified23 that «e only
weakly depends on N and, therefore, on Vtot in the quasi-
static limit, as long as N is large enough for the fractal
geometry to be manifested. Because such is the case for
N 5 1000, there was no need to renormalize the constant
N according to Eq. (13). [We emphasize that this is valid
only in the quasi-static limit. The GCRM is more general
and can be used beyond the quasi-statics, in which case
the dependence on N can be nontrivial and all three
renormalization formulas (12)–(14) must be used simul-
taneously.]

The results for the specific extinction «e and normal-
ized specific scattering «s /k3Vtot are shown in Figs. 5 and
6, respectively. For comparison, we also plot in these fig-
ures the corresponding values for unaggregated particles
(or in the noninteracting limit): «e

(noninteracting)

5 4pk Im x and «s
(noninteracting)/k3Vtot 5 (8p/3)kuxu2.

Note that the same noninteracting expressions can be ob-
tained in the Rayleigh–Gans (or, equivalently, the first
Born) approximation. The excellent agreement between
numerical and analytical results (with the interactions in-
cluded) is apparent. At the same time, the noninteract-
ing approximation is seen to become increasingly inaccu-
rate when we move from the near to the far IR. A
slightly less accurate fit is obtained for the specific scat-
tering. This is explained by the fact that in the deriva-
tion of Eq. (31) we assumed that the clusters are spheri-
cally symmetrical. This is true only on average, whereas
each individual cluster can deviate from the spherical
symmetry. As a result, the off-diagonal terms in Eq.
(27), which are neglected in the derivations, are not ex-
actly zero.

In Fig. 7 we compare analytical formula (30) with the
experimental measurements of the specific extinction by
Bruce et al.9 Again, the curve that illustrates the nonin-
teracting limit is also shown for comparison. The experi-
mental data in Ref. 9 are given per unit of mass rather
than of volume. We treated the mass density of black
carbon r as an adjustable parameter and found that the
best fit (excluding the last experimental point at l
5 8750 mm) is achieved for r ' 1.9 g/cm3. This is a rea-
sonable estimate, although the experimental value of r in
Ref. 9 is not known. (Compare this estimate with the fol-
lowing values: graphite, 2.26 g/cm3; buckminster ful-
lerine, 1.69 g/cm3; glassy carbon, 1.42–1.54 g/cm3.) Note
that r enters all expressions as a constant factor and does
not influence the form of the wavelength dependence of
«e .

The surprisingly good agreement of experimental mea-
surements with the analytical formula and the reason-
able value of r obtained suggest that the GCRM gives ac-
curate results for carbonaceous soot. We believe that the
small deviations seen in Fig. 7 are due to insufficient ac-
curacy of dispersion formula (1) that was used in all cal-
culations. In particular, the apparently nonmonotonic
behavior near l 5 500 mm can be explained by the pres-
ence of optical resonance at that wavelength; however,
formula (1) does not contain the corresponding term.
The same can be true at l ' 1 cm, where the monotonic
behavior of «e is again interrupted. The optical reso-

Fig. 5. Specific extinction «e calculated numerically (solid curve)
and according to analytical approximation (30) (circles). The
noninteracting limit «e

(noninteracting) 5 4pk Im x is shown by the
dashed curve.

Fig. 6. Specific scattering «s normalized by k3Vtot calculated nu-
merically and according to analytical approximation [Eq. (31)].
The noninteracting limit «s

(noninteracting)/k3Vtot 5 (8p/3)kuxu2 is
shown by the dashed curve.
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nance at this wavelength can occur, for example, as a re-
sult of interaction with low-frequency acoustical phonons.

To conclude this section, we note that the computer-
generated samples used for numerical calculation of the
WDS were built on a cubic lattice. However, in real ag-
gregates, monomers do not occupy lattice sites. The ef-
fect of using off-lattice aggregates in the computer simu-
lations is not expected to be large and will be addressed
by us in the future.

B. Long-Wavelength Optical Properties of Soots Built
from Drudean Materials
In this subsection we consider fractal clusters built of a
general class of materials whose optical properties are
dominated by free electrons. We have already seen that
this is the case in black carbon for l . 100 mm. We as-
sume the idealized Drudean form of the dielectric func-
tion

e 5 1 2
vp

2

v~v 1 ig!
(32)

and study the asymptotic behavior of the specific extinc-
tion and scattering by using analytical expressions (30)
and (31) together with the GCRM. As was discussed in
Subsection 2.D, application of the GCRM results in the
transformation vw0 → vw0(2/j)3 on the right-hand sides
of expressions (30) and (31). We use the notation C
5 vw0(2/j)3.

We start with the specific extinction «e 5 s̄e /Vtot . In
the limit v → 0, the asymptotic values of X and d are

X 5 2X` 5 24p/3, (33)

d 5 4pgv/vp
2. (34)

Then it follows from Eq. (30) that

Fig. 7. Specific extinction «e calculated according to analytical
approximation (30) compared with experimental values adapted
from Bruce et al.9 We used the mass density of black carbon,
r 5 1.9 g/cm3, to convert the experimental data of Ref. 9 into the
units shown here. The noninteracting limit «e

(noninteracting)

5 4pk Im x is shown by the dashed curve.
«e 5
2pk

C Farctan
C 1 X`

d
1 sgn~C 2 X`!

3 arctan
uC 2 X`u

d
G . (35)

In the limit d ! uC 2 X`u, Eq. (35) becomes

«e 5
2pk

C H p

2
@1 1 sgn~C 2 X`!#

2 dF 1

C 1 X`

1
sgn~C 2 X`!

uC 2 X`u G J . (36)

We can identify two separate cases: If C . X` , the
asymptotic form of «e is

«e 5
2p2k

C
}

1

l
, C . X` . (37)

In the opposite case we have

«e 5
~4p!2gkv

vp
2~X`

2 2 C2!
}

1

l2 , C , X` , (38)

where we have used Eq. (34) for d.
We can define the critical value of the parameter vw0

determined by the condition C 5 X` , or

~vw0!c 5
4p

3 S j

2 D 3

. (39)

If the geometry of clusters is such that vw0 , (vw0)c , as-
ymptote (38) is valid. The 1/l2 behavior is characteristic
of noninteracting monomers (e.g., in disaggregated
samples). Therefore we conclude that for vw0
, (vw0)c , the EM interaction is not important in the
long-wavelength regime. In the opposite case, asymptote
(37) is valid, and the EM interaction remains important
up to the electrostatic limit v 5 0, which is manifested in
the 1/l dependence.

Asymptotes (37) and (38) are valid only when d ! uC
2 X`u. If the quantity uC 2 X`u is itself small, the
asymptotic behavior of «e is manifested only for values of
l sufficiently large for the above inequality to be true.
When C 5 X` , the spectral behavior of «e is more com-
plicated. In particular, higher-order terms must be re-
tained in expression (33) for X.

In our calculations illustrated in Subsection 3.A, the
numerically estimated value vw0 ' 2.29 was larger than
the critical value (vw0)c ' 2.19 (assuming that j
5 1.612). Indeed, the onset of the 1/l asymptote can be
seen in Figs. 5–7 for l . 100 mm. This means that in
the carbon smoke with the geometry of cluster–cluster ag-
gregates (D ' 1.8) and optical constants specified in Sub-
section 1.B, the EM interaction is always important in the
long-wavelength limit. We believe that the value of j,
and, consequently, of the critical constant (vw0)c , is uni-
versal for a broad class of soots. However, the quantity
vw0 can depend strongly on the sample geometry. Fur-
ther investigation is necessary to establish the numerical
value of (vw0)c with higher accuracy and to verify the
analytical results for materials with different parameters
vw0 , g, and vp .
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One can obtain the mean-field approximation from Eq.
(30) by considering either the limit of infinitely narrow
WDS (w0 → 0) or large absorption (g → `). In the first
case we obtain «e 5 4pk Im x and in the second case «e
5 4pk/d. Obviously, one can obtain the latter formula
from the former by taking the limit d @ uXu. Note that in
the quasi-static limit the mean-field and the first Born ap-
proximations are equivalent, owing to the symmetry of
the dipole interaction in the near zone.

Now we turn our attention to the specific scattering,
«s . Applying a similar analysis to Eq. (30) and assuming
that d ! uC 2 X`u, we obtain

«s

k3Vtot
5

2pk

3C2 F ln2
C 2 X`

C 1 X`

1 S p

2 D 2G , C . X` ,

(40)

«s

k3Vtot
5

2pk

3C2 F ln2
X` 2 C

X` 1 C
1 d 2

4C2

~X`
2 2 C2!2G ,

C , X` . (41)

Note that «e is proportional to Vtot . Therefore the total
power of scattered light depends on how the soot material
is divided among individual clusters, assuming that the
total concentration of the soot material in the scattering
volume is fixed. When C . X` the long-wavelength as-
ymptote for the specific scattering is «(l) } 1/l4. In the
opposite case (C , X`), the asymptote is more compli-
cated and includes two competing terms, }1/l4 and
}1/l6. The latter term is characteristic of noninteracting
monomers and is dominating in the limit C → 0 or g
→ `, when the mean-field approximation becomes accu-
rate.

4. SUMMARY AND DISCUSSION
We have built a theory of long-wavelength optical proper-
ties of fractal clusters with optical constants that are
dominated by the input of free electrons in the l → `
limit. Analytical expressions were derived for the extinc-
tion and scattering cross sections. The theory was ap-
plied to fractal carbonaceous soot, and the results were
verified by comparison with experimental measurements
in a wide spectral range.

Although a study of carbonaceous soot is the main focus
of this paper, our approach is of a more general applica-
bility. We made three main approximations, all of which
proved to be highly accurate for the object under investi-
gation but are essentially independent of one another.
These approximations are (i) the geometrical renormal-
ization of clusters, (ii) the quasi-static approximation, and
(iii) replacing the weighted density of states (WDS) with a
step function.

The geometrical cluster renormalization method
(GCRM) is applicable beyond the quasi-statics when the
retardation effects are fully included in the consideration.
It also does not put any explicit restrictions on the geom-
etry of samples (as long as they are fractal with D , 3) or
the refractive index of the material, although this subject
has been insufficiently investigated so far. The quasi-
static approximation is, clearly, applicable when the clus-
ters are small compared with the wavelength but can also
be highly accurate in large clusters with low fractal
dimensions12 because the near-zone EM interaction is
fast decaying as 1/r3. Finally, the step-function approxi-
mation is applicable only when certain mathematical re-
lations between the WDS and the complex spectral vari-
able 1/x hold. Thus, this approximation puts restrictions
on the refractive index, the geometry, or both. However,
it can be applied beyond the quasi-static limit, although
the analytical expressions in this case become more cum-
bersome.

We showed that the asymptotic form of the specific ex-
tinction «e(l) in the limit l → ` can be either 1/l or 1/l2.
The crossover between these two regimes has the nature
of a critical phenomenon and is governed by the param-
eter vw0 that characterizes the effective width of the
WDS. We have identified the critical value of this pa-
rameter, (vw0)c .
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