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Fluctuations of light scattered by fractal clusters
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Fluctuations in light scattering from a finite ensemble of fractal clusters are studied numerically and theoreti-
cally. It is shown that, for a wide range of wavelengths and angles, relative fluctuations in the scattered in-
tensity are very close to 1 and do not depend on the number of monomers N in fractal clusters (whereas they
are proportional to 1/AN for trivial clusters). The relations describing fluctuations in the light scattering are
suggested; they can be used to extract important information about properties and parameters of fractal pol-
lutants in the atmosphere. © 1997 Optical Society of America. [S0740-3232(97)02001-2]
1. INTRODUCTION
Optical methods for remote detection and characteriza-
tion of air pollution have attracted much attention.1–3

Most of the optical methods are based on measuring the
intensity of scattered light and its angular and spectral
dependence2,3 and depolarization.4 Multiwavelength
techniques5,6 have been used for sensing of polydisperse
aerosols. However, the data obtained as a result of such
measurements do not provide complete information about
the pollution. In this paper we suggest that measure-
ments of fluctuations of the intensity of scattered light
can provide additional equations that are necessary to ex-
tract the missing parameters.
During the past two decades it has become clear that in

many cases the particles of sooty smoke, which is lofted
into the atmosphere, possess geometrical properties of
fractal clusters. They are built from many hundreds or
even thousands of smaller particles (monomers), which
aggregate and stick together to form submicron and mi-
cron fractal clusters.2,3,7

The average intensity of light scattered from fractal
clusters has been investigated, for instance, in Refs. 8 and
9. It has been shown that the scattered light intensity,
I(q), bears information about the fractal dimension, D, of
clusters,

I~q ! ; q2D,

where q 5 k 2 k8 is the transmitted wave vector. One
can also use the magnitude of the scattered intensity to
find the average density of the scattering material.
Though this result is useful, it does not allow one to ex-
tract some important parameters of fractal clusters, such
as the number of monomers in clusters and the character-
istic geometrical size of clusters.
Here we propose to use more subtle measurements,

namely, the measurements of the fluctuations of the scat-
tered light. Based on numerical and theoretical results,
we show that these fluctuations are much different for
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scattering from fractal and nonfractal (trivial) clusters
and can provide additional information about the nature
and the geometry of scattering objects.
All results reported in this paper are based on the

mean-field approximation (MFA) described, for example,
in Ref. 8. This approximation is accurate for nonreso-
nant light scattering, which is usually the case for scat-
tering from carbon clusters in the optical region of the
spectrum. (Resonant light scattering by fractals was
considered in Ref. 10, and fluctuations of local fields in
fractals under resonant excitation were studied in Ref.
11.)
This paper is organized as follows. In Section 2 we re-

view the basic geometrical properties of fractal clusters
and describe computer models that we have used for
simulation of fractal and trivial clusters. In Section 3 we
review the MFA. Our main results for fluctuations of
light scattered by mono- and polydisperse ensembles of
fractal clusters are presented in Sec. 4. In Section 5 we
compare the results obtained for fractal and nonfractal
clusters. Finally, in Section 6 we briefly discuss main re-
sults of the paper.

2. GEOMETRICAL PROPERTIES OF
FRACTAL CLUSTERS
In this section we summarize general geometrical proper-
ties of fractal clusters and describe computer models that
we use for simulation of real soot aggregates in the atmo-
sphere.

A. General Properties
We consider an ensemble of clusters containing N point-
like particles (monomers). One can define a characteris-
tic cluster size in different ways. The radius of gyration,
Rg , for example, is defined as

Rg
2 5 ^~r 2 Rcm!2&, (1)
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where r is the coordinate of a monomer in a cluster, Rcm is
the coordinate of the center of mass of the cluster, and ^ &
denotes averaging over an ensemble of clusters. Another
possible choice for the characteristic size is the root-
mean-square distance between monomers, Rrms , i.e., A2
times the radius of gyration.
The most simple definition of the fractal dimension D is

through the relation between the radius of gyration and
the number of particles in a cluster,

N 5 ~Rg /R0!D, (2)

where R0 is a constant of length of the order of the mini-
mum separation between particles. In practice, this re-
lation is not very useful because, in order to calculate D,
one needs to build a large number of clusters with differ-
ent N. A more practical definition for the fractal dimen-
sion uses the pair correlation function, p2(r), which is an
ensemble-average probability density of finding a pair of
monomers (belonging to the same cluster) at the distance
r from each other:

p2~r ! 5 arD21/N if R0 ! r ! Rc . (3)

Hereafter, by Rc we imply any of the characteristic clus-
ter sizes, Rg or Rrms (when it is needed, we specifically re-
fer to Rg or Rrms). The constant a appearing in Eq. (3) is
N independent but can be different for different classes of
fractals. It should be noted that there is no obvious way
to relate the constants a and R0 , since the number of par-
ticles lying within the radius of gyration varies from clus-
ter to cluster.

B. Numerical Simulations of Fractal Clusters
In our numerical simulations we used random ensembles
of computer-generated fractal clusters. The computer
model of cluster–cluster aggregation (CCA) (Ref. 12) well
reproduces geometrical properties of real fractal clusters
formed in the atmosphere, under the condition that there
is no space-fixed center of aggregation and the concentra-
tion of the aggregating material is low. These conditions
are usually well fulfilled. (For a detailed description of
the CCA algorithm see, for example, Ref. 12.)
We used the CCA model to build two ensembles of ran-

dom fractal clusters. The first ensemble was monodis-
perse and consisted of 40 clusters containing 10,000
monomers each. The clusters were built on a simple cu-
bic lattice with dimension 300 3 300 3 300 and periodic
boundary conditions. In the numerical calculations, we
used the lattice unit as a unit of length, so that all physi-
cal quantities of dimensionality of length (such as a wave-
length l) are measured in lattice units.
The values of characteristic cluster sizes for the en-

semble were Rg 5 70.3 and Rrms 5 99.4. The value of
R0 determined from Eq. (2) and the above value of Rg was
0.4.
The size of the lattice was chosen so that the average

concentration of monomers is low enough ('4 3 1024

monomers per site) and the maximum size of clusters is
smaller than the size of the lattice. This ensures that the
clusters manifest well the fractal morphology, with the
correct form of the function p2(r) (see Fig. 1). The values
D 5 1.78 and a 5 4.12 for the asymptote (3) in Fig. 1 are
found from the linear regression. Our result for D is in
good agreement with the commonly accepted value of D
for CCA clusters.
The second ensemble of clusters that we built was poly-

disperse and consisted of 100 clusters. The number of
particles in clusters was distributed according to the
Gaussian probability distribution with the average
^N&5 5000 and the dispersion sN 5 A^N2& 2 ^N&2

5 2000.13 The dimension of the lattice, L, was adjusted
for each cluster according to L(N) 5 300(N/104)1/D.
This provided the same relation between Rc and L for all
clusters (this relation was also valid for the monodisperse
ensemble).
In order to compare results for fractal and nonfractal

(trivial) clusters, we also generated an ensemble of ran-
dom clusters with D 5 3. We used the algorithm of ran-
domly close-packed hard spheres (CPHS). In this algo-
rithm, one chooses first a volume to be occupied by a
cluster. In our simulations, it was a sphere since we in-
tended to build clusters that are spherically symmetric,
on average. Then monomers are randomly placed inside
the volume. At each step the intersection condition is
checked: If the newly placed monomer approaches any
of the previously placed monomers closer than the unit
distance, this step is rejected and the next random posi-
tion is tried. In this way each monomer can be thought
of as a hard sphere of radius 1/2. The procedure stops
when a large number of tries is consequently rejected. In
our simulations this number was chosen to be 2 3 107.
This algorithm allows one to achieve a fairly dense

package. As the volume to be occupied by a cluster, we
chose a spherical volume with radius 14.2 and conse-
quently packed in it 40 different clusters with an average
of 9200 monomers per cluster. The volume fraction occu-
pied by particles (of the volume p/6 each) was '0.40.
(For comparison, it is '0.52 in the case of a simple cubic
lattice and can be even lower for some other types of lat-
tice.) In these clusters the minimum distance between
neighbor monomers was very close to 1; the maximum
distance varied from 1.2 to 1.3.

Fig. 1. Two-point correlation function, p2(r).
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Although the CPHS clusters were not completely mono-
disperse, the variation of N was very small: The ratio of
the standard deviation of N to the mean was equal to
2.4 3 1023.

3. REVIEW OF THE MEAN-FIELD
APPROXIMATION
The results presented below are based on the MFA ap-
plied first by Berry and Percival for the description of op-
tical properties of fractals.8 The main feature of the
MFA to be used below is the assumption that the phases
of dipole moments of all monomers coincide with the
phases of the incident wave. In this section we briefly re-
view the MFA and recapitulate the important relations
that will be used in subsequent sections.

A. Formulation of the Mean-Field Approximation
Consider a cluster of N small polarizable spherules
(monomers) located in space at points ri (i 5 1, . . ., N).
For simplicity, we assume that all the particles are iden-
tical and possess a scalar dipole polarizability a. The
cluster is irradiated by a plane monochromatic wave,

E~r, t ! 5 E0 exp~ik • r 2 ivt !, (4)

which induces dipole momenta di in each particle.
A theoretical basis for building the MFA involves the

equations that couple all the dipole moments in a cluster
to the field of the incident wave (4) and to each other.
These equations, known as the coupled-dipole equation,
have the following form:

di 5 aFE0 exp~ik • ri! 1 (
j51
jÞi

N

Ŵ~ri 2 rj! + djG . (5)

The second term on the right-hand side of Eq. (5) de-
scribes the interactions of dipoles with each other; Ŵ(ri
2 rj) + dj is simply the electric field produced by the jth
dipole at the point where the ith dipole is located [the bth
component of this field is (g Ŵbg(ri 2 rj)dj,g]. The exact
form of the tensor Ŵ is defined by general formulas for
the dipole radiation (see, for example, Ref. 14):

Wab~r! 5 A~kr !dab 1 B~kr !
ra rb

r2
, (6)

A~x ! 5 ~x21 1 ix22 2 x23!exp~ix !, (7)

B~x ! 5 ~2x21 2 3ix22 1 3x23!exp~ix !. (8)

Here the Greek indices stand for the Cartesian compo-
nents of vectors, and A(x) and B(x) are complex functions
of a real scalar argument.
In the MFA the dipole moments are given by8

di 5
E0 exp~ik • ri!
1/a 2 ~N 2 1 !Q

, (9)

where the factor Q is defined as

Q 5
^@E0 • Ŵ~ri! 2 rj! + E0#exp@ik • ~rj 2 ri!#&

uE0u2
,

(10)
and ^ & denotes ensemble averaging over all possible dis-
tances ri 2 rj between distinct monomers (i Þ j) in a
cluster. Note that for an ensemble of spherically sym-
metrical (on average) clusters, the dependence of Q on E0
vanishes, since the off-diagonal elements of Ŵ turn out to
be zeros after the averaging.
It should be noted that the MFA is always correct in

the case of a homogeneous (on average) continuous me-
dium, since in this case Eq. (9) is the eigenvector of the
operator of translation. Clusters, however, do not pos-
sess translational symmetry. So we can say that the
MFA neglects the geometrical structure of clusters for the
purpose of the calculation of phases of dipole moments, ef-
fectively replacing a cluster by a continuous medium, but
it does consider the geometry for calculating amplitudes
of dipole moments.
In principle, the MFA allows one to take into account

all the orders of the multiple scattering. If the multiple
scattering is not essential, as in the limit uawnu ! 1 (off-
resonance excitation), the MFA coincides with the first
Born approximation.

B. Multiple Scattering
Below we consider two different ensembles of clusters,
monodisperse and polydisperse. In monodisperse sys-
tems the number of particles is the same for all clusters,
whereas it is different for polydisperse systems.
For fluctuations in light scattering from a monodis-

perse ensemble of clusters, the value of the parameter
(N 2 1)Q ' NQ, appearing in Eq. (9), is not important
because it is the same for all clusters. Since Q is defined
as an ensemble average, we could generalize its definition
to the case of a polydisperse ensemble. We can think of a
polydisperse ensemble as a set of monodisperse suben-
sembles with different N. Each of these subensembles
would be characterized by its own value of NQ, and, if
NQ depends on N, it would clearly contribute to the fluc-
tuations. This fact would complicate consideration of
fluctuations of scattered light in a polydisperse ensemble
of clusters.
There are two important cases in which we can neglect

this effect and consider NQ as independent of N and the
same for all clusters. The first trivial case corresponds to
the limit of small NaQ, where we can use the first Born
approximation (simply by setting Q 5 0). Since Q de-
pends on N, the above condition is actually N dependent
and can be, in principle, violated for very large N, even if
a is very small. Thus a very thick layer of a fairly trans-
parent material may become eventually optically dense.
But in many cases this condition can be well fulfilled for
nonresonant excitation of submicron clusters.
The second condition is not as trivial. As was pointed

out by Berry and Percival,8 NQ does not depend on N for
D , 2. A physical interpretation of this effect is that a
cluster with D , 2 stays geometrically transparent when
N increases toward infinity. This fact can also be under-
stood from a mathematical point of view.8

We first rewrite the definition (10) of Q in terms of the
pair correlation function, p2(r), by using the expression
(6) for Ŵ:
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Q 5 E
0

`

p2~r !drE
0

pE
0

2p

@A~kr !

1 B~kr !sin2 u cos2 f#exp~ikr cos u!
sin u dudf

4p
,

(11)

where A and B are defined by Eqs. (7) and (8). After in-
tegrating over u and f, we have

Q 5 E
0

` p2~r !

kr HA~kr !sin~kr !

2
1
kr Fcos~kr ! 2

sin~kr !

kr GB~kr !J dr. (12)

Since p2(r) } 1/N for small r, we can state that NQ does
not depend on N if the integral in Eq. (12) converges at
distances smaller than the size of a cluster, i.e., r , Rc
[when the asymptote (3) is still valid]. In order to check
the convergence, we consider the term that decays most
slowly in the integrand of Eq. (12). This term comes from
the first term in A(kr) [Eq. (7)] and is proportional to
r22 sin(kr)exp(ikr). For r ! Rc we can replace p2(r) by
its asymptotic form (3), and the corresponding integral ac-
quires the form

1
N E rD23 sin~kr !exp~ikr !dr

5
1
N E rD23

exp~2ikr ! 2 1
2i

dr, (13)

which clearly converges for D , 2 (and diverges if D
. 2). This means that the value of NQ is defined only
by the form of the asymptote (3), which is universal and
does not depend on Rc and, consequently, on N.
We can say that the role of multiple scattering does not

increase with N, for D , 2. Thus, if the multiple scat-
tering were negligible for small clusters (as it is in the
case of off-resonance excitation), it would stay negligible
for large clusters, no matter how many particles they con-
tain. For the resonant excitation, multiple scattering
can be significant for small clusters, even if there are only
two monomers. But as N grows, the impact of multiple
scattering remains the same for D , 2.
Since the cluster–cluster aggregates and, in particular,

the smoke clusters have D 5 1.78 , 2, the quantity NQ
does not depend on N. But this is not the case for trivial
(nonfractal) clusters, with D 5 3.

C. Scattering Cross Section
We can use the solutions to the coupled dipole equation
(5) to write general expressions for the scattering ampli-
tude and the optical cross sections in terms of dipole mo-
ments di (see, for example, Refs. 10 and 15). For a single
cluster built of N particles the expression for the scatter-
ing amplitude f(s) is

f~s! 5 k2(
i51

N

@di 2 ~di • s!s#exp~2iks • ri!, (14)

where s is a unit vector in the direction of scattering and
the wave vector of the scattered wave is k8 5 ks.
In the MFA this expression is simplified with the use of
Eq. (9) to the form

f~s! 5 k2
E0 2 ~E0 • s!s
1/a 2 ~N 2 1 !Q (

i51

N

exp~iq • ri!, (15)

where q 5 k 2 k8. The differential scattering cross sec-
tion is defined by

dss

dV
5 uf~s!u2 5

k4uE0u2 sin2@c~E0 , s!#

u1/a 2 ~N 2 1 !Qu2

3 U(
i51

N

exp~iq • ri!U2, (16)

where c (E0 , s) denotes the angle between E0 and s.
As mentioned in Subsection 3.B, the value of (N

2 1)Q ' NQ is the same for all clusters and does not de-
pend on N for D , 2. Therefore the whole factor
k4uE0u2 sin2@c (E0 , s)#/u1/a 2 (N 2 1)Qu2 is the same for
all clusters. In contrast, the factor u( i51

N exp(iq • ri)u2 in
Eq. (16) is random and can vary from cluster to cluster.
When considering fluctuations of scattered light by dif-

ferent random clusters, we do not need to keep a factor
that is common to all of them. Therefore it is convenient
to define the intensity of the light scattered by some indi-
vidual cluster as

I~u, f! 5 I~q! 5 U(
i51

N

exp~iq • ri!U2, (17)

where f is the azimuthal angle and the absolute value of
q depends on the scattering angle u as

q 5 kA2~1 2 cos u!. (18)

In the case of scattering of a depolarized wave, we must
replace sin2[c (E0 , s)] by ^sin2 c& 5 1 2 (1/2)cos2 u.
Though there still is a dependence on the scattering angle
in the prefactor of Eq. (16), the dependence on the azi-
muthal angle f is eliminated after such averaging.
The intensity (17) coincides with the real intensity of

the scattered light up to some function of u in the case of
a depolarized incident wave and up to some function of u
and f for a polarized wave. Note that the definition of
the intensity in Eq. (17) is suitable only for the calculation
of relative fluctuations, i.e., for the dispersion of scattered
intensity divided by the average scattered intensity. If
we want to calculate absolute fluctuations, we need, of
course, to keep all the prefactors.
In this paper we focus on relative fluctuations. The

absolute value of fluctuations can always be recon-
structed, provided that the average scattered intensity is
known.

4. FLUCTUATIONS OF LIGHT SCATTERED
BY FRACTAL CLUSTERS
A. General Relations
Below we consider the intensity of light scattered by some
number of fractal clusters randomly distributed in some
volume. The distance between clusters is supposed to be
large compared with the wavelength of the incident radia-
tion, l, and the distribution of clusters in space is sup-
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posed to be random and uncorrelated. Then we can add
the intensities of light scattered by each cluster, rather
than the amplitudes.
The average scattered intensity ^I& is defined as

^I& 5 ^I~u, f!& 5 lim
M→`

1
M (

k51

M

Ik~u, f!, (19)

where Ik(u, f) is the intensity scattered by the kth clus-
ter; M is the total number of clusters that scatter the
light; u, as above, is the angle between the direction of the
incident wave vector k and the direction of scattering;
and f is the azimuthal angle. With the use of Eq. (17) we
can rewrite Eq. (19) as

^I& 5 lim
M→`

1
M (

k51

M

(
i, j51

Nk

exp$iq • @ri
~k ! 2 rj

~k !#%, (20)

where Nk is the number of monomers in the kth cluster
and r i

(k) is the coordinate of the ith monomer in the kth
cluster.
For an ensemble of spherically symmetrical (on aver-

age) clusters, the dependence of ^I& on f is weak (it van-
ishes for an infinite ensemble); therefore, we will use the
notation ^I& 5 ^I(u)& 5 ^I(q)&, where q is defined by Eq.
(18).
If we detect the scattered light from just one cluster, it

can be much different from ^I&. A convenient measure of
these variations is the standard deviation (dispersion),
sI :

sI
2 5 ^I2& 2 ^I&2. (21)

The value of sI characterizes possible deviations of Ik
from ^I& calculated for an infinite ensemble of clusters
and has a simple mathematical meaning: The probabil-
ity that an individual Ik lies within the interval ^I& 6 sI
is approximately 2/3.
In the case of a finite M, one can be interested in a

measure of fluctuations of the average value (19) itself
[the ‘‘lim’’ sign in this case should, of course, be omitted in
Eqs. (19) and (20)]. If we register the scattered light
from different ensembles of clusters consisting of some fi-
nite number of clusters M, we will come up with different
results. We can define the standard deviation s I

(M) of
these random values in the usual way. The relation be-
tween sI

(M) and sI [ sI
(1) is well known from mathemati-

cal statistics:

sI
~M ! 5

sI

AM
. (22)

The actual value ofM depends on the scheme of the ex-
periment. In one possible setting the scattering volume
is small enough (e.g., as a result of focusing a laser beam)
and contains only one cluster at a time. Because of the
random motion of clusters, the volume contains different
clusters in different moments of time. In this case one
can register scattered radiation for some large period of
time (excluding the periods when the volume contains no
clusters at all and the signal is zero) and calculate the
time-averaged intensity and its standard deviation, which
coincides with sI . If the volume contains, on average, M
clusters at a given time, the measured standard deviation
would be sI

(M).
Here we focus on the calculation of the relative disper-

sion sI /^I&. As will be shown numerically in Subsection
4.B, this value is universal for CCA clusters in a wide
range of scattering angles. We can use relation (22) to
find the average number of clusters in the scattering vol-
ume (and, hence, the number density of clusters).

B. Monodisperse Clusters
First, we consider monodisperse ensembles of clusters
consisting of N monomers each. The task of calculating
sI includes finding two average values: ^I& and ^I2&.
The first of them has an independent virtue and is experi-
mentally measurable.
Berry and Percival8 showed that one can use the as-

ymptotic form (3) for the pair correlation function p2(r) to
calculate ^I&. Indeed, for a monodisperse ensemble, Eq.
(20) can be simplified to

^I& 5 N 1 N~N 2 1 !^exp~iq • rij!&, (23)

where rij 5 ri 2 rj , and only distinct monomers belong-
ing to the same cluster are considered, i.e., i Þ j (the su-
perscripts in ri and rj are omitted). Now we can use the
function p2(r) to calculate ^exp(iq • rij)&:

^exp~iq • rij!& 5 E
0

`

p2~r !exp~iq • rij!
dr sin u dudf

4p
.

(24)

After the angular integration is performed, Eq. (24) sim-
plifies to

^exp~iq • rij!& 5 E
0

`

p2~r !
sin~qr !

qr
dr. (25)

In the case D , 2 and q @ Rc
21 , the integral (25) con-

verges at the distances for which the asymptote (3) is still
valid. The final result of the integration is

^exp~iq • rij!& 5
aG~D 2 1 !sin@p~D 2 1 !/2#

NqD
. (26)

If q ! Rc
21, sin(qr) can be expanded in a power series

in Eq. (25), and the result of the integration up to the low-
est nonzero power of q is

^exp~iq • rij!& 5 1 2 ~qRrms!
2/6. (27)

As follows from Eqs. (23) and (27), ^I(u 5 0)& 5 N2,
which means that the forward scattering is always coher-
ent in the frame of the MFA. From Eqs. (23) and (26) it
can be concluded that the minimum possible value of ^I&
is N, which can be reached for large values of q. For the
backscattering, when the value of q is maximum, the ex-
pression for ^I& becomes ^I& 5 N(1 1 5 3 1022lD),
where we used the numerical values for all the coeffi-
cients. The characteristic value of l is 5.4 lattice units,
so that for smaller l, ^I& can approach its lower bound.
(But one should keep in mind that for l comparable with
the lattice unit, clusters become essentially discrete sys-
tems, and the description based on a smooth function p2
is no longer valid.)
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The theoretical asymptotes (26) and (27), along with
the results of numerical calculations for ^I& for different
values of l, are illustrated in Fig. 2. (Note that we chose
noninteger values of l in order to avoid lattice effects.)
In fact, the domains where these two asymptotes are
valid come fairly close to each other. The threshold
angles uc defined from the condition q(uc) 5 Rrms

21 are
5.4 3 1023p for l 5 10.5 and 2.6 3 1022p for l 5 50.5.
Whereas ^I& is well defined by p2(r), one needs a

higher-order correlation function for the calculation of
^I2&. Indeed, the definition of ^I2& analogous to Eq. (20)
would contain a fourfold summation, which, after we
group together the terms with different indices matching
each other, turns into

^I2& 5 N~2N 2 1 ! 1 4N~N 2 1 !2^exp~iq • rij!&

1 N~N 2 1 !~N2 2 3N 1 3 !^exp~iq • rijkl!&,

(28)

where rijkl 5 rij 2 rkl , i Þ j, k Þ l, and any of the pair
of indices (i, j) can coincide with any of the pair (k, l).
It is easy to show that ^exp(iq • rijkl)& is expressed
through the four-point correlation function, p4(r), which
is defined as the probability density of finding the value of
rijkl to be equal to r, exactly in the same form as that in
Eq. (25), with rij replaced by rijkl and p2 replaced by p4 .
Whereas the pair correlation function p2 is well inves-

tigated, there is little information on the four-point corre-
lation function p4 . We found numerically that for small
r, p4(r) scales like r

b, where b is very close to D. Con-
sequently, the integral of the type of Eq. (25) would di-
verge if we replaced the actual p4(r) by its small-r as-
ymptote. This means that we require the exact form of
p4(r) to calculate ^I2&. We will report more detailed re-
sults on p4(r) elsewhere.
We now turn to numerical results for fluctuations. We

calculated the value of sI /^I& as a function of scattering
angle u for the ensemble of 40 CCA clusters, with N
5 10,000 monomers in each cluster. In this calculation
we allowed u to change from 0 to 2p, so that the observer
makes a whole revolution from the forward direction of

Fig. 2. Average intensity of the scattered light for l 5 10.5 and
l 5 50.5 (lattice units).
scattering to the backward direction and back to forward.
In the usual spherical system of coordinates, this corre-
sponds to varying u from 0 to p, then changing f to
f 1 p and varying it from p back to 0. Note that for a
finite ensemble of random clusters the result is not neces-
sarily symmetrical with respect to the point u 5 p.
However, it must be symmetrical for an infinite ensemble
of spherically symmetrical (on average) clusters; this fol-
lows from the fact that neither sI nor ^I& can depend on f
in this case.
The results of the calculations are presented in Fig. 3.

We first consider the domains of u where the asymptote
(26) is valid. The characteristic values of uc [defined from
the condition q(uc) 5 Rrms

21 ] are 5.4 3 1023p for l
5 10.5, 1.0 3 1022p for l 5 20.5, 2.6 3 1022p for l
5 50.5, and 0.16p for l 5 100.5. One can easily see
that the value of sI /^I& fluctuates near unity if uc ! u
! 2p 2 uc .

16 It should be noted that for a finite en-
semble sI /^I& is a random quantity itself. Since there is
no noticeable systematic dependence on u in the domain
defined above, we can perform additional averaging of
sI /^I& over u. The results for this averaging are (up to
the third significant figure) 0.98 for l 5 10.5, 1.00 for l
5 20.5, 0.96 for l 5 50.5, and 1.01 for l 5 100.5.
The numerical data suggest that the value of relative

fluctuations of the intensity of light scattered by CCA
clusters is very close to unity and statistically indepen-
dent of the scattering angle u as long as u lies in the do-
main defined above. This is true for a wide range of
wavelengths l. However, for very large l, the domain of
u shrinks and becomes essentially empty when l
5 2A2pRrms ' 9Rrms . For very small l the lattice
structure (or some characteristic interparticle distance in
off-lattice clusters) would become of importance, leading
to the appearance of sharp interference maxima and
minima in the angular distribution of the intensity of
scattered light.

Fig. 3. Relative fluctuations sI(u)/^I(u)& for different wave-
lengths (CCA clusters; D 5 1.78). For each curve the horizontal
line corresponds to the level sI /^I& 5 1; the distance between
the nearest horizontal lines is 1; sI(0)/^I(0)& 5 sI(2p)/^I(2p)&
5 0.
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Now we turn to the domain of small q (or, equivalently,
small scattering angles). If q is much smaller than
Rc

21, we can expand the exponent in Eq. (17) so that the
expression for the intensity scattered by the kth cluster
up to the first nonvanishing power of q takes the form

Ik 5 N2F1 2
q2

2
rk
2~ q̂!G , (29)

where

rk
2~ q̂! 5

1

N2 (
i, j51

N

@rij
~k !#2 cos2$c@q, rij

~k !#% (30)

and q̂ is a unit vector in the direction of q. We also used
the limit of large N, namely, we put N(N 2 1) 5 N2.
Note that ^rk

2(q̂)& 5 Rrms
2 /3, so that Eq. (30) coincides with

Eq. (27) after the averaging. However, an individual
cluster can be not spherically symmetrical, which means
that pk

2(q̂) can depend on the direction of q.
One can also use expression (30) to find ^I2& and, even-

tually, sI . The final result is

sI

^I&
5

q2

2
A^r4& 2 ^r2&2. (31)

Because of spherical symmetry, the dependence on the di-
rection of q vanishes in the average quantities ^r4& and
^r2&. Note that the above average values depend on N.
As was mentioned above, ^r2& 5 Rrms

2 /3 } N2/D. Analo-
gously, ^r4& } N4/D and sI /^I& } N2/D for a fixed value of
q ! Rc

21. This is in agreement with the fact that the do-
main of q where q ! Rc

21 shrinks as N increases, but the
value of sI /^I& becomes approximately equal to unity
when q . Rc

21. This means that the coefficient in front
of q2 in Eq. (31) should increase with increasing N.

C. Polydisperse Clusters
We now consider a polydisperse ensemble of clusters, i.e.,
an ensemble containing clusters with different N. We
first look at the case of large q, when the condition q
@ Rc

21 is fulfilled for almost every cluster in the en-
semble.
We can calculate ^I& by performing an additional aver-

aging over N in Eq. (23). In the case of large q this av-
eraging leads to

^I& 5 ^N&$1 1 aG~D 2 1 !sin@p~D 2 1 !/2#/qD%.
(32)

It is natural to assume that the intensity scattered by
some individual cluster Ik can be represented as

Ik 5 NkJk , (33)

where Nk and Jk are statistically independent random
variables and

^J& 5 1 1 aG~D 2 1 !sin@p~D 2 1 !/2#/qD. (34)

Then an ensemble averaging in Eq. (33) results in Eq.
(32).
For a monodisperse ensemble the Jk coincide with the

Ik up to some constant, common for each cluster. There-
fore the relative dispersion, sJ /^J&, coincides with the
relative dispersion of I in a monodisperse ensemble.
Further, we can use Eq. (33) to calculate the relative
dispersion of scattered intensity in a polydisperse en-
semble in terms of that in a monodisperse ensemble and
the dispersion of the random variable N. Straightfor-
ward algebra yields

sI

^I&
5

sJ

^J&
A sN

2

^N&2
S 1 1

^J&2

sJ
2 D 1 1. (35)

From the numerical results of Subsection 4.B, we know
that sJ /^J& is very close to unity. Substituting this
value into Eq. (35), we obtain

sI

^I&
5 A2

sN
2

^N&2
1 1. (36)

It follows from formula (36) that sI /^I& is always close
to unity, even for very polydisperse ensembles. The
value of sN /^N& cannot be much larger than 1 for any
physically reasonable distribution of N. For example, if
N is uniformly distributed from 0 to Nmax , this value is
equal to 1/A3. If the distribution has two sharp peaks of
equal height near N1 and N2 , it is equal to uN1
2 N2u/(N1 1 N2). (The value of sN /^N& can be very
large in a situation in which the distribution of N has a
maximum near N 5 0 and decays faster than exponen-
tially with N.)
In order to verify Eq. (35), we calculated sI /^I& for a

polydisperse ensemble of CCA clusters with sN /^N&
5 0.37 described in Section 2 for two different values of
l. After additional averaging over angles (as described
in Subsection 4.B), the results obtained are as follows:
sI /^I& 5 1.109 for l 5 10.5 and sI /^I& 5 1.087 for l
5 20.5. The results following from the theoretical for-
mula (35) and the corresponding results for a monodis-
perse ensemble (sJ /^J&) are 1.109 and 1.120, respec-
tively. As we can see, the results match closely. For the
case of l 5 10.5, the difference is only in the fifth figure.
The results for the polydisperse ensemble also confirm

indirectly the idea that sI /^I& is close to unity for any
monodisperse ensemble, independent of N (provided that
the condition for q is fulfilled). We could think that the
result obtained numerically in Subsection 4.B concerns
only clusters with N 5 10,000 and that it is close to unity
by chance. But in this subsection we confirmed this re-
sult for an ensemble with ^N& 5 5000.
Now we turn to the domain of small q, where the above

consideration is not valid. Experimentally, this domain
of q can always be realized by a look at the forward scat-
tering. We can use Eq. (29), with N replaced by Nk for
the intensity scattered by the kth cluster. Further, since
all Nk are different, we do not need to consider the term
proportional to q2 in order to obtain the main contribution
to sI /^I&, that is,

sI

^I&
5 A^N4& 2 ^N2&2

^N2&2
. (37)

It is easy to verify that the first correction to this formula
is also proportional to q2.
Thus we see that for the forward scattering, fluctua-

tions of the number of monomers in clusters define fluc-
tuations of the scattered light, whereas, for large q, the
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differences in the geometrical structures of clusters play a
decisive role. This is natural since in the MFA, the for-
ward scattering is always coherent.

5. FLUCTUATIONS OF LIGHT SCATTERED
BY TRIVIAL CLUSTERS
It is interesting to compare the fluctuations of light scat-
tered by fractal and by trivial (D 5 3) clusters. For this
purpose we generated on a computer the ensemble of
CPHS clusters described in Subsection 2.B. In this sec-
tion we limit ourselves to consideration of only monodis-
perse ensembles of clusters.

A. Numerical Results
The results of numerical simulations of sI /^I& for the en-
semble of 40 CPHS clusters are shown in Fig. 4(a). As in
Section 4, the scattering angle u varies from 0 to 2p.
First, we notice the strong and systematic dependence of
sI /^I& on u. For fractal clusters this dependence looks
much like a statistical noise (cf. Fig. 3). Second, for most
angles the value of sI /^I& is significantly less than 1 and
decreases when l grows. This dependence on l is antici-
pated, because, for many monomers in the volume l3, a
cluster becomes optically similar to a dielectric sphere,
and its random structure is of no importance. But this is
not the case for fractal clusters; they are geometrically
different and random in all scales up to the maximum
scale Rc . As seen from Fig. 3, sI /^I& for fractal clusters
is of the order of 1, even for l 5 100.5. But for CPHS
clusters sI /^I& is much less, of the order of 1022 for l
5 50.5.
The second feature is the presence of sharp maxima in

sI /^I& when it becomes of the order of 1. These maxima
occur for the angles u at which ^I(u)& has minima [see Fig.
4(b)]. We explain this in more detail in Subsection 5.B.
Note also that sI /^I& does not turn exactly to zero when

u 5 0 and 2p. This is because the ensemble of the CPHS
clusters is not exactly monodisperse (see Subsection 2.B).

B. Theoretical Results
The problem of fluctuations can be solved exactly for
spherically symmetrical random clusters, provided that
the positions of monomers in clusters are absolutely un-
correlated. This is not the case for the CPHS clusters,
because in the CPHS model, monomers cannot approach
each other closer than the unit distance, which brings
about short-range correlations. It is clear that the model
of totally uncorrelated clusters (random gas) is not exact,
since monomers act like hard spheres during aggregation.
However, theoretical results for uncorrelated clusters
help to explain the main features shown in Fig. 4.
We consider a random gas of uncorrelated particles in-

side a spherical volume of radius b. The ensemble-
average quantities ^exp(iq • ri)&, ^exp(iq • rij)&, and
^exp(iq • rijkl)& can be obtained from straightforward in-
tegration and are as follows:
^exp~iq • ri!& 5 w~qb ! [
3

~qb !3
@sin~qb ! 2 qb sin~qb !#,

(38)

^exp~iq • rij!& 5 w2~qb !, (39)

^exp~iq • rijkl!& 5 w4~qb !. (40)

The values of ^I& and ^I2& can be found according to Eqs.
(23) and (28) with the use of Eqs. (38)–(40). The expres-
sion for ^I& is

^I& 5 N 1 N~N 2 1 !w2~qb !, (41)

and the expression for sI/^I& is (in the limit of large N)

sI

^I&
5

A1 2 4w2 1 3w4 1 2w2~1 2 w2!N

1 1 w2N
. (42)

Fig. 4. (a) Relative fluctuations sI(u)/^I(u)& for different wave-
lengths (CPHS clusters; D 5 3), (b) relative fluctuations,
sI(u)/^I(u)&, compared with the average scattered intensity ^I&
for l 5 10.5 (CPHS clusters).
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If w(qb) turns to zero for some value of q, this means that
sI/^I& has a maximum and is of the order of 1 for this q.
At the same time the average scattered intensity (41) has
a minimum.
The function w (x) turns exactly to zero at tan x 5 x.

The first root of this equation is x ' 1.43p. The corre-
sponding scattering angle is defined by cos u 5 1
2 0.26(l/b)2. This equation has a solution only if l
, 2.8b. In Fig. 4 we have sharp maxima in sI/^I& for
l 5 10.5 and l 5 20.5, but there are no sharp maxima
for l 5 50.5. For CPHS clusters, b 5 14.2, and the criti-
cal value of l is 39.7. We see that l 5 50 exceeds the
critical value, and therefore the corresponding curve in
Fig. 4 has no sharp maxima.
Now we analyze expression (42) in more detail. First,

when N → `, this expression assumes the form

sI

^I&
5 A2~1/w2 2 1 !

N
. (43)

As one could expect, the relative fluctuations are propor-
tional to 1/AN. In order to obtain Eq. (43), we need to
require that Nw2 @ 1. It is important how this condition
is expressed in terms of the density n of monomers in clus-
ters (where N 5 4pb3n/3). By using Eq. (38), we find
that

n @
1

12p
q3 if qb ; 1, (44)

n @
~qb !

12p
q3 if qb @ 1, (45)

and the condition is always fulfilled if qb ! 1, since
w(0) 5 1. Note that in order to derive relations (44) and
(45), we assumed that tan(qb) Þ qb and that sin(qb) and
cos(qb) ; 1. As discussed above, if tan(qb) 5 qb, then
w (qb) turns exactly to zero and the condition Nw2 @ 1
cannot be fulfilled.
The inequalities show that in order to observe the

1/AN dependence for the fluctuations, one needs to have
many monomers in the volume q23. This condition de-
pends on the value of qb and is stronger when qb @ 1.
We want to emphasize that for fractal CCA clusters we
never can obtain the 1/AN dependence for relative fluc-
tuations (see, for example, the curve in Fig. 3 for l
5 100.5). The reason is that fractal clusters are disor-
dered on all scales up to the maximum scale Rc , whereas
trivial random clusters become homogeneous on scales
larger than 1/A3 n.
Now we turn again to the nature of the sharp maxima

in sI/^I& that are seen in Fig. 4(a). As mentioned in Sub-
section 5.A, these maxima coincide with the diffraction
minima of the average scattered intensity. The reason
for the diffraction minima is that within the MFA and for
certain scattering angles, the electric fields produced by
monomers in a cluster almost exactly compensate each
other on account of interference. As a result, the scat-
tered field for these scattering angles is produced, in fact,
by a very few monomers, rather than by the whole clus-
ter. This results in the strong relative fluctuations.
In conclusion, we note that the theoretical expression

(42) does not accurately fit the curves shown in Fig. 4(a),
which were obtained from the numerical calculations for
CPHS clusters. But it does fit the corresponding curves
calculated numerically for totally uncorrelated random
clusters (the results are not shown). This is explained by
the above-mentioned fact that CPHS clusters are not ab-
solutely uncorrelated, as a result of the repulsion of hard
spheres at small distances.

6. DISCUSSION
The numerical and theoretical results obtained in Section
4 suggest that measuring fluctuations of the scattered
light can provide additional valuable information about
the nature and the properties of fractal pollutants in the
atmosphere. One can use additional equations involving
fluctuation characteristics to extract unknown param-
eters, such as the distribution of clusters over sizes, the
average number of monomers in a cluster, and the density
of clusters.
The fractal dimension of clusters and the average den-

sity of the material from which the clusters are built (e.g.,
soot) can be determined by measurement of the angular
dependence of the average scattered intensity. However,
these measurements would give no information on the de-
gree of polydispersity of the clusters, their sizes, and the
number of monomers that they contain.
We emphasize that the source of fluctuations studied in

this paper is the random nature of fractal clusters. We
did not consider such factors as atmospheric fluctuations,
laser fluctuations, and broad mixtures of aerosols, which
would play an important role in direct applications in the
atmosphere. However, we can outline some possible
schemes of measurements based on the geometrical prop-
erties of clusters.
By measuring fluctuations of the scattered light in the

direction close to forward, one can obtain, according to
Eqs. (22) and (37), the value of

A^N4& 2 ^N2&2

M^N2&2
,

where M is the average number of clusters scattering the
light. By measuring the same quantity at large scatter-
ing angles, one obtains the value of

A2sN
2 /^N&2 1 1

M
.

The quantity M can be excluded from these two expres-
sions, so that only one expression remains, which pro-
vides some information about the distribution of N. Fur-
ther, by adopting some theoretical distribution of N, one
can calculate its parameters, such as the mean and the
dispersion. This, together with data on the average scat-
tered intensity, can be used for the calculation of other
parameters of the clusters.
This is only one of the possible ways in which fluctua-

tion measurements can be employed. Another possibility
is to measure fluctuations at some fixed scattering angle
and to increase l gradually until the dispersion begins to
decrease (at l ' 9Rrms ; see the discussion at the end of
Subsection 4.B). This can help to determine a character-
istic geometrical size of clusters (see Subsection 4.B). In
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general, it is important that measurements of fluctua-
tions provide additional relations between different pa-
rameters describing the clusters; these relations can be
useful in a situation wherein the number of unknown pa-
rameters is larger than that of equations.
To summarize, we have shown that there are principal

differences between fluctuations of light scattered by frac-
tal and nonfractal (trivial) clusters. The main feature is
that fluctuations in light scattering by fractals are typi-
cally much larger. The other is the dependence on the
number of particles, N, in a cluster: Whereas for trivial
clusters one expects the familiar 1/AN dependence (with
certain limitations discussed in Subsection 5.B), this is
not the case for fractal clusters, for which the 1/AN de-
pendence can never be reached.

ACKNOWLEDGMENTS
This research was supported in part by the U.S. Environ-
mental Protection Agency under grant R822658-01-0 and
by the National Science Foundation under grant DMR-
9500258.

Vadim A. Markel is also with the Institute of Automa-
tion and Electrometry, Siberian Branch of the Russian
Academy of Science, 630090 Novosibirsk, Russia.
Vladimir M. Shalaev is also with the L. V. Kirensky In-
stitute of Physics, Siberian Branch of the Russian Acad-
emy of Science, 660036 Krasnoyarsk, Russia.

REFERENCES AND NOTES
1. J. P. Wolf, ‘‘3-D monitoring of air pollution using mobile all-

solid-state Lidar System,’’ Opt. Photonics News 6, 27–29
(1995).

2. N. Lu and C. M. Sorensen, ‘‘Depolarized light scattering
from soot aggregates,’’ Phys. Rev. E 50, 3109–3115 (1994).
3. K. A. Fuller, ‘‘Scattering and absorption cross sections of
compounded spheres,’’ J. Opt. Soc. Am. A 12, 881–892
(1995).

4. N. G. Khlebtsov and A. G. Mel’nikov, ‘‘Depolarization of
light scattered by fractal smoke clusters: an approximate
anisotropic model,’’ Opt. Spectrosc. 79, 656–661 (1995).

5. P. Qing, H. Nakane, Y. Sasano, and S. Kitamura, ‘‘Numeri-
cal simulation of the retrieval of aerosol size distribution
from multiwavelength laser radar measurements,’’ Appl.
Opt. 28, 5259–5265 (1989).

6. A. D. Papayannis, ‘‘The Eole Project—a multiwavelength
laser remote-sensing (lidar) systems for ozone and aerosol
measurements in the troposphere and the lower
stratosphere. 1. Overview,’’ Int. J. Remote Sensing 16,
3595–3604 (1996).

7. P. Chylek, V. Ramaswamy, R. Cheng, and R. G. Pinnik,
‘‘Optical properties and mass concentration of carbonaceous
smokes,’’ Appl. Opt. 20, 2980–2985 (1981).

8. M. V. Berry and I. C. Percival, ‘‘Optics of fractal clusters
such as smoke,’’ Opt. Acta 33, 577–591 (1986).

9. J. E. Martin and A. J. Hurd, ‘‘Scattering from fractals,’’ J.
Appl. Crystallogr. 20, 61–78 (1987).

10. V. M. Shalaev, R. Botet, and R. Jullien, ‘‘Resonant light
scattering by fractal clusters,’’ Phys. Rev. B 44, 2216–2225
(1991); erratum, 45, 7592 (1992).

11. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F.
George, ‘‘Giant fluctuations of local fields in fractal clus-
ters,’’ Phys. Rev. Lett. 72, 2486–2489 (1994).

12. R. Jullien and R. Botet, Aggregation and Fractal Aggre-
gates (World Scientific, Singapore, 1987).

13. These parameters characterize the probability distribution
according to which the values of N were picked for each
cluster. The actual parameters of the ensemble were
slightly different: ^N& 5 5343 and sN 5 1953.

14. J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975), Chap. 9.2.

15. V. A. Markel, ‘‘Antisymmetrical optical states,’’ J. Opt. Soc.
Am. B 12, 1783–1791 (1995); V. A. Markel, V. M. Shalaev,
E. B. Stechel, W. Kim, and R. L. Armstrong, ‘‘Small-particle
composites. I. Linear optical properties, ’’ Phys. Rev. B
53, 2425–2436 (1996).

16. As can be seen from Figs. 2 and 3, there is no real need in
strong inequalities here.


