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Abstract
The bulk-boundary correspondence (b-bc) principle, which relates interface modes between two
periodic structures to topological invariants of the respective Bloch bands, is widely accepted in
electrodynamics. However, this acceptance stems largely from condensed matter (CM) theories.
It is desirable to establish direct connections between the topological principles and Maxwell
electrodynamics, rather than relying on CM results. Such connections have in recent years been
found in the case of standing evanescent waves in periodic dielectric media. This paper extends
these analyses to waves propagating along an interface between two periodic structures,
possibly with frequency-dependent dielectric permittivities. The paper shows that the b-bc
principle continues to hold for any physically realizable structures, in which the density of
electromagnetic energy must be positive. The paper rigorously proves that in this physically
valid case impedance of traveling interface modes within any given bandgap decreases
monotonically as a function of frequency.

Keywords: photonic band gap materials, heterostructures, optical properties,
topological photonics

1. Introduction

Topological concepts in condensed matter (CM) physics have
been developed and extensively studied since the discovery
of the quantum Hall effect in the 1980s (see reviews [1, 2]
and references there). Central in these studies is the bulk-
boundary correspondence (b-bc) principle, which relates the
existence and number of boundary modes at interfaces of
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periodic structures to the topological invariants of the respect-
ive Bloch bands [3, 4].

In 2008–2009, the CM results started to be translated to
electrodynamics and photonics [5–7]. This translation has a
high empirical value and has made a significant impact in
applications. However, along with the similarities, there are
obvious principal differences between CM phenomena and
electrodynamics. From the perspective of theoretical physics,
the fundamental distinction is between electrons as fermions
and photons as bosons. Electrons carry electric charge and, in
contrast with photons, interact with magnetic fields, which is
critical in the vast majority of applications. The physical and
mathematical models of the two classes of problems are quite
different.

A case in point is the ingenious analysis [8, 9] of
the topological features of Harper’s equation—a special
one-dimensional three-point difference scheme relevant to the
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quantumHall effect but having only a tenuous connection with
problems of photonics. Another important case is lattice mod-
els corresponding to tight-binding bulk Hamiltonians; soph-
isticated mathematical tools of algebraic topology (K-theory)
have been brought to bear on such problems [4, 10, 11]. While
the utility of lattice models in solid state physics is indisput-
able ([10], [4, p 23]), their relevance to electrodynamics is, at
best, debatable. Yet another example is the coupled resonator
model of [12, pp 12–18], which is valuable but constitutes a
phenomenological approximation.

With the above in mind, it is desirable to establish direct
connections between topological principles and partial dif-
ferential equations of Maxwell electrodynamics, rather than
inferring those connections in a roundabout way from vari-
ous lattice models and CM theories. Steps in that direction
have already been taken. The starting point was [13], where
the importance of electromagnetic boundary impedance for
the b-bc principle was emphasized. Moreover, this principle
was proved in [13] by direct algebraic calculation for peri-
odic layered media with mirror-symmetric lattice cells, two
different dielectric materials per cell, and evanescent standing
waves. This was a major advance, but the direct algebra for
two layers is not generalizable to arbitrary periodic media.

Such generalizations were recently put forward by several
research groups [14–17], but restrictions still remain. These
published analyses apply only to non-propagating waves.
Frequency dispersion of the dielectric function was considered
in [16]. In [17], a principal new feature is the analysis of
Bloch impedance as a function of two complex-valued para-
meters: frequency and the Bloch eigenvalue. Impedance and
the Bloch wavenumber q are formally introduced below, but
in the present paper, the frequency is still assumed real. Our
previous analysis [15] and relevant proofs are extended to
periodic media with frequency-dependent permittivity and
waves propagating along the interface. Both extensions are of
great mathematical and physical interest. Especially critical
for applications are robust topologically protected unidirec-
tional interface modes, which cannot be accounted for in the
analyses of standing waves.

While these generalizations are substantial, several restrict-
ive assumptions are still made. The lattice cells are assumed
in the present paper to have mirror symmetry, which is an
essential feature of topological models, as emphasized in a
variety of publications [13, 14, 18–20]. The physical reason
for this assumption is that the presence or absence of inter-
face modes is intimately connected with the symmetry (par-
ity) of Bloch modes at the band edges. These modes have
a definite parity (i.e. are either symmetric or antisymmetric)
only if the cells are themselves symmetric; this stems from
the fact that the differential operator of the problem commutes
with the symmetry operator. Zak phase has discrete values 0
or π only for symmetric cells [3, 18]; otherwise this phase
can take on any value. Consequently, the b-bc principle can-
not, strictly speaking, even be formulated—let alone proved—
for non-symmetric cells. Nevertheless our numerical results
show that the interface modes survive under small asymmetric
perturbations of the cells, which is not entirely surprising due
to continuity.

Figure 1. Setup for a boundary wave propagating along an interface
between two heterostructures (1D photonic crystals). The s-mode is
considered, with the electric field perpendicular to the plane of the
picture and the magnetic field in the plane. The interface is at n= 0
(dashed line). A possible mode may propagate along the boundary
with a (real) phase constant β, while evanescently decaying in both
directions away from the interface.

In this paper, losses are assumed negligible, which leaves
non-Hermitian topological photonics [21, 22] outside the
scope of this paper. Other topological issues, such as
waveguides [23, 24] and valley photonics (including the
‘photonic spin Hall effect’ on hexagonal lattices [20, 25]), are
not covered either. However, the concepts and methods dis-
cussed here can be applied to these problems.

2. Formulation of the electromagnetic problem

We consider two structures, each of which is periodic in its
respective half space (figure 1) and introduce a right-handed
Cartesian system (n,τ,z) to study waves in one of these struc-
tures. Clearly, analysis pertaining to the other one is com-
pletely analogous, but interface matching conditions play a
critical role in the end. The n and τ directions are normal and
tangential to the interface, respectively, while the z axis is per-
pendicular to the plane of the picture. All material parameters
are assumed to depend only on n; this setup includes, but is not
limited to, the case of layered media. Subscripts 1 and 2 will
indicate the structures on the left and right sides of the inter-
face, respectively. For uniformity of mathematical expressions
and without much risk of confusion, these subscripts will not
be used for the n coordinate which, for each of the structures,
is assumed to be directed away from the interface.

A linear electromagnetic problem at a given frequency ω
is considered. For brevity, we assume throughout the paper
intrinsically nonmagnetic materials:

µ(n) = 1 (1)

Extending our analysis to simple magnetic media is straight-
forward, by full analogy with [15]; the case of gyromag-
netic media is algebraically more complicated and relegated
to future research.
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The dielectric permittivity ϵ(n,ω) can be frequency
dependent; but, as noted above, losses, and hence the imagin-
ary part of ϵ, are neglected. Due to the assumed mirror sym-
metry of the lattice cells,

ϵ(a− n, ω) = ϵ(n, ω) (2)

These properties hold for all n, a− n within a given medium;
a is its lattice period in the n direction. Dependence of phys-
ical quantities on the frequency ω may not always be expli-
citly indicated. We assume the s-mode (one-component elec-
tric field E= ẑE); analysis for the p-mode is similar. In the
tangential direction, the fields are assumed to vary as [26]

E(n,τ,s) = e(n,s)exp(iβτ)

H(n,τ,s) = h(n,s)exp(iβτ)

h(n,s) = hn (n,s) n̂+ hτ (n,s) τ̂ ,

s= k2 (3)

Unit vectors are marked with hats; k= ω/c is the wave num-
ber; −∞< β <∞ is a given parameter. Note that in the τ
direction the medium is assumed homogeneous; hence there
are no Brillouin zones unless an artificial τ -periodicity is
introduced for one reason or another. Naturally, e(n,s) is
defined up to a factor and can be made unique by any suitable
normalization.

The complex amplitudes E= E(n,τ,s) and H=H(n,τ,s)
satisfy Maxwell’s equations; for nonmagnetic media,

∇×E= i kH, ∇×H=−i kϵE (4)

in the Gaussian system; the phasor convention is exp(−iωt).
We refer to the problem under consideration symbolically

as ‘1.5D’ because the magnetic field and wave vector have
two physical components, while mathematically (4) can be
reduced to a 1D equation for the s-mode:

e ′ ′ (n,s) + sϵ(n,s) e(n,s)−β2e(n,s) = 0 (5)

Primes always indicate the n-derivatives; s-derivatives will be
indicated explicitly as ∂s.

Evanescent modes, by definition, decay at infinity:

lim
n→∞

e(n,s) = 0; lim
n→∞

h(n,s) = 0 (6)

TheMaxwell interface condition between the structures can
be defined via electromagnetic impedance Z or, equivalently,
via the ‘mathematical impedance’ ξ(s) [13–16, 23]:

Z1 (0,s)+ Z2 (0,s) = 0 ⇔ ξ1 (0,s)+ ξ2 (0,s) = 0, (7)

the impedances being defined as follows:

Z(n,s)
def
=

e(n,s)
hτ (n,s)

(8)

ξ (n,s)
def
=

e(n,s)
e ′ (n,s)

=
Z(n,s)
i k

(9)

Especially important are the boundary values Z(0,s) = Z(a,s),
ξ(0,s) = ξ(a,s). If hτ (0,s) = 0 or, alternatively, e(0,s) = 0,
we say that impedance has a pole or a null, respectively. Poles
and nulls of impedance at the Γ and X points are of particular
interest.

Clearly, the 1.5D setup is different from that of a 2D
electromagnetic crystal with inclusions in lattice cells; how-
ever, since topological effects are robust, the 1.5D case does
provide important insights, while being amenable to analytical
treatment.

Let us recall the key ingredients of the existing b-bc proofs
[14–16] and see how these proofs can be generalized to the
1.5D problem.

First, for pure dielectrics, it has already been shown that
impedance at the Γ and X points (i.e. Req= 0,±πa, where
q is the Bloch number in the n direction) within any gap is
real and changes monotonically either from +∞ to zero or,
alternatively, from zero to −∞, as frequency increases from
the bottom to the top of the gap [14–16]. In the first case, when
Z or ξ start with a pole, we say that the gap is of type p; in
the second case, the gap is said to be of type n [15]. The poles
and nulls of impedance correspond to symmetric and antisym-
metric modes, respectively, where symmetry is defined with
respect to the electric field. The boundary condition (7) is sat-
isfied at a certain frequency if and only if the gaps are of oppos-
ite type for the two structures—i.e. for a ‘pn’ junction [15].

Second, if one traces the zeros and poles of Z or ξ from
a particular frequency in a given gap all the way down to
the zero frequency, it becomes clear that the type of that gap
depends on how many changes from a pole to a zero and back
the impedance undergoes in this process. For dielectric struc-
tures, impedance always changes from a pole to a zero or from
a zero to a pole across any gap; this can be deduced from
the oscillation theorem for the Sturm–Liouville problem [16,
27]. Whether or not similar changes occur across a given band
depends on the Zak phase [11, 14–16, 18] of that band.

Strictly speaking, critical for the proof is the continuous
change of Z or ξ between a pole and a null in the gap, and
not the monotonicity of that change. However, the latter is a
physically meaningful property guaranteeing uniqueness of an
interface mode in addition to its existence.

In passing, let us note that there exists a treatment of the
problem via ‘effective mass,’ defined in [28] in terms of the
effective permittivity and permeability ϵeff and µeff. Namely,
ϵeff = |neff|/(kξeff, and µeff =−|neff|kξeff, where neff is the
effective index. Hence the sign of impedance ξ is in a one-
to-one correspondence with the signs of the permittivity and
permeability. Our preference is to deal with impedance as a
manifestation of Maxwell’s boundary conditions rather than
with effective parameters which require a nontrivial homogen-
ization procedure in addition.

3. Monotonicity of impedance in bandgaps

Wewish to generalize the proofs of [14–16] to traveling waves
(β not necessarily zero), taking the frequency dependence of
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ϵ into account. To examine the monotonicity of ξ(s), one dif-
ferentiates (9):

∂sξ (s) =
g(0,s) e ′ (0,s) − e(0,s) g ′ (0,s)

e ′ (0,s)2
(10)

Since all parameters in the governing equation (5) are assumed
real, and so are the evanescent boundary conditions (6) in the
n direction and periodic conditions for e, h in the τ direction,
e(n,s) can also be taken as real. Differentiating the governing
equation (5) with respect to s, we have

g ′ ′ (n,s) + w(n,s) e(n,s)

+ sϵ(n,s) g(n,s)−β2g(n,s) = 0 (11)

g(n,s) = ∂se(n,s) , w(n,s) = ∂s (sϵ(n,s)) (12)

As a mathematically minor but physically important deviation
from the previous analyses [14–16], herewe have kept the term
sϵ together rather than differentiating the factors separately.
The physical meaning of that becomes evident toward the end
of our derivation.

We multiply (11) by e(n,s) (which is real) and combine the
terms containing g(n,s):

g ′ ′ (n,s) e(n,s)+
[
sϵ(n,s) e(n,s)−β2e(n,s)

]
g(n,s)

+ w(n,s) e2 (n,s) = 0 (13)

The expression in the square brackets simplifies due to (5):

g ′ ′ (n,s) e(n,s)− e ′ ′ (n,s) g(n,s)

+ w(n,s) e2 (n,s) = 0 (14)

Integrating this equation over Ω= [0,∞) and applying
Green’s identity to the first two terms, one obtains

g(0,s) e ′ (0,s)− e(0,s) g ′ (0,s)

+

ˆ ∞

0
w(n,s) e2 (n,s) dn = 0 (15)

The signs of the boundary terms (n= 0) reflect the fact that n is
directed into the domainΩ. Comparing this equationwith (10),
we finally have

∂sξ (s) e
′ (0,s)2 =−

ˆ ∞

0
w(n,s) e2 (n,s) dn (16)

It follows that

If w(n,s) = ∂s (sϵ(n,s))> 0 then ∂sξ (s)< 0 (17)

within any gap away from the poles of impedance.
Let us recall that the energy density in a dispersive dielectric

medium is proportional to the Brillouin-Landau–Lifshitz term

wBLL = ∂ω(ωϵ(ω)) [29, p 92], [30, section 80, section 84]. It
is instructive to compare this expression with the definition of
w(n,s):

wBLL = ∂ω (ωϵ(n,ω)) = ϵ(n,ω)+ω∂ωϵ(n,ω)

(18)

w(n,ω) = ∂s (sϵ(n,s))
s=ω2/c2

= ϵ(n,ω)+
1
2
ω∂ωϵ(n,ω)

(19)

In (18), we inserted the dependence on n for the sake of uni-
formity of all expressions involving the dielectric permittivity.
One may now note a hierarchy of conditions on frequency dis-
persion for which the b-bc holds:

1. [Strongest.] ∂ωϵ(n,ω)> 0.
2. [Less restrictive.] wBLL = ϵ(n,ω)+ω∂ωϵ(n,ω)> 0.
3. [Least restrictive.] w= ϵ(n,ω)+ 1

2 ω∂ωϵ(n,ω)> 0.

For brevity, the real part of ϵ is implied in all three con-
ditions. According to the derivation in [30], Condition 1
(the strongest) in the transparency window of any physic-
ally realizable materials follows from the Kramers–Kronig
relations. However, this derivation depends on the beha-
vior of Imϵ(n,ω ′)/(ω ′2 −ω2) in the vicinity of a given
frequency ω. If Imϵ(n,ω ′) is exactly zero for ω ′ ≈ ω,
then Condition 1 follows strictly; but if the material is
almost transparent (Imϵ(n,ω ′) is small but nonzero), all bets
are off.

Condition 2 – the positivity of electromagnetic energy
density—must hold for all physical systems. Condition 3,
which has emerged in our study, is slightly less restrictive with
respect to ∂ωε due to the extra factor of 1/2, while the analysis
of [16] involves Condition 1. Apart from these distinctions, a
physically important observation is that, at least in the 1.5D
setup, the b-bc principle is closely linked to the positivity of
electromagnetic energy density.

The numerical examples below illustrate this conclusion
and also demonstrate that the opposite statement is true, too.
Namely, if the positivity of energy is violated (in a hypothet-
ical medium), then the b-bc principle may not hold either.

4. Numerical Illustration

As an example, we consider layered media with mirror-
symmetric lattice cells containing three layers of widths a/4,
a/2, a/4. The first and third layer are air; parameters of
the second layer may vary. In contrast with our previous
publications [15, 31, 32], where similar examples were presen-
ted, the middle layer may have frequency-dependent dielectric
properties.

To illustrate the results of the previous section, we com-
pare two cases of frequency dispersion—normal (physically
realizable—figure 2, equation (20)) and anomalous (figure 3,
equation (21)). In the figures and expressions, the normalized
frequency is f = a/λ.

4



J. Opt. 27 (2025) 025103 I Tsukerman and V A Markel

Figure 2. Frequency dependence of ϵ for the example Drude model
(parameters are indicated in the text). The frequency axis is scaled
as a/λ for consistency through all plots.

Figure 3. An artificial ϵ with anomalous dispersion; parameters are
indicated in the text.

ϵ = 1+
A

f20 − f 2
(20)

and

ϵ = 1+Cexp

(
− ( f − f0)

2

α2

)

C= 14; f0 = 0.3; α= 0.2 (21)

In the case of normal dispersion, our analysis has shown
that impedance must be monotonically decreasing in the gaps.
This result is numerically illustrated in figure 4. The red
curves in that figure correspond to the real part of ξ in the
gaps, and the green curves—to the imaginary part of ξ in the
bands. The respective band diagram is displayed in figure 5 for
reference.

Figure 4. Mathematical impedance ξ(0) as a function of a/λ for
the Drude-model example; parameters are indicated in the text. The
red curves correspond to Re ξ in the gaps, and the green curves—to
Im ξ in the bands. These plots are for β= 0. Note that (i) ξ, unlike
Z, has a pole at the zero frequency; (ii) Re ξ corresponds to Im Z,
and vice versa; see (9).

Figure 5. Bloch bands for the Drude-model example; parameters
are indicated in the text.

With these preliminaries in place, we can now present some
illustrative cases of boundary modes. In our first example,
the middle layers of the two abutting heterostructures—with
simple and Drude media, respectively—have the following
properties. For the simple structure (left of the interface):
ϵ= 20, µ= 3. For the Drude structure (right of the interface):
A= 0.5,µ= 3, f 0 = 2 (20). For the phase parameter βa= π/6,
the mode has been calculated to exist—i.e. impedance match-
ing holds—at the normalized frequency a/λ≈ 0.6877. Since
ka= 2πa/λ≈ 4.32≫ βa= π/6, this mode can be excited by
external illumination similarly to the modes in [13, 28].That is
in contrast with surface plasmon polariton-like modes, which,
due to the large tangential wavenumber, require special excit-
ation configurations [33–35]. The interface mode as a function
of n is plotted in figure 6, and its time evolution is illustrated
by a series of snapshots in figure 7.
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Figure 6. The electric field of an interface mode as a function of the
normal coordinate n. Each cell of each structure has three layers
with widths 0.25a,0.5a,0.25a; the first and third layer have ϵ= 1,
µ= 1. The middle layers have the following properties. For the
simple structure (left of the interface): ϵ= 20, µ= 3. For the Drude
structure (right of the interface): A= 0.5, µ= 3, f 0 = 2. The mode
propagates at the normalized frequency a/λ≈ 0.6877; βa = π/6.

Figure 7. Time evolution snapshots of the mode shown in figure 6,
at the moments of time t = 0, 0.1, 0.2, 0.3. The time sequence is
indicated with the red arrows, and the direction of propagation of
the wave — with a thick curvy arrow on the right.

To gauge the robustness of this mode, we consider its beha-
vior under small perturbations of parameters. An interesting
question is whether the mode survives if the mirror symmetry
of the lattice cell gets broken. Suppose the width of the middle
layer is reduced by 10%, from 0.5a to 0.45a, with the corres-
ponding increase of the width of the third layer from 0.25a to
0.3a, so that the cell size is still normalized to unity. Notably,
even though the theory applies only to mirror-symmetric cells,
the mode persists (figure 8), with the normalized frequency
shifting to a/λ≈ 0.73655.

As a different minor perturbation, consider increasing the
permittivity of the middle layer in the simple medium by 5%
from ϵ= 20 to ϵ= 21. The mode still exists at the normal-
ized frequency a/λ≈ 0.6808, all other parameters remaining
unchanged (figure 9).

For anomalous dispersion, impedance may not be a
monotonic function of frequency. This is demonstrated by
Figure 10, with the respective Bloch bands shown in figure 11
for reference. It may come as a surprise that one of the bands,
around a/λ∼ a/λ0 = 0.3 does not extend to the band edges

Figure 8. Same as figure 6, but the width of the middle layer in the
lattice cell is reduced 10% from 0.5a to 0.45a, with the
commensurate increase in the width of the third layer. The mode
persists at the normalized frequency a/λ≈ 0.73655.

Figure 9. Same as figure 6, but the permittivity ϵ of the middle
layer in the simple medium is increased 5% from 20 to 21. The
normalized frequency a/λ≈ 0.6808.

and closes in the middle of the Brillouin zone. An intuitive
explanation of this feature is given in the appendix.

The increase of ξ is manifest in the very narrow gap around
a/λ≈ 0.5 and even more clearly in the gap a/λ∼ 0.62− 0.8.
In this wide gap, the impedance does not change from a zero
to a pole or vice versa, but rather from a null to a null. This
does not contradict the theory of the previous section because,
in the presence of frequency dispersion of any material para-
meters, the mathematical problem is no longer of the Sturm–
Liouville kind, and the Sturm–Liouville oscillation theory no
longer applies.

This may have a dramatic impact on the b-bc principle.
Indeed, let us take a closer look at the impedances around
a/λ∼ 0.62 in figures 4, 10, where the respective bandgaps
overlap. By our definition, the first gap is of type p, as it
starts with a pole of impedance, i.e. with a symmetric mode.
In the second case (anomalous dispersion), the bandgap is
of type n, as it starts with a null of the impedance, i.e. an
antisymmetric mode. Ordinarily, if these two structures were
put together, they would form, in our terminology, a ‘pn
junction,’ and there would have to be a mode at an inter-
face boundary between them. But that is not possible because
both impedances are positive in the overlap range. This
counterexample shows that the b-bc principle does not have
to hold in the presence of arbitrary frequency dispersion.
However, it does hold in the 1.5D setting for any physically
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Figure 10. Same as figure 4, but for the example with anomalous
dispersion; parameters are indicated in the text.

Figure 11. Bloch bands for the example with anomalous dispersion;
parameters are indicated in the text.

realizable systems with a positive density of electromagnetic
energy.

5. Conclusion

This paper extends the previous mathematical and phys-
ical analyses of the b-bc principle to dispersive media and
waves traveling along an interface boundary between two
periodic structures. This is dubbed as a ‘1.5D’ case, since
fields and wave vectors may have two nonzero Cartesian com-
ponents, but the problem can be mathematically reduced to
a 1D equation. The lattice cells are assumed to have mir-
ror symmetry; losses are neglected. The main results are as
follows.

The most significant finding of the paper is that the
b-bc principle follows from the positivity of electromag-
netic energy density. If the dispersion relation is physical—
that is, if electromagnetic energy density is positive—the

paper rigorously proves that in the 1.5D setup the bound-
ary impedance within any given bandgap decreases mono-
tonically, as it does in the non-dispersive 1D case analyzed
previously [14–16]. Conversely, if this positivity is violated (in
a hypothetical medium), then the b-bc principle may not hold
either.

A numerical example of an interface mode has been
presented. This mode survives under 5%–10% perturba-
tions of parameters—notably, even if the mirror symmetry
of the lattice cell is broken to some extent. This example
should be viewed as a prototype for future case stud-
ies; the objective will be to explore possible practical
uses of the interface modes. To succeed, future projects
should include inverse design, optimization, fabrication, and
measurements.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix

To gain insight into the nonstandard behavior of some Bloch
bands in the presence of frequency dispersion, it is helpful to
distill the analysis to the simplest possible cases. Suppose,
first, that in a homogeneous lattice cell the dielectric per-
mittivity is a step function of frequency; as a numerical
illustration, let

ϵ =

{
ϵ1, a/λ< a/λ0

1, a/λ⩾ a/λ0
, ϵ1 = 15, a/λ0 = 0.3 (22)

The respective bands, shown in figure 12, feature
straight lines corresponding to the two distinct values
of ϵ.

Next, let us see what happens if we smooth out the step
function (figure 13; we use

√
ϵ rather than index n not to over-

load the symbol n in this paper):

√
ϵ =





√
ϵ1, a/λ< a/λ0

1+
(√

ϵ1 − 1
)
exp

(
−(a/λ− a/λ0)

2
/γ2

)
,

a/λ⩾ a/λ0

(23)

with γ= 0.2. Then the ‘downward-pointing arrow’ of figure 12
becomes curved (figure 14) and resembles figure 11.
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Figure 12. When ϵ is a step function (22) in a homogeneous cell, the Bloch bands feature two straight lines corresponding to the respective
values of ϵ, thereby forming a ‘downward-pointing arrow’ pattern. The dashed line indicates the critical value a/λ0 = 0.3.

Figure 13. The smoothed out step function (23) for the dielectric permittivity.

Figure 14. When ϵ is a smoothed-out step function (23) in a homogeneous cell, the ‘downward-pointing arrow’ pattern becomes curved.
The bands near the critical value a/λ0 = 0.3 (the dashed line) do not extend to the band edges.
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