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Abstract
The main message of this paper is that refraction of a narrow collimated beam at a negative
angle into strongly anisotropic non-magnetic crystals—a phenomenon which was observed in a
number of experiments—should not be confused with negative refraction and lacks important
physical characteristics of the latter. In particular, it is shown that there is no contradiction
between the theory previously developed by one of the authors (in Markel 2008 Opt. Express 16
19152), where it is claimed that negative refraction is impossible, and the experiments
mentioned above.
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1. Introduction

It is frequently stated in the literature that negative refraction
is a well-established phenomenon in non-magnetic anisotropic
media [1, 2]. In particular, refraction of a narrow collimated
beam at a negative angle was convincingly demonstrated
experimentally in a YVO4 bicrystal [3] and in an artificially
grown semiconductor layered medium [4]. It has also been
proposed theoretically that negative refraction can occur in
nematic liquid crystals [5]. On the other hand, one of the
authors has recently argued that, in isotropic media, negative
refraction is not achievable at all while in anisotropic media it
is only possible for evanescent waves [6].

In this paper, these two points of view will be reconciled.
We will show that the negative beam deflection observed
and discussed in [3–5] cannot be classified as negative
refraction, at least not according to the classical definition
which was used in [6]. It is rather a special case of
the more general phenomenon of counterposition [7–10].
According to Lakhtakia and McCall, counterposition takes
place when the wavevector of a refracted plane wave and the
direction of energy propagation lie on the opposite sides of
the interface normal. This phenomenon was also discussed by
Boardman [11]. Note that counterposition can also occur due
to uniform motion of the medium [9].

In this paper we will show that the phenomenon of
counterposition in non-magnetic, strongly anisotropic crystals
lacks certain very important physical characteristics of true
negative refraction. In particular, anisotropic non-magnetic
crystals are not capable of all-angle exponential amplification
of the transmission coefficient for evanescent waves, except
in the limited sense, as discussed in section 5 below. This
amplification is an indispensable ingredient of the so-called
‘superlens’ as it was originally proposed by Pendry [12]. Note
that by the term ‘superlens’ we mean here the device which
is, at least theoretically, capable of exponential amplification
of evanescent waves with a broad distribution of lateral
wavenumbers, not the so-called ‘poor man’s superlens’ (also
proposed in [12]). The latter device is briefly discussed
in section 5 around equation (20). We also show that
counterposition does not satisfy the formal classical criterion of
negative refraction which was utilized in the arguments of [6].

The results reported below pertain to electromagnetically
homogeneous media. In practice, however, strongly
anisotropic crystals are manufactured artificially as layered
composites. Therefore, in section 2, we summarize the
homogenization procedure for a two-component layered
medium. It should be stressed that most (although, not all) of
the formulae reported in section 2 are known. Homogenization
of a generic two-component layered structure with both electric
and magnetic properties was described by Rytov in 1955 [13];
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alternating metal–dielectric layers in the electrostatic limit
were considered by Tamm and Ginsburg as early as in
1943 [14]. More recently, the problem was considered in great
detail for non-magnetic layers by Yeh and Yariv [15, 16] and
further by Vinogradov and Dorofeenko [17], and Li et al [18].
Finally, the homogenization limit for chiral layers was recently
obtained by Ramakrishna and Lakhtakia [19]. However, to
give the reader a succinct view of the problem, we find it useful
to write without derivation all the relevant formulae in section 2
below. These formulae are scattered in the references cited
above and are often hard to locate. Thus, Rytov has considered
the first non-vanishing corrections to the homogenization
limit [13] (which is not done in other references), but only
for propagation directions along or perpendicular to the
optical axis. Since the direction of propagation in [13] was
fixed, Rytov did not impose the condition that the effective
parameters should be independent of the angle of incidence—
an important consideration in the theory of homogenization. In
the work of Yeh and Yariv [15, 16], magnetic properties were
not considered. Finally, we are not aware of any published
results for the participation ratio of the fundamental Bloch
mode which requires a rather tedious calculation.

Having discussed the homogenization limit in section 2,
we consider refraction of narrow Gaussian beams into strongly
anisotropic crystals in section 3. Here we use the theory of
paraxial beams (rather than the more commonly used approach
which relies on the direction of the Poynting vector) in order to
obtain information on the optical phase of the refracted beam.
The main results of this paper follow in sections 4– 6. We argue
that the negative deflection of a beam which can be observed
in non-magnetic anisotropic media should not be classified
as negative refraction. In particular, we discuss the optical
phase of the refracted beam in section 4 and the coefficient of
transmission through a finite slab in section 5. In section 6,
we consider in detail the condition under which evanescent
waves can experience true negative refraction in anisotropic
crystals and show that these conditions are in full agreement
with the theory of [6]. Finally, in section 7, we discuss the
general suitability of anisotropic media for near-field imaging
applications.

2. Homogenization of a planar layered medium: a
brief review

As was mentioned above, many of the formulae reported
below, including the expressions for the effective parameters,
can be found in [13–19], and are given here without derivation
for the reader’s convenience. We are, however, not aware of
any published results for corrections to the homogenization
limit (except, in a limited sense, in [13]), or for the participation
ratio of the fundamental Bloch mode, all of which are reported
below.

Suppose that a two-component layered medium occupies
the half-space z > 0 and that the wavevector of an incident
monochromatic wave lies in the X Z plane (see figure 1). Then
the electric and magnetic fields in the region z > 0 are Bloch

Figure 1. Illustrating geometry of the problem.

waves whose spatial dependence is governed by the expression

exp[i(kx x + qz)]
∑

n

An exp(ignz). (1)

Here kx > 0 is the projection of the incident wavevector onto
the X -axis, q is the (generally, complex) Bloch wavenumber,
An (n = 0,±1,±2, . . .) are vector amplitudes, gn = 2πn/h
are reciprocal lattice vectors and h is the period of the lattice.
The Bloch wavenumber q and the field amplitudes An can be
obtained by applying the boundary conditions for the fields at
all surfaces of discontinuity.

Let us assume that the composite consists of alternating
layers with permittivities εa, εb, permeabilities μa, μb and
widths a, b such that a +b = h. We will use the dimensionless
quantities pa, pb defined by

pa = a/h, pb = b/h, pa + pb = 1. (2)

In order to treat different polarizations of the incident wave on
the same footing, we will also use the following notation:

ηa,b =
{

μa,b (s polarization)

εa,b (p polarization).

Here s (transverse electric) polarization corresponds to the
wave whose electric field is perpendicular to the plane of
incidence (the X Z plane in figure 1) while p (transverse
magnetic) polarization corresponds to the magnetic field being
perpendicular to the plane of incidence.

The dispersion equation is an expression that couples the
Bloch wavenumber q to the frequency ω and other parameters
of the problem some of which can also depend on frequency.
For the geometry described above, the dispersion equation
reads

cos(qh) = 1

4Z [(1+Z)2 cos(φa+φb)−(1−Z)2 cos(φa−φb)],
(3)

where the following notation has been used:

φa = kaza, φb = kbzb,

kaz =
√

k2
0εaμa − k2

x, kbz =
√

k2
0εbμb − k2

x,

2
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Z = kazηb/kbzηa, k0 = ω/c.

Here and everywhere below we use the convention according
to which the branch of a square root of an arbitrary complex
number z is uniquely determined by the condition 0 �
arg(

√
z) < π .

Equation (3) can be solved for q in terms of elementary
functions by applying the inverse cosine. The branch of the
arccosine is uniquely defined by the conditions Im q > 0 and
−π/h < Re q � π/h. It is more instructive, however, to
expand the solution in powers of the lattice period, h. Here we
assume that the ratios pa,b defined in (2) are fixed and view
the layers widths as functions of h: a = pah, b = pbh. The
expansion then reads

q = q0 + (pa pb)
2

24

q4
1

q0
h2 + O(h4), (4)

where

q0 =
√

k2
0〈ε〉〈μ〉 − k2

x〈η〉〈1/η〉, (5a)

q1 =
√

±k2
0(εaμb − εbμa) − k2

x

(
ηb

ηa
− ηa

ηb

)
. (5b)

Here ‘+’ in equation (5b) corresponds to s polarization, ‘−’
to p polarization and 〈· · ·〉 in equation (5a) denotes the cell
average. For example,

〈ε〉 = paεa + pbεb, 〈1/ε〉 = pa/εa + pb/εb, etc.

Formula (4) gives the first two terms in the formal Taylor
series expansion of the function q(h). If this function is
analytic at h = 0, the expansion is guaranteed to converge
in some vicinity of this point. However, neither the radius of
convergence nor an estimate of the reminder can be simply
stated. This is because the problem has two physically and
mathematically independent parameters of the dimensionality
of inverse length: k0 and kx . In practice, the accuracy of
any approximation involving a finite number of terms can be
evaluated by numerical comparison with the exact function
q(h) obtained by inverting equation (3). The next term in
expansion (4), and also in the similar expansion (10) below,
is given in the appendix. Finally, note that expansion (4) is
invalid if q0 = 0. The function q(h) is in this case non-analytic
at h = 0 and behaves as

√
h.

To establish the existence of the homogenization limit and
to determine the effective parameters of the layered medium,
consider an analogous dispersion equation in a homogeneous
uniaxial crystal. If the optical axis of the crystal is aligned
with the Z -axis, the elements of the permittivity tensor are
εxx = εyy = ε‖, εzz = ε⊥, εxy = εxz = εyz = 0, and
similarly for the permeability. The dispersion equation in the
crystal reads [20]

ktz =
√

k2
0ε‖μ‖ − k2

xη‖/η⊥. (6)

Here ktz is the Z -component of the transmitted wavevector and,
as above, the variable η denotes permeability in the case of s
polarization and permittivity in the case of p polarization. The

layered medium can be viewed as ‘electromagnetically similar’
to a homogeneous crystal if it is possible to find such values of
ε‖, ε⊥, μ‖, μ⊥ that the quantities q and ktz coincide with a
given precision for all values of kx (in practice, in a sufficiently
large interval of kx ).

We note immediately that the functional equality q(kx) =
ktz(kx) can hold only if we neglect the O(h2) term in
expansion (4).4 Thus we can now rigorously define the
homogenization limit. Namely, this limit is an approximation
in which the terms of the order of O(h2) are neglected in power
series expansions of all physically measurable quantities. Note
that the latter qualification is important, as will be shown
below.

If we do neglect the O(h2) term in (4), the effective
parameters are obtained from the equation q0(kx) = ktz(kx)

which must hold for all kx . The effective parameters which
satisfy this equation are

ε‖ = β〈ε〉, μ‖ = 1

β
〈μ〉,

ε⊥ = β

〈
1

ε

〉−1

, μ⊥ = 1

β

〈
1

μ

〉−1

,

(7)

where β is an arbitrary complex number. Thus, the solution
is not unique. It will, however, become clear shortly that the
correct choice of effective parameters corresponds to β = 1.

Let us assume that the first layer in the medium (the one
which is adjacent to vacuum) is of the a type. Then the
reflection coefficient for the transverse component of the field
(Ey for s polarization or Hy for p polarization) is given by

rLM = kiz − κ/ηa

kiz + κ/ηa
. (8)

Here the subscript ‘LM’ is used to emphasize that this formula
is applicable to a layered medium,

kiz =
√

k2
0 − k2

x (9)

is the Z -axis projection of the incident wavevector and

κ = kaz
1 + F

1 − F
, F = 1 + Z

1 − Z
eiφa − ei(qh−φb)

e−iφa − ei(qh−φb)
.

Again, we expand the quantity κ defined above in a power
series in h (keeping in mind that q is also a function of h) and
obtain

κ = ηa

〈η〉
[

q0 − ipa pb

2
q2

1 h + O(h2)

]
. (10)

Now compare the result given in equations (8) and (10) to
the analogous expression for the reflection coefficient of a
homogeneous uniaxial crystal, rF. An expression for the
transmission coefficient, tF, is also adduced below for later

4 It is possible to satisfy the functional equality more generally if we allow the
effective parameters of the medium to depend explicitly on kx . Physically, such
dependence can be understood as spatial dispersion. This approach, however,
is hardly practical since the use of nonlocal effective parameters provides no
mathematical simplification or physical insight compared to the approach in
which the exact kx -dependent transmission and reflection coefficients of the
medium are used [21].
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reference. The quantities rF, tF are given by the well-known
Fresnel formulae (hence the subscript ‘F’) and read

rF = kiz − ktz/η‖
kiz + ktz/η‖

, tF = 2kiz

kiz + ktz/η‖
. (11)

In the homogenization limit, reflection from a layered
medium and a homogeneous crystal should be physically
indistinguishable. Hence we require the functional equality
rLM(kx) = rF(kx) or, equivalently, κ(kx)/ηa = ktz(kx)/η‖.
Again, it is apparent that this can hold only if we neglect the
O(h) term in expansion (10). Note that this corresponds to
neglecting the O(h2) term in the h-expansion of the reflection
coefficient rLM. As was mentioned above, the homogenization
limit corresponds to neglecting the terms of the order of O(h2)

in expansions of physically measurable quantities such as q
or rLM while the variable κ is not directly measurable. After
neglecting the O(h) term in (10), we obtain the equation
q0/〈η〉 = ktz/η‖. We have already established that, in the
homogenization limit, ktz(kx) = q0(kx). Therefore, the
previous equation implies that 〈η〉 = η‖. This condition sets
β = 1 in equations (7). Equation (7) with β = 1 has been
known for a long time (see [13, 15, 16], and for the case of
bianisotropic media [19]).

It is also possible to show that, in the homogenization
limit, the Bloch wave (1) converges in the L2 norm to a plane
wave. This statement, however, applies only to transverse
components of the fields. The Z -components do not converge
to a plane wave in the L2 norm. This indicates that the
homogenization procedure described above is, in fact, of
limited applicability. Thus, the effective parameters defined
in equations (7) would not properly characterize the medium
if it was shaped differently from a plane-parallel slab. In other
words, if an arbitrarily shaped object is carved from the layered
medium described here, it would not be characterizable by
the derived effective parameters. This is expected because the
medium has small-scale variations in only one spatial direction.
In the case of a periodic 3D medium with fine-scale variations
in all three directions, the L2 convergence can be demonstrated
quite generally using the multi-scale approach [22].

Returning to the problem at hand, consider the
participation ratio

P = |ŷ · A0|2∑
n |ŷ · An|2 .

Here ŷ is the unit vector in the direction of the Y -axis and
An are the Bloch amplitudes for the electric (s polarization)
or magnetic (p polarization) fields. A tedious but rather
straightforward calculation results in the following expansion:

P = 1 − (pa pb)
2

12
(h|q0|)2

∣∣∣∣
ηa − ηb

〈η〉
∣∣∣∣
2

+ O(h3).

Thus, the fundamental Bloch mode dominates the higher-
frequency spatial harmonics in the homogenization limit.
The first non-vanishing correction is of the order of O(h2).
However, if it so happens that ηa = ηb, this correction
vanishes. This happens, for example, in the case of s
polarization if the layers are non-magnetic, and so ηa = ηb =

1. In this case, the first non-vanishing correction is of the order
of O(h3) (this correction has not been explicitly computed
here).

At this point the following conclusions can be drawn:

(i) In the homogenization limit, electric and magnetic
properties do not mix. Specifically, if one starts with non-
magnetic layers with μa = μb = 1, the effective medium
is also non-magnetic with μ‖ = μ⊥ = 1. A similar result
applicable to 3D periodic media was derived in [22] by
means of the multi-scale analysis.

(ii) In the case of non-magnetic layers, it is possible to
obtain a birefringent effective medium with Re ε‖ and
Re ε⊥ of opposite signs. This can be achieved by using
a combination of conducting and dielectric layers and
manipulating parameters in equations (7) (with β = 1).
Very strong anisotropy of this kind is not observed in
natural crystals.

(iii) The medium can be viewed as electromagnetically
homogeneous only for a finite range of kx . Indeed, when
kx is increased, the corrections in formulae (4) and (10)
experience an unbounded growth. At the same time, the
homogenization limit is a valid approximation only when
these corrections can be neglected.

(iv) In the layered medium considered, the macroscopic
Maxwell’s equations with effective medium parameters
defined by (7) (with β = 1) are accurate with the precision
O(h2). Taking account of effects which are of this order
of magnitude within the macroscopic theory amounts to
exceeding the precision of the underlying approximation.

(v) Finally, the homogenization procedure described here is
applicable only as long as the medium is a slab. It is not
correct to use the derived effective medium parameters if
the medium is carved to take any other shape while true
effective parameters should be independent of shape.

3. Refraction of Gaussian beams in anisotropic media

We now assume that the medium in question is electromagnet-
ically homogeneous and completely described by the elements
of the permittivity tensor ε‖, ε⊥. As was shown in section 2,
a layered medium made of non-magnetic layers is also non-
magnetic in the homogenization limit. Since there is no sig-
nificant natural magnetism at the frequencies of interest, we
assume for now that μ‖ = μ⊥ = 1. As is well-known, ordi-
nary (s polarized) waves do not feel the effects of anisotropy in
non-magnetic crystals. Therefore, we consider refraction of a
monochromatic extraordinary (p polarized) Gaussian beam at
a planar interface shown in figure 1.

Refraction of normally incident Gaussian beams into a
uniaxial crystal whose optical axis is at an arbitrary angle to
the interface was described by Stamnes and Dhayalan [23].
We will use below the concept of a two-dimensional Gaussian
beam which was introduced in this reference. However, we
work in a slightly different geometry: a beam is incident at an
arbitrary angle at the interface but the optical axis is orthogonal
to the latter. We will be interested, in particular, in the optical
phase of the transmitted beam. Therefore, we will explicitly

4
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compute the field of the transmitted beam rather than rely on a
simpler consideration which is based on the direction of energy
transport and which was used, for example, in [4].

Let the incident magnetic field be given by the
superposition

Hi(x, z) = ŷ
∫ ∞

−∞
a(kx)

× exp{i[kx(x − x0) + kiz(z − z0)]}dkx

2π
, (12)

where

a(kx) =
√

πwH0

cos θi
exp

[
−w2

(
kx − k̄x

2 cos θi

)2]
,

kiz is given in (9) and

k̄x = k0 sin θi.

Here x0 and z0 are the coordinates of the beam waist (assume
that z0 < 0 so that the waist is in vacuum), w is the waist
radius, H0 is the magnetic field amplitude in the waist, and
θi is the angle of incidence. Note that the quantities kiz and
ktz are functions of kx , but, in order to simplify the notation,
this dependence is not indicated explicitly in the Gaussian
integral (12) and in similar integrals (13) and (14) (written
below).

It is easy to see that, under the condition w � λ0 =
2π/k0, equation (12) describes a narrow stripe of light which
is incident at the interface at the angle θi. The magnetic
field Hi(x, z) is independent of y so that the beam is two
dimensional. It is not difficult to consider a truly three-
dimensional beam as well, but the magnetic field cannot be
strictly polarized along the Y -axis in this case, while all the
relevant physics is fully manifest already in the 2D case.

The transmitted and reflected waves, Ht and Hr, are found
from the boundary conditions and have the form

Ht(x, z) = ŷ
∫ ∞

−∞
a(kx)tF(kx)

× exp{i[kx(x − x0) + ktzz − kizz0]}dkx

2π
, (13)

Hr(x, z) = ŷ
∫ ∞

−∞
a(kx)rF(kx)

× exp{i[kx(x − x0) − kiz(z + z0)]}dkx

2π
, (14)

where the reflection and the transmission coefficients, rF(kx)

and tF(kx), are given in (11) and ktz is given in (6) (with
μ‖ = μ⊥ = 1).

Consider the refracted wave in more detail now. As is
usually done in the theory of Gaussian beams [24], we expand
the functions kiz(kx), ktz(kx) to the first order in Taylor series
near the point kx = k̄x . This yields

Ht(x, z) ≈ ŷ exp{i[k̄x(x − x0) + k̄tzz − k̄izz0]}
×

∫ ∞

−∞
a(kx)tF(kx)

dkx

2π

× exp{i(kx − k̄x)[x − x1 − (k̄xε‖/k̄tzε⊥)z]}. (15)

Here k̄iz = kiz(k̄x), k̄tz = ktz(k̄x) and x1 = x0 − (k̄x/k̄iz)z0 is
the X -coordinate of the intersection of the incident beam with
the interface (recall that z0 < 0) and the approximation is valid
for not very large values of z.

From equation (15), it follows that the amplitude of the
refracted magnetic field can be approximately written as a
function of the variable ξ = x − x1 − (k̄xε‖/k̄tzε⊥)z. In
particular, for weakly absorbing media, when ε‖, ε⊥ can
be approximately viewed as real quantities, the axis of the
refracted beam can be found from the equation ξ = 0 or,
equivalently,

x = x1 + (k̄xε‖/k̄tzε⊥)z. (16)

In isotropic media ε‖ = ε⊥ and refraction of Gaussian
beams occurs at the same angle as refraction of plane waves.
However, in anisotropic media the situation is different. A
plane wave with kx = k̄x is refracted at the angle

θ
(p.w.)
t = arctan(k̄x/k̄tz),

which is Snell’s law. But a Gaussian beam is refracted at the
angle

θ
(G.b.)
t = arctan(k̄xε‖/k̄tzε⊥).

If it so happens that ε‖ and ε⊥ have opposite signs (and it is
still possible to neglect absorption), refraction of the Gaussian
beam occurs at a negative angle.

Note that the above calculation is quite independent of
the expression for the Poynting vector which is frequently
invoked to determine the direction of a beam refracted into
an anisotropic medium. Generally speaking, as long as the
correct boundary condition at the infinity is used (the so-called
Sommerfeld radiation condition), the Maxwell equations can
be solved and the fields can be found without any knowledge
of the Poynting vector.

As was mentioned in section 2 (conclusion (ii)), crystals
with ε‖ and ε⊥ of different sign do not occur naturally but
can be manufactured. For example, a particular design was
suggested in [4]. In this reference, alternating 40 nm thick
planar layers of InGaAs and AlInAs were grown by molecular
beam epitaxy to create a 8 μm thick layered film. The InGaAs
layers were doped to provide a controllable concentration of
free charge carriers. It was estimated that the permittivity
of AlInAs layers was approximately constant in the far-IR
spectral range and equal to εa = 10.23 while the permittivity
of InGaAs was given by a Drude-like formula εb = 12.15 −
ω2

p/ω(ω + iγ ). The experimental parameters in the above
formula were as follows: the vacuum wavelength at the plasma
frequency was λp = 2πc/ωp = 2.53 μm and the ratio of
the Drude relaxation constant to the plasma frequency was
γ /ωp = 0.0134. This completely defines the permittivities
εa and εb of the layers. The experiment in [4] was conducted
at the frequency ω such that λ0 = 2πc/ω = 9.5 μm. This
corresponds to ω/ωp = 0.266 and εb = −1.95 + 0.71i.

For the experimental parameters given above, the medium
manufactured in [4] can be viewed as electromagnetically
homogeneous with good precision. In particular, it can be
verified that the exact Bloch wavenumber q and the first non-
vanishing term q0 in the expansion (4) coincide numerically

5



J. Opt. 12 (2010) 015104 V A Markel and J C Schotland

Figure 2. Real and imaginary parts of the Bloch wavenumber q
computed exactly by inverting equation (3) (solid red curves) and by
keeping only the first non-vanishing term q0 in expansion (4) (dashed
blue curves), plotted as functions of kx for the experimental
parameters described in the text.

with high accuracy in the interval kx � 10k0. This is illustrated
in figure 2. Therefore, the medium reflects and refracts light
as a homogeneous uniaxial crystal whose permittivity tensor
has the following elements (at the working frequency): ε‖ =
4.14 + 0.36i and ε⊥ = −4.63 + 2.15i.

Of course, the presence of free charge carriers in one of
the layers results in substantial losses as can be seen from
the numbers adduced above. Therefore, it is possible to talk
about refraction of beams into the experimental medium of [4]
only with a certain amount of strain. However, this is not
a point of principle. In figure 3, we illustrate refraction of
Gaussian beams into a medium which is similar in all respects
to the medium of [4] but with substantially smaller losses.
Specifically, we have reduced the experimental value of the
ratio γ /ωp = 0.0134 by a factor 103. This resulted in
approximately the same real parts of the effective medium
parameters as in [4] but in much smaller imaginary parts:
ε‖ = 4.12 + 3.56 × 10−4i and ε⊥ = −4.92 + 2.19 ×
10−3i. Note that, although these parameters are not achievable
experimentally (at least, at the present time), we did not
violate any of the fundamental physical principles such as
causality. The intensity of the magnetic field was obtained
by numerical integration according to (12)–(14) without any
additional approximations. As can be seen from the figure,
narrow Gaussian beams can indeed be refracted into the
medium at a negative angle.

But can this phenomenon be called negative refraction? It
may seem that this question is purely a matter of terminology.
Besides, a distinction is increasingly being made in the
literature between backward waves and waves refracted at
a negative angle due to nonsphericity of the isofrequency
surface [10, 11]. This can potentially serve to separate the two
physically unrelated phenomena. However, the point of view
stated above is highly disagreeable. The reason is the enormous
body of literature published in the past ten years in which the
terms have been used interchangeably and in which negative
refraction was associated with extraordinary optical properties
and unprecedented applications. At the same time, negative
refraction as it was first introduced by Mandelstam [25] and
later by Sivukhin [26], and as it was exploited in the now
famous paper by Pendry [12], refers specifically to negative
index of refraction and does not include the beam deflection
phenomenon described and simulated above.

In the next two sections, we discuss the fundamental
physical differences between classical negative refraction and

w = 1mm w = 0.1mm w = 20µm

Figure 3. Reflection and refraction of a monochromatic p polarized
Gaussian beam of different waist sizes w at the interface with a
semi-infinite medium described in the text. The angle of incidence is
θi = π/4. The amplitude of the total magnetic field, |H| where
H = Hi + Hr + Ht, is shown by a linear grayscale. White color
corresponds to |H| = H0 where H0 is the magnetic field intensity in
the waist. The incident beam is marked by the letter ‘i’, the reflected
beam by the letter ‘r’ and the transmitted beam by the letter ‘t’.

negative deflection of a beam. At this point, however, it is
worth mentioning that there are many different means to force
a beam to be deflected at an interface in any given direction,
including the use of anisotropy, diffraction gratings or even an
array of micromirrors. However, none of these techniques can
be used to solve any of the fundamental problems in optics such
as overcoming the diffraction limit of resolution in an imaging
system.

4. The optical phase

As was noted in [4], the Gaussian wavepackets shown in
figure 3 are superpositions of plane waves which experience
ordinary (positive) refraction at the interface. This follows
from the inequality Im k2

tz > 0 which holds for the medium
of [4] (and for the medium used above for simulations) for all
values of kx . The inequality Im k2

tz < 0 as the condition of
true negative refraction is discussed in more detail in section 6.
We can conclude that the optical phase of the refracted beam
increases in the direction of the Z -axis. Indeed, it follows
from (15) and (16) that the optical phase at the refracted beam
axis is

φ = φ0 + (k2
0ε‖/k̄tz)z. (17)

In this expression, φ0 is the optical phase at the point of ray
intersection with the interface while z should be understood as
the Z -coordinate of an arbitrary point on the refracted beam
axis. Thus, the second term on the right-hand side of (17) is
the optical phase associated with beam propagation. Here we
still assume that losses are small so that ε‖ can be viewed as a
positive number. It is therefore apparent that the optical phase
increases with z. This is one of the properties that distinguish
a Gaussian beam refracted at a negative angle in a medium
described in section 3 from waves experiencing true negative
refraction. As is well-known, the latter are backward waves
whose vector of phase velocity points in the direction of the
interface rather than away from it.

To conclude this section, note that the coefficient in the
second term in the right-hand side of (17) has a physical
meaning: it is related to the rate at which the medium is heated
by the radiation (more precisely, the quantity in question is
Re(ε‖/ktz)). This will be shown in section 6. Correspondingly,
this coefficient cannot be negative as long as ε‖ and ε⊥ have
positive imaginary parts.
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5. Transmission through a slab

We now come to the central and most practically relevant
physical characteristic which distinguishes anisotropic non-
magnetic crystals from media with negative refraction.
Namely, non-magnetic crystals cannot exponentially amplify
the transmission coefficient for evanescent waves, except in the
limited sense as discussed below.

Consider the coefficient of transmission T through an
anisotropic uniaxial slab of width L (not to be confused with
the Fresnel transmission coefficient at a single interface, tF).
We do not restrict attention to non-magnetic crystals in this
section and allow both electric and magnetic anisotropy with
the same optical axis which points in the Z -direction. Then the
transmission coefficient for transverse components of the field
(Ey for s polarization and Hy for p polarization) is given by

T = 4pC

(C + 1)2 − p2(C − 1)2
,

where

p = exp(iktz L), C = kizη‖
ktz

.

Here ktz , kiz are given by formulae (6) and (9).
First, we note that for waves which are propagating in

vacuum (that is, for waves with kx < k0), the transmission
coefficient is bounded by |T | � 1. This follows immediately
from energy conservation. However, for waves with kx > k0,
this consideration does not apply because evanescent waves
in vacuum do not transport energy5. It is therefore possible
to have |T | > 1 if kx > k0. It can be seen that T can
exponentially grow with L if and only if it turns out that, in
some range of kx (contained in the interval kx > k0), C = −1.
In this case, T ∝ 1/p = exp(−iktz L). Further, it is not
difficult to see that the condition C = −1 is satisfied for all
kx > k0 if

ε‖ = μ‖ = 1/η⊥ < 0. (18)

Here η refers to permeability for s polarization, permittivity
for p polarization and the condition (18) must be applied to
each polarization separately. If, in addition to (18) holding, it
turns out that μ⊥ = ε⊥, then exponential amplification of the
transmission coefficient occurs independently of polarization.
In the isotropic case, equation (18) simplifies to the well-
known condition ε = μ = −1. In practice, of
course, these conditions can be satisfied only approximately
because ε‖, ε⊥, μ‖, μ⊥ have nonzero (and, arguably, quite
large [27]) imaginary parts. The more precise condition for
the exponential amplification of the transmission coefficient T
can be stated as

∣∣∣∣
C + 1

C − 1

∣∣∣∣ � |p|2 � 1. (19)

The conclusion that one can draw from the expressions
given above is the following. In magnetic anisotropic crystals,
the condition (18) can be satisfied with any given precision
if we view the variables ε‖, ε⊥, μ‖, μ⊥ as mathematically

5 To be more precise, we mean here transport of energy in the direction of the
Z -axis. An evanescent wave can still transport energy in the X-direction.

independent free parameters with the sole restriction that their
imaginary parts must be positive. This approach does not
account for additional constraints on the susceptibilities of [6]
and is, therefore, unphysical. Still, from the purely formal,
mathematical point of view, the approach is not incorrect.
However, in non-magnetic crystals, we have μ‖ = μ⊥ = 1
and the condition (18) cannot be satisfied in principle, even
approximately. Consequently, the negative deflection of a
beam at the boundary of a non-magnetic uniaxial medium
cannot and should not be classified as negative refraction
because this phenomenon lacks the single most practically
relevant property of the latter: the exponential amplification
of T .

Note however that (18) is a sufficient but not a necessary
condition for C = −1. Even if (18) does not hold, it is
possible to achieve C = −1 and, consequently, exponential
amplification of T for a single value of kx which corresponds
to the wavenumber of the surface plasmon polariton (SPP).
Subject to additional conditions imposed below, this value is

k2
x = ±k2

0

μ‖ − ε‖
η‖ − 1/η⊥

, if η‖ < 0. (20)

Here ‘+’ corresponds to s polarization, ‘−’ to p polarization
and, as before, the formula must be applied to each polarization
separately. In order for equation (20) to be applicable, it is
additionally required that the result obtained from this formula
satisfies kx > k0. In the case of isotropic non-magnetic media
such as ordinary metals, an s polarized SPP does not exist,
while for p polarization, equation (20) simplifies to the well-
known SPP dispersion equation k2

x = k2
0ε/(ε + 1) (provided

that ε � −1). However, exponential growth of T for a
single value of kx cannot be used in imaging applications.
This restriction can be alleviated to a certain degree by noting
that, if ε = −1 and kx/k0 � 1, then, to the first non-
vanishing order in k0/kx , C ≈ −1 + (k0/kx)

2. Substituting
this result into (19), we find that, for a given thickness of the
slab, amplification of the transmission coefficient T is achieved
as long as (k0/kx)

2 � |p| � 1. This is the basis of operation
of the so-called ‘hyperlens’ which was first proposed in [12]
and requires neither negative refraction nor anisotropy.

6. True negative refraction of evanescent waves

The physics and history of negative refraction have been amply
reviewed by Boardman [11], Agranovich and Gartstein [28]
and by Rautian [29]. In these three reviews the focus is on
the Fresnel reflection of plane waves. It is shown that the
wavevector of a negatively refracted wave has the following
property: the real and imaginary parts of its projection onto
the Z -axis have opposite signs. This condition can be
mathematically stated as Im k2

tz = 2 Re ktz Im ktz < 0. The
corresponding diagram has been published many times and
there is no need to reproduce it here. The relation between
the above condition and the conditions based on the directions
of phase and group velocities and on the direction of energy
flow are also discussed in these references and, in even greater
detail, in the review by Shevchenko [30]. It can be stated that
the criterion Im k2

tz < 0 is the most general and directly usable.

7
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It does not require any knowledge of the dispersion law for
the susceptibilities and is applicable even in the presence of
substantial losses. The forthcoming discussion is based on the
premise (which is substantiated in the above four reviews) that
true negative refraction at a planar interface occurs if and only
if Im k2

tz < 0.
In the recent paper [6], one of the authors has derived an

expression for the heating rate (the amount of heat absorbed
by the medium per unit time per unit volume) due to a plane
monochromatic wave with the wavevector k and the amplitude
of the electric field E0 propagating in a general anisotropic,
nonlocal, electrically and magnetically polarizable medium
(equation (54) in the above reference). The expression is

qV = ω e−2k′′·r

8πk2
0

Im[|E0|2(k · k) − (k · E0)(k · E∗
0)]. (21)

Here the double prime indicates imaginary part and the
subscript ‘V ’ is used to indicate that this expression is
applicable to the points inside the medium. At the surface,
there is an additional term qS which is of no interest here;
besides, in non-magnetic media, the surface term is identically
zero. It is then stated on physical grounds that the inequality
qV > 0 must hold, at least for waves that do not decay very fast
inside the medium. It should be noted that in non-magnetic
media, expression (21) is a straightforward generalization of
the well-known expression for the heating rate (e.g., see [31])
to the case of nonlocal and/or anisotropic media. Thus, for
non-magnetic media which are discussed in this section, the
expression (21) is conventional.

To analyze equation (21) and to deduce the physical
restrictions that it places on the electromagnetic properties
of materials, we need first to make a distinction between
evanescent and propagating waves. A general complex
wavevector k can be written as k = krûr + kcûc where ûr, ûc

are purely real unit vectors such that ûr · ûr = ûc · ûc = 1,
ûr · ûc = 0, kr is a purely real scalar and kc is a complex
scalar. The expansion is unique up to simultaneous change
of signs in the quantities kr, ûr and/or kc, ûc. Note that an
ambiguity does appear if k is purely real, e.g., for waves in
vacuum. The ambiguity is removed by requiring that, in this
case, kr = 0 by definition. In material media the vector k
has an imaginary part, however small, which guarantees the
expansion uniqueness. We will call a wave propagating if
kr = 0 and evanescent otherwise. Thus, a propagating wave
can, in principle, experience exponential decay or growth due
to a nonzero imaginary part of kc. However, it is characterized
by a single direction in space given by ûc. Propagation
of an evanescent wave is, in contrast, characterized by two
orthogonal directions. It is not possible to tell in which
direction an evanescent wave propagates; it is only possible
to tell in which direction it decays and in which direction it
oscillates.

Now if a wave is propagating, its wavevector is k = kcûc

and it can be shown that

(k · E0)(k · E∗
0) = k2

c |E0|2 cos2 ϑ, (22)

where ϑ is a purely real angle and cos2 ϑ < 1. In this case, it
follows from (21) that qV ∝ sin2 ϑ Im k2

c ∝ Im k2
c . This holds

irrespectively of the form of the complex vector E0. Therefore,
negative refraction is prohibited for propagating waves.

Let us now specialize to the planar geometry considered
in this paper. The wavevector of the refracted wave is k =
x̂kx + ẑktz . Since kx is purely real, we immediately identify
ûr = x̂, kr = kx and ûc = ẑ, kc = ktz . A normally incident
wave is propagating since it has kr = kx = 0. For such a wave,
we have qV ∝ Im k2

tz and negative refraction is prohibited.
For the incidence directions close to the normal, the formula
qV ∝ Im k2

tz still holds, albeit approximately. Indeed, the
quantity qV is a continuous function of kx which is positive
at kx = 0 and, consequently, in a finite vicinity of this point.
Therefore, negative refraction is not possible for a range of
incident directions around the normal.

However, as kx increases, the refracted wave becomes
more and more evanescent. At some point, it can no longer
be characterized by a single direction of propagation. Then the
formula (22) becomes invalid and it is no longer possible to
relate qV to Im k2

tz . Then, conceivably, the latter can become
negative.

The above discussion is an expanded recounting of the
result briefly stated in section 6 of [6]. The result is that
negative refraction in anisotropic media is only possible for
evanescent waves. However, we have not addressed so far
the role of anisotropy. The latter is quite profound. If the
medium is isotropic, then k · E0 = 0 and negative refraction
is not possible for either propagating or evanescent waves. In
anisotropic media, the above condition is replaced by k·ε̂E0 =
0 where ε̂ is a tensor. Therefore, the factor k ·E0 does not turn
to zero and the expression (21) is proportional to Im(k ·k) only
for propagating waves, as discussed above.

Let us now find the threshold values of kx for which
negative refraction is possible in a non-magnetic uniaxial
crystal. To this end, we apply the criterion Im k2

tz < 0 to
expression (6). In the latter formula, we take into account the
fact that the crystal is non-magnetic. We then immediately
conclude that for s polarization, negative refraction is not
possible at all and, for p polarization, it is possible for kx > kc

where

k2
c = k2

0

ε ′′
‖

(ε‖/ε⊥)′′
, (23)

provided that the expression in the right-hand side of (23) is
positive. Since Im ε‖ > 0, negative refraction is possible only
if Im (ε‖/ε⊥) > 0.

We now further specialize to the case of a layered medium.
Let ε‖, ε⊥ be the effective medium parameters given by
equations (7) (with β = 1). Writing out the cell averages
explicitly, we obtain

k2
c = k2

0

paε
′′
a + pbε

′′
b

pa pb(1/|εb|2 − 1/|εa|2)(εaε
∗
b )′′

. (24)

Consider two special cases. First, let the layers be both
dielectric with very small losses so that εa = Raeiϕa , εb =
Rbeiϕb where Ra, Rb ∼ 1 and 0 < ϕa, ϕb � π/2. We then
rewrite (24) approximately as

k2
c ≈ k2

0

pa Raϕa + pb Rbϕb

pa pb(ϕa − ϕb)(R2
a − R2

b)/Ra Rb
.

8
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All other things being equal, the above expression is minimized
if ϕb = 0. Therefore, let us take the b-medium to be vacuum
with Rb = 1 and ϕb = 0. The a-medium is a transparent
dielectric with Ra = εd > 0. Note that the phase ϕa will not
enter the following equation and is, therefore, unimportant, as
long as it is sufficiently small that the approximation adopted
is accurate. We then obtain

k2
c ≈ k2

0ε
2
d

pv(ε
2
d − 1)

, k2
tz(kx = kc) ≈ −k2

0[pv + pdεd]2

pv(ε
2
d − 1)

,

where pd = pa and pv = pb are the volume fractions of
dielectric and vacuum. We thus see that negative refraction
is only possible if εd > 1 (which is typical) and then only for
kx > kc > k0. For these values of kx , the wave is evanescent
both in vacuum and in the medium.

The second special case is a metal–dielectric composite.
For the sake of the argument, we will assume that the losses
in the metal are small and that the dielectric is absolutely
transparent (with no losses). We then take εa = −|εm|e−iϕm ,
εb = εd, where |εm| � εd > 0, 0 < ϕm � π/2 and, using the
same arguments as above, arrive at

k2
c ≈ k2

0εd

pd
, k2

tz(kx = kc) ≈ −2k2
0 pm|εm|,

where pm = pa and pd = pb are the volume fractions of the
metal and dielectric. If εd > 1, as is usually the case, negative
refraction is possible only for waves with kx > kc > k0 which
are evanescent both in vacuum and in the medium. If, however,
we consider a hypothetical dielectric with 0 < εd < 1, the
inequality kc > k0 may be broken and negative refraction may
be obtained for waves which are propagating in vacuum for the
values of kx in the interval kc < kx < k0. The transmitted
wave, however, is strongly evanescent even in this case since
k2

tz is negative in the above interval of kx . This is in agreement
with the conclusions of [6].

We thus conclude that in non-magnetic uniaxial crystals,
negative refraction is only possible for evanescent waves and
then only in a formal sense—as discussed in section 5, it cannot
result in an exponential amplification of the transmission
coefficient.

Next, we simplify the expression (21) for a p polarized
wave incident on a uniaxial non-magnetic crystal. The
simplification is achieved by taking into account the equation
∇ · D = ∇ · ε̂E = 0 which, for p polarization, becomes
kxε‖ E0x + ktzε⊥ E0z = 0. A straightforward algebraic
manipulation results in

qV = ω e−2k′′
tz z

4π
|E0x |2k ′′

tz Re
ε‖
ktz

. (25)

The quantity k ′′
tz is positive by definition (recall the convention

on the square roots stated above). Therefore, positivity of qV

requires that the factor Re(ε‖/ktz) be positive. Indeed, it can
be rigorously proved that the latter factor is positively defined
for all values of kx as long as ε ′′

‖ , ε ′′
⊥ > 0.

What appears to be important here is that the positive
factor Re(ε‖/ktz) that enters equation (25) is the same as the
coefficient in the expression (17) which gives the rate at which

the optical phase of a Gaussian beam increases with z. It
turns out that this coefficient is positively defined and that
this constraint is related to the physically required positivity of
qV . Thus, even though negative refraction of evanescent waves
is possible in the sense described above, any well-defined
Gaussian beam refracted in a uniaxial crystal is a forward
wave whose optical phase increases with the distance from the
interface.

7. Discussion

We have shown that the theoretical results of [6] are not in
contradiction with the experimental observations of [3, 4].
This is because negative deflection of a beam by non-
magnetic anisotropic crystals should be viewed not as negative
refraction but as counterposition. True negative refraction
can occur for evanescent waves (in agreement with [6]) but
this occurrence does not result in exponential amplification
of the transmission coefficient. Therefore, non-magnetic
crystals are fundamentally unsuitable for forming an image
with subwavelength resolution in the far zone. This result, of
course, does not prove the correctness of [6] but, at least, it
shows that there is no contradiction between [6] and a series of
rather convincing experiments.

Still, strongly anisotropic crystals are fascinating objects
with unusual optical properties. Under certain conditions, a
wave which is strongly evanescent in vacuum can refract into
such crystal as a propagating wave (if absorptive losses can
be neglected) [17]. In this respect, anisotropic media are
similar to the conventional near-field imaging devices which
couple the near field of a sample to propagating modes of
optical waveguides such as fibers [32]. The intensity of
these propagating modes can be eventually registered by a
detector placed in the near-field zone of the opposite face of the
crystal [32]. But can this property of strongly anisotropic non-
magnetic crystals be used for conventional near-field imaging?
Before answering the above question, it is useful to consider
the following.

In conventional near-field imaging, it has long been
recognized that a map of the near field may have little or no
resemblance to the imaged object [33]. First, there is no local
relation between the geometrical structure of the sample and
its near field. Second, the source of the near field is the current
or the polarization, not the susceptibility of the sample, and
the spatial distributions of these two quantities can be very
different. Third, the near field can be extremely sensitive to the
wavelength [34] or the polarization [35]. In summary, there
are fundamental differences between near-field imaging and
conventional image formation based on the laws of geometrical
optics which allow the tracing of each ray to a point on the
surface of the sample. Consequently, significant effort has been
devoted to developing a methodology for interpreting near-
field images [36–41].

The methodology mentioned above depends on two
conditions: first, that the sample is passive and illuminated
by an external source and, second, that the probe (the
near-field microscope tip) is small and weakly perturbing.
These two conditions are often violated when anisotropic
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layered [18, 42, 43] or wire [32] media are proposed for
imaging applications. The imaged object is typically an active
source (i.e., a radiating antenna) and the imaging device is
a crystal which is brought into the near-field vicinity of a
much smaller sample. However, if the sample is passive and
illuminated by an external source, as is typical in imaging
applications, and if the crystal is very close to the sample, the
near field can be perturbed to such an extent as to render it
useless.

The second factor rarely considered is that, even if one
manages to create a perfect map of the experimental near field
that exists in the plane z = z1 at some other plane z = z2,
this does not really solve the imaging problem. Conventional
optical devices such as lenses, microscopes or CCD cameras
are still incapable of registering the field in the plane z = z2

without a severe loss of resolution. On the other hand, if a
near-field imaging device (such as the conventional near-field
microscope) is used in the plane z = z2, the same device could
be used directly in the plane z = z1. Therefore, the advantages
of using the crystal to translate the field from the plane z = z1

to the plane z = z2 are not clear.
We are now ready to answer the question posed above.

Our conclusion is that non-magnetic anisotropic crystals offer
no advantages compared to conventional near-field microscopy
but many unwanted and image-degrading effects. Among such
effects are losses, distortions and severe perturbation of the
near field of the sample.
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Appendix. Higher-order terms in expansions (4)
and (10)

In equation (4),

O(h4) = (pa pb)
2

5760

q4
1 [16q2

0 q2
2 − 5(pa pb)

2q4
1 ]

q3
0

h4 + O(h6),

where the quantities q0 and q1 are given in equations (2) and

q2
2 = k2

0[2pa pb(εaμb + εbμa) + p2
aεaμa + p2

bεbμb]
− k2

x

[
2pa pb

(
ηa

ηb
+ ηb

ηa

)
+ p2

a + p2
b

]
.

In equation (10),

O(h2) = pa pb

24

q2
1 q2

3

q0
h2 + O(h3),

where

q2
3 = k2

0[4(p2
aεaμa − p2

bεbμb) ± 3pa pb(μaεb − μbεa)]
− k2

x

[
3pa pb

(
ηa

ηb
− ηb

ηa

)
+ 4(p2

a − p2
b)

]
.

In the above formula, ‘+’ must be chosen for s polarization
and ‘−’ for p polarization.
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