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Abstract. A spectral approach to the Lorenz-Mie problem was adopted to obtain a pole ex-
pansion of the Lorenz-Mie coefficients in the complex variable z = 4π/(n2 − 1), where n2

is the dielectric permittivity of the scatterer. In the absence of magnetic properties (which is
assumed), n is the refractive index of the scatterer. It is shown that the Lorenz-Mie coefficients
are meromorphic functions of z with simple poles. The poles and the residues are functions of
the size parameter x = ka = 2πa/λ and of the order of the Lorenz-Mie coefficient, l, but are
independent of the material properties. This leads to a numerically efficient representation of
the Lorenz-Mie coefficients.
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1 INTRODUCTION
The book Absorption and Scattering of Light by Small Particles by Bohren and Huffman [1] is
regarded as classics and as an indispensable reference for many researchers working in the field
of electromagnetic scattering. One of the book’s lasting legacies is its excellent exposition of
the Lorenz-Mie theory. In particular, an interesting remark which is important from the com-
putational point of view can be found on p. 104 of the 1998 edition of the book. Here Bohren
and Huffman discuss a figure in which the extinction efficiency, Qext = σext/4πa2 (σext be-
ing the extinction cross section), of spherical water droplets of varying radius, a, is plotted
as a function of the inverse wavelength, 1/λ, rather than as a function of the size parameter,
x = ka = 2πa/λ. The latter way of representing extinction data was rather common at the
time. Here is what Bohren and Huffman write (in the quote below, I use the notation “n” for
the refractive index instead of the original notation “m”):

“This somewhat unconventional method of displaying extinction may cause some readers
to reel in horror, particularly when it is noted that the curves in the figure . . . show marked
deviations from those more commonly encountered; extinction efficiencies are usually shown
as functions of x for a fixed refractive index n, a practice hallowed by tradition. Although the
traditional method of displaying extinction is not necessarily incorrect, it is often misleading:
x and n are mathematically independent variables but they may not be physically independent.
This elementary fact is often lost sight of when x is considered to be merely a dimensionless
variable that is indifferent to whether it changes because of varying wavelength or radius. For
if the wavelength varies, so is n: no material substance has optical constants independent of
wavelength except over a narrow range. . . . The reason for the traditional method of displaying
extinction has more to do with convenience than with fidelity to physical reality: it is relatively
easy to calculate Qext as a function of x for fixed n. The curves shown in the figure . . . ,
however, require considerably more effort than is usual: at each of the many wavelengths for
which computations are done, the correct optical properties must be used.”

Thus, the extinction efficiency can not be viewed as a function of a single scalar parameter
x. This is because x can change either due to a change in the particle radius or due to a change in
the wavelength, and the latter occurrence is typically accompanied by a change of the refractive
index, n, due to the effect of dispersion. The same can be said about the scattering and the
absorption efficiencies.
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A natural question to ask is the following: Why has it to be the case that the computational-
ly-intensive part of the Lorenz-Mie solution must be repeated every time a slight variation of
parameters takes place, even when merely the sphere material is changed while the wavelength
and the radius are kept constant? The difficulty can be understood by observing that the Lorenz-
Mie solution is not a spectral theory. This fact has been little appreciated, although, in principle,
is known [2]. The vector spherical harmonics (VSHs) form an orthonormal basis and are solu-
tions to the Maxwell’s equations with constant coefficients in a spherical region and can, there-
fore, be used to construct a solution to the boundary value problem. However, the VSHs are not
eigenfunctions of any “useful” linear operator. This statement will be made precise in Sec. 3
below. As a result, the Lorenz-Mie coefficients depend on both x and nx in a complicated way.
Thus, when one of these parameters changes, the whole set of Lorenz-Mie coefficients must be
recalculated.

There exists, however, a way to write the Lorenz-Mie coefficients in such a form that the
most intensive part of the computation would depend only on the single parameter x. This can
be achieved by utilizing a pole expansion of the Lorenz-Mie coefficients. As is well known, any
meromorphic function of a complex variable z, f(z), with simple finite poles αp (p = 1, 2, . . .)
and residues βp, can be written as

f(z) = f(∞) +
∑

p

βp

z − αp
= f(0) +

∑
p

βpz

αp(z − αp)
. (1)

For simplicity, I have assumed here that the function f(z) is finite at z = 0 and z = ∞, but
the case when f(z) has a pole at z = 0 can easily be considered. In this paper, I will show that
the Lorenz-Mie coefficients are meromorphic functions of the variable z = 4π/(n2 − 1), up to
the overall factor n−l in the case of the internal field coefficients of the order l. Note that the
Lorenz-Mie coefficients are finite for any values of z such that Imz ≤ 0, which includes the
points z = 0 and z =∞, so that the expansion (1) is applicable without restriction.

The variable z defined above is known as the Bergman-Milton spectral parameter [3] and
has been used primarily in the quasistatic limit. In a series of papers [4,5], I have shown that the
same spectral parameter can be used even beyond the quasistatics. However, the development
in these two references was rather formal. Here I will apply it specifically to the Lorenz-Mie
problem.

The mathematical point of departure will be the scalar wave equation and I will consider
scattering of scalar waves from a spherical object. This will yield expansions for the Lorenz-Mie
coefficients bl, cl which arise in the electromagnetic scattering theory and describe excitation
of TE (transverse-electric) modes. The correspondence between the expansion coefficients for
TE modes of the Maxwell’s equations and the similar expansion coefficients which arise in the
scalar scattering theory is quite complete. The electromagnetic theory, however, must include
both TE and TM (transverse magnetic) modes; the latter have no analogy in the scalar theory.
The Lorenz-Mie coefficients which correspond to the TM modes are al and dl; these coefficients
are not considered explicitly in this paper, although the pole expansion for these coefficients
should be obtainable in a similar manner without encountering a conceptual difficulty.

In what follows, I will obtain the pole expansion of the Lorenz-Mie coefficients bl and cl of
the type (1) in which the coefficients αp, βp depend only on the size parameter x and the order
l. Once the poles and the residues are known as functions of x and for all orders l of interest,
the Lorenz-Mie coefficients can be computed by simple summation. It should be noted that the
functional form (1), apart from computational convenience, provides additional physical insight
as it allows one to track and predict the appearance of spectral resonances.

The reminder of this paper is organized as follows. In Sec. 2, I will briefly review the mathe-
matics of spectral methods and discuss some conceptual differences that arise when these meth-
ods are applied in the scattering theories of quantum mechanics and classical electrodynamics.
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In Sec. 3, I will derive the classical Lorenz-Mie solution for the scalar wave equation. In Sec. 4,
I will show how a solution to the same problem can be obtained by a spectral method; the latter
approach will naturally lead to a pole expansion of the Lorenz-Mie coefficients. In Sec. 5, I will
discuss the numerical methods that can be used to compute certain new special functions which
are related to the poles and the residues of the Lorenz-Mie coefficients. Numerical examples of
such computations will be given. Finally, Sec. 6 contains a brief discussion.

2 SPECTRAL METHODS IN PHYSICS
From a mathematical point of view, the spectral methods are based on approximating the so-
lutions to certain partial differential equations (PDEs) by truncated series of known, smooth
functions [6]. The complete set of these functions must form a basis in an appropriate space.
Of course, there are infinitely many choices for such bases. The basis which is typically used
is the set of eigenfunctions of some relevant linear operator, e.g., of an operator that enters into
the PDE. Generally, one seeks to write the PDE in the form

(z −W )|ψ〉 = |S〉 , (2)

where z is a scalar spectral parameter, W is a linear operator whose eigenfunctions are either
known or can be found numerically, |S〉 is the known source, |ψ〉 is the unknown field. Assume
for a moment that W is Hermitian (self-adjoint). Then the spectral solution to (2) is

|ψ〉 =
∑

μ

|ψμ〉〈ψμ|S〉
z − wμ

, (3)

where |ψμ〉 and wμ are the eigenfunctions and the eigenvalues of W and
∑

μ may include
integration over the continuous part of the spectrum.

The spectral variable z and the operator W in (2) are usually chosen in such a way that
z depends on a certain physical parameter which can be varied in an experiment while W is
independent of this parameter. To predict the results of different experiments in which W is
unchanged but z varies, one needs to diagonalize W only once. The solution is then obtained
by using (3) for any value of z by simple summation. Thus, the numerical complexity of the
problem is greatly reduced as compared to the numerical complexity of inverting the operator
z −W in (2) for many different values of z.

For example, the scattering problem in quantum mechanics can be formulated as

(E −H)|ψs〉 = U |ψinc〉 , (4)

where E is the energy of incident particles, H = −(h̄2/2m)∇2 + U is the Hamiltonian of the
system, U is the operator of potential energy and |ψinc〉 is the wave function that the particle
would have in the case U = 0. The total wave function is given by |ψ〉 = |ψinc〉 + |ψs〉. The
scattered component is obtained from (4) as

|ψs〉 =
∑

μ

|ψμ〉〈ψμ|U |ψinc〉
E −Eμ

, (5)

where |ψμ〉 andEμ are the eigenfunctions and eigenvalues of the HamiltonianH and integration
over the continuous spectrum is assumed. We thus identify z with the energy E and W with the
Hamiltonian H .

Equation (5) is the spectral solution to the Schrodinger equation. It makes use of the fact
that the interaction potential U is physically and mathematically independent of the incident
particle energy E. A scattering resonance would occur if E could be tuned close to one of
the discrete energy levels Eμ. In an experiment, E always belongs to the continuous spectrum
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and, therefore, it can not be equal to one of the discrete energy levels. However, scattering
resonances at the so-called quasi-discrete states or at shallow bound states can be observed and
are well known [7, § 134].

This example illustrates the broadly held view of the resonance as of the physical phe-
nomenon which takes place when the driving frequency (or the incident particles energy) is
close to one of the resonant values which usually belong to a discrete set. In this situation, the
spectral variable z is either the frequency or the energy. In the case of the electromagnetic scat-
tering theory, this point of view may not be incorrect, but it is not very useful. Indeed, consider
the electromagnetic counterpart of Eq. (4). In the frequency domain, the scattering equation
reads

[
(∇×∇×)− k2 − 4πk2χ

]
Es = 4πk2χEinc , (6)

where k = ω/c is the free space wave number, χ = (ε − 1)/4π, ε is the complex, frequency-
dependent dielectric permittivity of the scatterer, and E is the electric field vector; the factor 4π
is introduced for historical reasons. If we now defineK = ∇×∇×, U = −4πk2χ,H = K+U
and E = k2, the equation becomes exactly of the form (4). The difficulty, as can be seen, arises
from the fact that the interaction potential U depends in this case on the frequency. There are
two reasons for this dependence: the first reason is the prefactor k2 and the second reason
is the dependence of χ on ω due to the effect of dispersion. It is interesting to note that χ
depends on the geometry and composition of the scattering object while all other quantities in
Eq. (6) are medium-independent. The two types of frequency dependence mentioned above
have somewhat different mathematical consequences. As will be seen below, the second type of
dependence can be, in principle, removed by using a proper spectral parameter. The first type of
dependence, however, is more fundamental and disappears only in the quasistatic limit, when
the size of the scatterer is much smaller than the incident wavelength.

Thus, the use of the frequency (or of the quantity k2) as the spectral parameter is problem-
atic in the electromagnetic theory. At least, this provides no simplification similar to the one
obtained in the quantum scattering theory. The question before us is then the following: Is
there a better choice for the spectral parameter? In general, when ε(r) is an arbitrary function
of position, no good answer to this question exists. However, in the case when ε(r) is piece-
wise constant and can take only two distinct values, a useful spectral parameter can be, in fact
introduced.

For simplicity, assume that ε(r) can take the following two values:

ε(r) =
{
n2 �= 1 , if r ∈ V
1 , otherwise , (7)

where V is the (possibly, disconnected) region occupied by the scattering material. The suitable
spectral parameter is then z = 4π/(n2 − 1). This variable is known as the Bergman-Milton
spectral parameter and the corresponding theory is the Bergman-Milton spectral theory [3].
The parameter z defined above depends on the type of material and on the frequency due to the
dispersion. It can be shown that the corresponding operator W is independent of the material
properties and defined only by the geometrical shape of the scatterer; it can still depend on the
frequency due to the prefactor k2, as discussed above. In the quasistatic limit, this dependence
disappears and W is completely defined by the scatterer shape, V . The explicit form of the
operator W will be given below in Sec. 4.

The Bergman-Milton theory has been used in many different settings, typically, within the
quasistatics. For example, it was applied to the numerical analysis of multiple scattering and ab-
sorption by small aggregated spheres [8–11], to to compute the Casimir force between a sphere
and a half-space [12], and in the electromagnetic theory of composites [13,14]. Generalizations
of the theory beyond quasistatics were rarely considered, firstly, because of the onset of the
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frequency dependence of W , and, secondly, because W ceases to be Hermitian and becomes
complex symmetric at sufficiently high frequencies. I have used the theory of complex symmet-
ric operators to generalize the Bergman-Milton approach to arbitrary frequencies in Refs. [4,5].
However, the dependence of W on ω has rendered spectroscopic applications of this develop-
ment (that is, computations involving multiple frequencies) problematic. Due to this reason, the
generalized spectral theory of Refs. [4,5] has been applied to the situations in which the spatial
properties of the field were of interest while the electromagnetic frequency was fixed, e.g., to
study Anderson localization of monochromatic electromagnetic waves [15, 16].

However, in the special case of the Lorenz-Mie problem, it turns out that the operator W
defined according to Refs. [4, 5] depends only on the single scalar parameter x. This fact is
quite useful and will be exploited below.

3 THE SCALAR MIE SOLUTION
Consider the scalar wave equation

[∇2 + ε(r)k2]ψ(r) = 0 , (8)

where ε(r) is given by (7) where V is region defined by r ≤ a, a being the sphere radius. The
boundary conditions at the surface of discontinuity require that ψ(r) be twice differentiable.
The boundary condition at infinity is imposed on the scattered component of the field. Namely,
we write ψ = ψinc + ψs, where ψinc satisfies Eq. (8) with ε = 1, and require that ψs vanish at
infinity. Note, however, that there is no such requirement for the total field, ψ.

The solution to Eq. (8) with the boundary conditions specified is obtained in a straightfor-
ward manner. Let the incident field be a plane wave of the form

ψinc(r) = exp(ikinc · r) = 4π
∞∑

l=0

l∑
m=−l

iljl(kr)Y ∗lm(k̂inc)Ylm(r̂) , (9)

where |kinc| = k, r̂ = r/r is a unit vector, and the rest of notations are self-explanatory. We
look for the solution in the form ψ = ψin if r ≤ a and ψ = ψinc + ψs if r > a, and write ψs as

ψs(r) =
∞∑

l=0

l∑
m=−l

blh
(1)
l (kr)Y ∗lm(k̂inc)Ylm(r̂) . (10)

Here the coefficients bl must be determined from the boundary conditions at the sphere surface.
Analogously, the internal field is expanded as

ψin(r) =
∞∑

l=0

l∑
m=−l

cljl(nkr)Y ∗lm(k̂inc)Ylm(r̂) . (11)

Here n is the complex refractive index of the sphere. By applying the condition that ψ(r) be
twice differentiable at the sphere surface, we obtain the following expressions for the Lorenz-
Mie coefficients bl and cl:

bl = 4πil
jl(nx)j′l(x)− njl(x)j′l(nx)

nh
(1)
l (x)j′l(nx)− jl(nx)h(1)′

l (x)
, (12a)

cl =
1
x2

4πil−1

nh
(1)
l (x)j′l(nx)− jl(nx)h(1)′

l (x)
, (12b)
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where prime denotes differentiation with respect to the argument in parentheses. Eqs. (10-12)
give the complete solution to the scalar scattering problem. It should be emphasized that, up to
the numerical factors of −4πil and −4πil−1, respectively, the coefficients bl and cl are exactly
the same as the Lorenz-Mie coefficients for the TE-polarized field modes which arise in the
fully vectorial electromagnetic theory.

We now discuss what was meant in Sec. 1 by stating that the standard Lorenz-Mie solution
(10-12) is not a spectral solution. Let us write the partial wave of the order (l,m) as

ψlm(r) = fl(r)Y ∗lm(k̂inc)Ylm(r̂) , (13)

where

fl(r) =
{
cljl(nkr) , if r ≤ a

4πiljl(kr) + blh
(1)
l (kr) , if r > a

. (14)

The functions ψlm(r) are defined everywhere in space, satisfy Eq. (8), are twice differentiable
and satisfy the boundary conditions at infinity. Therefore, these partial waves can be viewed,
trivially, as eigenfunctions of the differential operator L ≡ ∇2 + k2ε(r) with the single zero
eigenvalue: Lψlm = 0. However, as was discussed in Sec. 2, construction of a spectral solution
requires writing L as L = z−W , where z is a physical parameter that can be varied whileW is
kept constant. But this has not been done in the case of the scalar Lorenz-Mie solution obtained
above. Since ψlm(r) are eigenfunctions of L, they depend on all parameters of the problem. As
a result, the coefficients bl and cl depend on both ka and nka in a complicated way.

Note that the VSHs are often described as the “normal modes” (e.g., [1, § 4.3.2,4.3.3]).
However, the normal modes are not equivalent to eigenfunctions, in the sense that they are not
solutions to the frequency-domain Maxwell equations without an external source at any real
frequency. However, VSHs can satisfy homogeneous equations for some complex frequencies
which are known as the “natural frequencies” (e.g., [2]). The natural frequencies are singular-
ities of the coefficients bl, cl, etc., viewed as functions of the complex frequency ω. However,
in the presence of dispersion, the normal modes are not eigenvalues of any easily definable
linear operator and cannot be used to construct a spectral solution (at least, not without the
use of approximations). The significance of natural frequencies is best revealed by studying
the time evolution, e.g., after excitation by a short pulse. In particular, one can use the natural
frequencies to compute radiative relaxation times [17].

4 SPECTRAL APPROACH TO THE LORENZ-MIE PROBLEM
We now formulate the spectral solution to the scalar Lorenz-Mie problem. We start by rewriting
equivalently Eq. (8) in the integral form as

ψ(r) = ψinc(r) +
n2 − 1

4π

∫
V

G(r, r′)ψ(r′) d3r′ , (15)

where integration is extended over the volume of the sphere, V , and

G(r, r′) = k2 exp(ik|r− r′|)
|r− r′| (16)

is the free space retarded Green’s function for the Helmholtz equation which obeys

(∇2 + k2)G(r, r′) = −4πk2δ(r− r′) . (17)

Note that if ψ(r) is a solution to (15), it automatically satisfies all boundary conditions. Thus,
the integral equation (15) is equivalent to the differential equation (8) plus the boundary condi-
tions.
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Next, define the linear integral operator W by

Wψ(r) ≡
∫

V

G(r, r′)ψ(r′) d3r′ (18)

and a spectral variable z by

z =
4π

n2 − 1
. (19)

We can now re-write (15) in operator notations as

(z −W )|ψ〉 = z|ψinc〉 . (20)

This equation has exactly the same form as (2), with |S〉 = z|ψinc〉. The spectral variable z and
the operator W possess the properties necessary for building a spectral theory: z depends only
on the material properties while W is material-independent. In the case of a general scatterer,
W is defined by its geometrical shape and by the frequency ω. However, in the case of the
sphere, it is not difficult to see that W is a function of the single parameter x = ka.

The operatorW is complex, symmetric and, hence, non-Hermitian (not self-adjoint). Eigen-
values of such operators are, generally, complex. An important fact is that W is non-defective.
An operator is called defective if at least one of its eigenvalues is degenerate and its geometric
multiplicity is less than its algebraic multiplicity. Non-defectiveness ofW can be shown by con-
sidering subspaces spanned by eigenfunctions that correspond to each degenerate eigenvalue;
proof is omitted but see the footnote below.

We now proceed with finding the eigenfunctions of W and constructing a spectral solution
to (20). Denote the eigenfunctions and eigenvalues ofW by ψμ(r) and wμ, respectively, so that

Wψμ(r) =
∫

V

G(r, r′)ψμ(r′) d3r′ = wμψμ(r) . (21)

Functions ψμ(r) are defined in the whole space, and Eq. (21) must also hold in the whole space,
even though the integration in (21) is extended only over the volume of the sphere, V . With the
use of (17), the eigenproblem (21) can be equivalently re-written in the differential form as

−4πk2Θ(r)ψμ(r) = wμ

(∇2 + k2
)
ψμ(r) . (22)

where Θ(r) = 1 if r ∈ V and Θ(r) = 0 otherwise (in a more general setting, Θ(r) can be
referred to as the shape function). The functions ψμ(r) must satisfy the same conditions as the
scattered component of the field, ψs, i.e., be twice differentiable and vanish at infinity. Equa-
tion (22) is somewhat similar to Eq. (8) but is not quite the same. To elucidate the differences,
it is instructive to re-write (22) equivalently as

[
∇2 + k2

(
1 + 4π

Θ(r)
wμ

)]
ψμ = 0 . (23)

It can be seen that one of the differences is that Eq. (23) with the boundary conditions on
ψμ(r) stated above has nontrivial solutions only for some special values of wμ (which must
necessarily be complex) while Eq. (8) has a nontrivial solution for arbitrary ε(r). This should
become plausible if we recall that the total field ψ(r) and the eigenfunctions ψμ(r) satisfy
different boundary conditions at infinity.

Thus, just like the integral equation (21), the differential equation (22) is an eigenproblem,
albeit of the generalized kind. In other words, it has the form Dψμ = wμLψμ, where D and
L are two linear operators (D is diagonal). Even though generalized eigenproblems are usually
more difficult to solve, the differential form (22) allows one to see that the eigenfunctions are
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ψlmp(r) =
{
jl[ηlp(x)kr]Ylm(r̂) , r ≤ a

Alp(x)h
(1)
l (kr)Ylm(r̂) r > a

(24)

where we have introduced the notation μ = (l,m, p), ηlp(x) is one of the complex roots (labeled
by the index p) of the equation

jl(ηx)h
(1)′
l (x) = ηj′l(ηx)h

(1)
l (x) , (25)

which must be solved for η for fixed x and l, and

Alp(x) = jl[ηlp(x)x]
[
h

(1)
l (x)

]−1

. (26)

Note the recursion relation

Alp(x) = ηlp(x)Al+1,p(x) . (27)

The eigenvalue corresponding to the triplet of indices (l,m, p) is

wlmp(x) = 4π
[
η2

lp(x)− 1
]−1

. (28)

Note the obvious degeneracy with respect to the projection of the angular momentum, m. Be-
low, this index is omitted where appropriate ∗. Eqs. (25),(26) were obtained from the condition
that ψlmp(r) satisfies (22) and is twice differentiable. It can be verified directly, although by
tedious integration, that ψlmp(r) also satisfy the integral equation (21).

Equation (25) is parametrized by the order of the Bessel functions, l, and the size parameter,
x. For each value of l and x it has many complex roots which we label by the index p. This
gives rise to the special functions ηlp(x) and Alp(x) which must be computed numerically by
solving Eq. (25). The crucial fact, already mentioned above, is that both the eigenfunctions and
the eigenvalues depend on the single scalar parameter x = ka rather than on k and a separately.
Further, the eigenfunctions and the eigenvalues are independent of the refractive index n and,
consequently, of the material properties of the scatterer. Not surprisingly, ηlp(x) coincide with
the values of the complex refractive index n at which the Lorenz-Mie coefficients (12) have
singularities (for a given value of x). On the other hand, in the standard approach to the Lorenz-
Mie problem, one is, typically, interested in singularities of the coefficients viewed as functions
of the complex frequency, ω, or in resonances observed when ω is scanned along the real axis.

Since the eigenfunctions ψlmp(r) are not orthonormal in the usual sense (becauseW is non-
Hermitian), we cannot use the usual orthogonality relations to construct a solution to (15). We,
however, can exploit the property of quasi-orthogonality (see, for example, [4,5]) to construct a
basis dual to ψlmp(r). It is sufficient to find a dual basis in L2(V ). Omitting intermediate steps,
we state the final result. Namely, if

φlmp(r) = j∗l [ηlp(x)kr]Ylm(r̂) , r ≤ a , (29)

then
∫

r≤a

φ∗l′m′p′(r)ψlmp(r) d3r = k−3Zlp(x)δll′δmm′δpp′ (30)

where
∗The algebraic multiplicity of wlp is 2l + 1 and is exactly equal to the geometric multiplicity, since all

2l + 1 functions Ylm(r̂) with l fi xed and m = −l, . . . , l are linearly independent.
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Zlp(x) =
∫ x

0

t2j2l [ηlp(x)t]dt =
x2

2
[
j2l (s)− (2l + 1)jl(s)jl+1(s) + sj2l+1(s)

]∣∣
s=ηlp(x)x

.

(31)
Thus, the functions φlmp(r) constitute a basis dual to the basis of the eigenfunctions ψlmp(r)
in L2(V ). We now use this result to obtain a spectral solution to (15) (or (20)). First, let
the total field inside the sphere be given by the following expansion: ψin =

∑
lmp βlmpψlmp.

Substituting this directly into (15) and using (30), we find for the coefficients βlmp:

βlmp =
k3z〈φlmp|ψinc〉

Zlp(x)[z − wlp(x)]
. (32)

The scalar product 〈φlmp|ψinc〉 can be found with the use of formulas the (9) and (29):

〈φlmp|ψinc〉 =
∫

V

φ∗lmp(r)ψinc(r) d3r

= 4πilY ∗lm(k̂inc)
∫ a

0

r2jl[ηlp(x)kr]jl(kr) dr

= il−1k−3wlp(x)Alp(x)Y ∗lm(k̂inc) . (33)

We then arrive at the final result for the internal field:

ψin(r) =
∑
lmp

il−1wlp(x)Alp(x)
Zlp(x)

z

z − wlp(x)
jl[ηlp(x)kr]Y ∗lm(k̂inc)Ylm(r̂) . (34)

Analogous expression for the scattered field can be obtained in a straightforward manner. The
result is

ψs(r) =
∑
lmp

il−1 [wlp(x)Alp(x)]2

Zlp(x)
1

z − wlp(x)
h

(1)
l (kr)Y ∗lm(k̂inc)Ylm(r̂) . (35)

Formulas (34),(35) give the spectral solution to the original problem. This solution has two
remarkable properties: (i) the dielectric function of the scattering material enters only into the
spectral variable z = 4π/(n2 − 1) and (ii) all coefficients (e.g., wlp(x), Alp(x), Zlp(x)) are
functions of the single parameter x = ka. We also note that summation over m can be trivially
performed with the use of the addition theorem for spherical functions.

By comparing (35) with the Lorenz-Mie solution (10),(12a), we find that

bl = il−1
∑

p

[wlp(x)Alp(x)]2

Zlp(x)
1

z − wlp(x)
, (36)

This formula is simply the pole expansion of bl. The key difference between this pole expansion
and analogous formulas obtained in Ref. [2] is that here we view the Lorenz-Mie coefficient bl

as functions of complex variable z, while in [2] they were viewed as functions of complex
frequency ω. The analogous expansion for the internal field coefficient cl reads

cl = il−1
∑

p

wlp(x)Alp(x)
Zlp(x)

[
ηlp(x)
n

]l
z

z − wlp(x)
, (37)

where n =
√

1 + 4π/z is the refractive index of the sphere and the square root branch is chosen
so that Imn > 0.
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Another interesting formula can be obtained from (34) by considering the limit z →∞. In
this limit, ψin = ψinc, from which we obtain

jl(y) =
1

4πi

∑
p

wlp(x)Alp(x)
Zlp(x)

jl[ηlp(x)y] , y ≤ x . (38)

This equality holds in L2([0, x]). Thus, wlp(x)Alp(x)/[4πiZlp(x)] are the expansion coeffi-
cients for the Bessel function jl(y) in the basis of jl[ηlp(x)y]. By taking the limit y → 0 and
using (28), we find that

∑
p

ηl
lp(x)

η2
lp(x)− 1

Alp(x)
Zlp(x)

= i , ∀ l, x . (39)

This sum rule may be used for verification of numerical results.

5 SIMULATIONS
I have investigated the feasibility of solving the transcendental equation (25). Two distinct
numerical approaches to solving this equation have been tested. The first approach is based
on polynomial approximation of transcendental functions and the second approach is iterative.
These approaches are described in more detail below in Secs. 5.1, 5.2. The method of poly-
nomial approximation was found to be quite stable, while a simple iterative method was not.
However, only the simplest iterative scheme has been tested, and more sophisticated iterative
approaches can still prove to be useful.

Numerical results for the functions ηlp(x) andwlp(x) obtained by the method of polynomial
approximation are shown in Fig. 1. The numerical solutions plotted in this figure satisfy Eq. (25)
with very high precision (the relative error of the equation upon substitution of the numerical
solutions is 10−14 or better). The figure shows parametric plots of the functions ζlp(x) ≡
xηlp(x) and wl(x) for l = 0, l = 5 and l = 10.

5.1 Method 1: Approximating (25) by an Algebraic Equation
The first method is based on expressing the Bessel functions in (25) in terms of elementary
functions, expanding all exponentials into truncated power series and approximating the tran-
scendental equation (25) by a polynomial. This approach may be expected to yield accurate
results only for roots of relatively small absolute value because, otherwise, the approximation
of exponentials by polynomials is not accurate. This problem, however, can be bypassed by
utilizing the periodicity of exponentials and by appropriately shifting the polynomials, as de-
scribed below.

By using differentiation formulas, equation (25) can be written as

jl(ηx)h
(1)
l+1(x) = ηjl+1(ηx)h

(1)
l (x) . (40)

This must be viewed as an equation for η parametrized by l and x. If we make the substitution
ζ = ηx, we also have an equation with respect to the variable ζ:

xjl(ζ)h
(1)
l+1(x) = ζjl+1(ζ)h

(1)
l (x) . (41)

Further, we use the explicit expressions for the spherical Bessel functions in terms of elementary
functions. After some algebraic manipulation, we obtain the following equation:

Pl+1(−2ix)[eiζPl(−2iζ)− e−iζPl(2iζ)] = Pl(−2ix)[eiζPl+1(−2iζ)− e−iζPl+1(2iζ)] ,
(42)
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Fig. 1. Parametric plots of functions ζlp(x) ≡ xηlp(x) (see Eqs. (40) and (41) below) and
wlp(x) = 4π/[η2

lp(x) − 1] for l = 0 (left column), l = 5 (middle column) and l = 10 (right
column). Curves are plotted for 0.1 ≤ x ≤ 100; the blue circles mark the points x = 0.1 and
red squares mark x = 100. The red, dark blue, light blue, and purple curves correspond to
different indices p. In the case l = 0, these values are p = 1, 2, 3, 4, respectively. In the case
l = 5, there are no solutions for p = 1, while the solutions for p = 2 and p = 3 form the same
continuous curve (the red curve). In the case l = 10, there are no solutions for p = 1, 2, 3 while
the solutions with p = 4, 5, 6 form two separate continuous curves (the red and dark blue).
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where Pl(x) are polynomials of the form

Pl(x) =
l∑

k=0

(2l − k)!
k!(l − k)!x

k . (43)

Next, we write ζ = τ + pπ, where −π/2 < Reτ ≤ π/2 and p is an integer. Obviously, any
complex number ζ can be written in this form. Then we have

eiζ = (−1)peiτ ≈ (−1)p
kmax∑
k=0

ikτk

k!
. (44)

Here kmax is the maximum expansion order for the exponential. The above approximation is
useful if the imaginary part of ζ (and, consequently, of τ ) is bounded. I have verified numer-
ically that this is, indeed, the case. Using (44), we can re-write (42), approximately, as an
algebraic equation of the order N = l + kmax + 1 in the variable τ . This equation has N
complex roots. We are, however, seeking only the roots that satisfy −π/2 < Reτ ≤ π/2. We
anticipate that there will be no more than one such root (this has been confirmed numerically
for l ≤ 10). We then repeat the numerical root-finding for different values of p, which will
yield a family of roots τlp(x) (for fixed l and x), and, correspondingly ζlp(x) = τlp(x) + pπ,
ηlp(x) = ζlp(x)/x and wlmp(x) = 4π/[η2

lp(x) − 1]. Note that a numerically stable method
for finding roots of a polynomial is diagonalization of the companion matrix. This method was
used to compute the data points for Fig. 1.

One final remark is necessary. It turns out that the integer index p defined above labels
discontinuous segments of curves such as the ones shown in the figure. The curves can be re-
labeled so that the new index uniquely identifies a continuous curve. More details are given in
the figure caption.

5.2 Method 2: Iterative Root-Finding
The iterative methods are based on evaluating the Bessel functions by methods whose numerical
stability is well understood [18]. The simplest iterative method can be obtained by re-writing
Eq. (41) as

ζ = αl(x)
jl(ζ)
jl+1(ζ)

, (45)

where αl(x) = xh
(1)
l+1(x)/h

(1)
l (x). Equation (45) can be iterated starting from an arbitrary ini-

tial guess. I have implemented this iteration and found that the map (45) is unstable, converging
to a 2-cycle for sufficiently large iteration numbers.

A more sophisticated and, potentially, more stable approach is based on the Newton-Raphson
method. Namely, fix x and l and define F (ζ) = αl(x)jl(ζ) − βl(x)ζjl+1(ζ), where αl(x) =
xh

(1)
l+1(x) and βl(x) = h

(1)
l (x). We then write the Newton-Raphson iteration as

ζ(n+1) = ζ(n) − F [ζ(n)]/F ′[ζ(n)] . (46)
The derivative F ′(ζ) can be evaluated analytically by using the differentiation rules for Bessel
functions. The natural choice of the initial guess is ζ(0) = pπ, where p is an integer. The
different initial guesses can then generate a family of solutions. In order to avoid the possibility
of F ′[ζ(0)] approaching zero too closely, one can choose the initial guess with a small negative
imaginary part, namely, ζ(0) = pπ − iδ. Solving Eq. (25) by the Newton-Raphson method has
not been tested so far.

As a side note, the iterative methods can be used to improve the results obtained by the
method of Sec. 5.1. In this case, the root obtained by the former method is used as the initial
guess for an iterative method.
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6 DISCUSSION
Numerical computation of the special functions ηlp(x) and the related functionsAlp(x), Zlp(x),
wlp(x) will play the key role for the pole expansion of the Lorenz-Mie coefficients to become
useful. It is logical to assume that, if these functions exist and are well defined, they can be
computed with any given numerical precision. However, the choice of a numerical method
is non-trivial. The functions ηlp(x) must be computed by finding roots of a transcendental
equation (25). The problem is complicated by the fact that the Bessel functions that enter into
this equation themselves are known to be numerically unstable if evaluated “naively”, e.g., by
direct summation of polynomials. I plan to investigate this problem in the future by using
a combination of approaches involving polynomial or rational Pade-type approximations and
iterative methods.

Special attention should be given to convergence, stability and error estimates associated
with the expansions (36), (37). The convergence of these expansions has not been investigated
in this paper. It is known, however, that fast convergence is a general property of all “well-
formulated” spectral solutions. Therefore, if the expansions (36), (37) are theoretically correct,
it is reasonable to expect that convergence associated with the summation over the index p
should not pose a serious computational problem.

Finally, the spectral method presented in this paper might be generalizable to aggregated
spheres (with the full account of interaction), photonic crystals composed of spherical or cylin-
drical inclusions, and to particles of other regular shapes.
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