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Recently, Zou, Janel, and Schatzsreferred to as ZJS be-
lowd have described remarkably narrow plasmon resonances
in linear arrays of silver nanospheres.1 Without questioning
the novelty and significance of these results, I would like to
point out that the above-referenced paper contains two incor-
rect statements.

The first statement is about my previous work. Namely,
ZJS write that in a previous study2 I have considered “…in-
finite one-dimensional arrays in the quasistatic approxima-
tion.” In fact, there was no quasistatic approximation made
in Ref. 2. The approximation that was made was thedipole
approximation. These two approximations are distinctly dif-
ferent. For example, even in the electrostatic limit, the dipole
approximation is grossly inaccurate for two touching con-
ducting spheres excited by a constant external electric field
parallel to the axis connecting the spheres’ centers.3 On the
other hand, electromagnetic interaction of small impurities in
a crystal or of dye molecules in large molecular aggregates4

cannot be understood within the quasistatics, although the
dipole approximation may be very accurate in this case.

Perhaps, the source of confusion is that in Sec. II A of
Ref. 2 I wrote “The object under investigation is a linear
infinite chain with stepa consisting of pointlike dipole units
smonomersd….” Also, in the Introduction of Ref. 2, I have
suggested that the physical system to which the considered
model is applicable is a molecular aggregate. Later, in Sec.
V, I have considered a particular example in which the po-
larizability of a dipole,a, was given by the quasistatic po-
larizability of a small sphere with the appropriate radiative
correction. However, the theoretical formalism of Ref. 2 did
not put any restrictions ona. And, regardless of the form of
a, the interaction of dipoles was described with full account
of retardation effects.

In fact, ZJS also work in the dipole approximation, al-
though they validate their results by comparison with a more
generalT-matrix solutions. The situation is somewhat more
complicated, however, because ZJS use, in addition, an ap-
proximation proposed by Doyle in 1989sRef. 5d in the con-
text of effective-medium theory of the so-called extended
Maxwell–Garnett composites, i.e., composites in which in-
clusions are not small compared to the wavelength. More
specifically, Doyle has studied electromagnetic properties of
a homogeneous host with randomly distributed spherical in-
clusions. The essence of the approximation is to consider
only dipole-dipole interactions of the inclusions but to assign

them dynamic dipole polarizabilitya. The latter is given by
formula s2d below; it is defined as the linear coefficient be-
tween the amplitude of incident plane wave and the total
dipole moment of polarizable sphere of arbitrary sizesas-
suming, the sphere is isolatedd and, in that sense, is exact. It
can be seen that the Doyle’s approach only concerns the
choice ofa within the dipole approximation. Thus, it is fully
consistent with the general formalism developed in Ref. 2.

It should be noted that the accuracy and limits of appli-
cability of the Doyle’s approximation have not been system-
atically investigated. In one critical study of extended
Maxwell–Garnett composites6 Ruppin has shown that the
Doyle’s approximation is consistent with the asymptotes ob-
tained in the limit of small volume fraction of inclusions,
and, in that limit, allows one to consider inclusions with size
parameters of at leastx,0.5. Thus, the Doyle’s approxima-
tion can be useful for moderate size parameters. However, if
the spherical inclusions are in close proximity of each other,
the secondary scattered waves incident upon each of them
are no longer plane waves. But the dynamic polarizability
used by Doyle is exact only with respect to incident plane
waves. Besides, coupling of higher multipole modes excited
in spherical inclusions can become significant. Therefore, it
is quite obvious that the use of Doyle’s approximation does
not fix, in principle, the deficiencies of the dipole approxi-
mation.

The second statement concerns the possibility of cancel-
lation of the imaginary part of denominator in the expression
P=aE0/ s1−aSd fEq. s5d, or, in a more specific form, Eq.s7d
of Ref. 1g. This is discussed on p. 10874 of Ref. 1. ZJS
consider the case when the incident wave vector is perpen-
dicular to a linear chain of polarizable dipoles with the pe-
riod D. The polarization of the incident wave is also perpen-
dicular to the chain. It is stated that the resonance width,
which is related in Ref. 1 to the imaginary part of the de-
nominator of the above equation, vanishes wheng
ø8p3A/D3, whereg andA are parameters which specify the
polarizability of an isolated sphere. Namely, ZJS use the for-
mula a=−A/ sv−vp+ igd, wherev is frequency of incident
radiation,vp is the surface plasmon frequency andg is the
relaxation parameter. Assuming that the result
ImS=−8p3/D3, which is given in Ref. 1 forl slightly larger
than the interparticle distanceD, is correct, one immediately
can see that the cancellation takes place exactly atg
=8p3A/D3. For smaller values ofg, the imaginary part of
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the denominator becomes, in fact, negative. Such result
clearly contradicts conservation of energy and is unphysical.
It was obtained in Ref. 1 due to several mistakes which are
discussed below.

It is convenient to rewrite Eq.s5d of Ref. 1 as

P =
E0

1/a − S
. s1d

Given the specific forma=−A/ sv−vp+ igd, this expression
differs from Eq.s7d of Ref. 1 only by dividing the numerator
and denominator by the real constantA. The quantityS here
is the “dipole sum”—an eigenvalue of the electromagnetic
state of the dipole chain which is excited by incident radia-
tion. The imaginary part of the denominator of Eq.s1d de-
fines total relaxation.

Note that Ims1/ad can contain two contributions which
correspond to absorptive and radiative relaxation. Both are
strictly negative. On the other hand, imaginary part ofS has
nothing to do with absorptive losses, sinceSdoes not depend
on material properties. Thus, ImS can only influence radia-
tive relaxation and can be either positive or negative. In the
first case, the radiative relaxation is increased compared to
that of an isolated sphere, while in the latter case it is re-
duced. It is important to note that 1/a and S satisfy the
following general inequalities: Ims1/adø−2k3/3 sRefs. 7
and 8d and ImSù−2k3/3 sRef. 9d, where k=2p /l is the
wave number. Both inequalities follow from the very general
consideration of energy conservation. At the very least, they
show that the imaginary part of the denominator of Eq.s1d
cannot become negative. The radiative relaxation is canceled
if ImS=−2k3/3 sthis possibility is discussed belowd. If, in
addition, Ims1/ad=−2k3/3, total relaxation is equal to zero.
Physically, this cannot happen due to small absorption which
is always present even in highly transparent materials, devia-
tions from the dipole approximation, etc.

Let us rewrite the above inequalities forl<D, which
is the situation considered in Ref. 1. We obtain
Ims1/adø−16p3/3D3 and ImSù−16p3/3D3. The result ad-
duced in Ref. 1, namely, ImS=−8p3/D3<−k3, clearly con-
tradicts the second inequality. This is due to two reasons.
First, it is incorrect that the far-field termo jÞisk2eikrij / r ijd
dominates the dipole sumS for l<D, as is stated in Ref. 1.
This would be only true for thereal part of S. Second, even
if only the far field term is used in the calculation ofS, the
result adduced in Ref. 1 is off by the factor of 2. The correct
contribution to ImS which comes from the far-zone term
is fsgnsD−ldg4p3/D3. The contribution which comes from
the intermediate-zone term is 2p3/3D3. The contribution
from the near-zone term is zero. Thus, we have
ImS=−10p3/3D3 for D,l and ImS=14p3/3D3 for D.l
sall calculations are done forD−l!Dd. It can be seen that
the inequality ImSù−16p3/3D3 is satisfied strongly.
Therefore, not only the imaginary part of the denominator
cannot become negative, but its exact cancellation is
also impossible in the considered geometry. The smallest
possible value of Ims1/a−Sd is equal to −2p3/3D3.
However, it is correct that the radiative relaxation is chang-
ed by a significant factor whenl−D changes sign.
Thus, −f16p3/3D3+ImSg=−10p3/D3 for l,D and

−f16p3/3D3+ImSg=−2p3/D3 for l.D, a drop by the fac-
tor of 5. This can be practically important if radiative losses
are dominant over absorptive losses.

Next, we discuss the inequality Ims1/adø−2k3/3. This
inequality insures that the dipole contribution to the absorp-
tion cross section of a particle is not negative. It must hold
even for nonabsorbing particles and, in particular, forg=0.
In the case of a small particle, this inequality is satisfied if
one uses the quasistatic polarizability with the inclusion of
the radiative reaction correction:a=asQSd / s1−2ik3asQSd /3d.
Herea is the polarizability with the radiative correction and
asQSd=R3se−1d / se+2d is the quasistatic polarizability,R be-
ing the sphere radius. The importance of the radiative cor-
rection is discussed, for example, in Ref. 7, and the authors
of Ref. 1 are also aware of itfsee Ref. 10, Eqs.s16d–s18dg.
The expressiona=−A/ sv−vp+ igd used in Ref. 1 does not
contain the radiative correction. Therefore, its usestogether
with an incorrect expression forSd leads to unphysical results
in the limit g→0, such as the total cancellation of relaxation
or negative relaxation. It should be also noted that the dy-
namic expression fora which ZJS used in numerical simu-
lations saccording to the Doyle’s approximationd also satis-
fies the above inequality. Indeed, if we take

a =
3i

2k3

mc1smkRdc18skRd − c1skRdc18smkRd
mc1smkRdj18skRd − j1skRdc18smkRd

, s2d

wherec1 and j1 are the Riccati–Bessel functions,m=Îe is
the complex refractive index of the spheres, then the Taylor
expansion of Ims1/ad in powers of the wave number reads

Ims1/ad = −
2k3

3
−

3 Im e

R3ue − 1u2
−

3k2Im e

5Rue − 1u2

−
3k4Rs8 + ueu2 − 2 ReedIm e

350ue − 1u2
+ Osk6R3d. s3d

The expansion beyond the third order contains only even
powers of k and it can be verified that each term in the
expansion is nonpositive. The exact equality Ims1/ad=
−2k3/3 takes place only for nonabsorbing materials with
Im e=0 swhich do not occur in natured.

Finally, we discuss the possibility of exact cancellation
of the radiative relaxation. Note thatsid only the radiative
part of relaxation can be zero,sii d the total relaxation is
always nonzero due to nonzero absorption, but can become,
in principle, arbitrarily small, andsiii d such cancellation can-
not take place in the geometry considered in Ref. 1. Gener-
ally, there can be two reasons for cancellation of the radiative
relaxation. The first is symmetry.9 Within the dipole approxi-
mation, the cancellation takes place when the symmetry of a
particular excitation mode is such that dipole radiation is
forbidden. A nonzero radiative relaxation can still result from
higher-multipole radiation, similarly to nonzero decay rates
of excited atomic states whose decay is dipole forbidden.
The second reason is when photon emission is prohibited by
conservation laws, such as the light cone condition.11 In a
linear chain of dipole-polarizable particles the cancellation of
radiative relaxation can take place when the incident wave
vector is parallel to the chain. However, the radiative relax-
ation is always nonzero for normal incidence.
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