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Abstract
In this paper we present a fast numerical method for solving large-scale 
inverse scattering problems. The computational efficiency of the proposed 
method stems from the utilization of the special structure of the linear 
forward scattering operator, and does not require or assume any symmetries 
of the measurement geometry. The described approach is especially useful 
for inverse problems involving large data sets. As an illustration, we have 
performed direct numerical inversions for the problem of diffuse optical 
tomography in measurement geometries with up to  ∼108 independent data 
points and  ∼7 · 105 unknowns.

Keywords: pseudo-inverse, inverse scattering, singular-value decomposition, 
large data sets

(Some figures may appear in colour only in the online journal)

1.  Introduction

The computation of the singular-value decomposition (SVD) or the pseudo-inverse of a matrix 
is a well-researched subject. The common approach to solving the problem numerically is 
based on the Golub–Reinsch (GR) algorithm [1, 2], which consists of two main steps. In the 
first step, the matrix is transformed to a bidiagonal form by a series of unitary Householder 
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transformations, say B  =  PAQ*, where A is an M × N  complex matrix whose SVD we wish to 
compute, B is an upper bidiagonal N × N  matrix, P and Q are products of unitary Householder 
matrices, and it is usually assumed that M � N . In the second step, the SVD of B is computed 
by an iterative method. Then, if the SVD of B is of the form B = UΣV∗, the SVD of A is 
A = (P∗U)Σ(V∗Q).

The computational complexity of various modifications of the GR algorithm has been 
reviewed in [3]. In the case of highly overdetermined problems with M � N , which are of 
primary interest in this paper, the dominant cost is that of the first step, whose computational 
complexity is O(MN2), whereas the cost of the second step is negligible. Indeed, the first J 
singular values and singular vectors of a bidiagonal matrix can be computed using O(JN) 
floating-point operations [4–6]. Alternatively, one may not need the full SVD of A and seek 
instead the least-squares solution of a set of M linear equations in N unknowns, Ax  =  b. This 
can be achieved by converting the above equation  to the form By  =  c where y   =  Qx and 
c  =  Pb. Since B is a bidiagonal N × N  matrix, one can find the least squares solution to the 
above in O(JN) operations, where J is the number of iterations, for instance, of a conjugate 
gradient descent algorithm.

All this is well known and used in most contemporary linear algebra computational libraries 
such as LAPACK. However, the direct application of this approach to the problems in inverse 
scattering is often impossible. The reason is that the computational complexity of the first step 
in the GR algorithm, O(MN2), can easily become prohibitive. In some applications, M is so large 
that it is not even possible to store A in memory. For example, in some experimental realizations 
of optical tomography [7–9], M � 108 and N � 104, which translates into �1012 matrix ele-
ments. Efficient manipulation of matrices of this size requires many terabytes of memory.

However, linearized inverse scattering problems often involve matrices of a special form. 
This fact can be exploited to avoid the high computational complexity of the first step in the 
GR algorithm. In fact, the algebraic problem can be formulated so that the large number M 
never enters the estimates of computational complexity. This observation is very simple, and 
we have briefly remarked upon it in appendix B of [10]. We also draw the reader’s attention to 
closely related earlier work of Lev-Ari [11]. This paper builds upon and further develops the 
theoretical insights of [11]. In particular, we provide the motivation and full details of a fast 
inversion method, introduce a new algorithm based on preconditioning by diagonal scaling, 
describe two specific computational algorithms, and give several numerical examples which 
illustrate the power of the approach.

The rest of this paper is organized as follows. In section 2 we give the algebraic formulation 
of the inverse problem and derive a simple but very efficient algorithm for its solution. In sec-
tion 3 we describe a more intricate algorithm, which involves preconditioning by diagonal 
scaling (it is this version that was described in [10]). In section 4 we define the basic steps of 
two computational algorithms and analyze their computational complexity. In section 5, sev-
eral numerical examples with ideal data are given. In section 6, we show examples with noisy 
data. Here we illustrate how the precondition approach can be used to achieve an efficient data 
reduction in the presence of noise.

Finally, section 7 contains a brief discussion of our results.

2.  Algebraic formulation

We start with the algebraic formulation of the linearized inverse scattering problem. As is 
well-known, the scattering potential of interest V(r) is related to measurements Φ(rd, rs) by 
the integral equation

V A Markel et alInverse Problems 35 (2019) 124002
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∫

Ω

G0(rd, r)V(r)G0(r, rs)d3r = Φ(rd, rs).� (1)

Here rd  and rs are the positions of the detector and the source, which are located outside of the 
spatial region Ω in which V(r) is nonvanishing, and G0(r, r′) is the unperturbed Green’s func-
tion for the underlying differential equation. The specific form of G0(r, r′) is not important for 
us now, although some specific examples are given below. What is important is that (1) can be 
discretized and written in the form

Nv∑
n=1

AinxnBnj = Φij, 1 � i � Nd, 1 � j � Ns.� (2)

Here Ain = G0(rdi, rn), Bnj = G0(rn, rsj), xn = V(rn), rdi is the location of the ith detector 
and rsj  is the location of the j th source, rn is the center of nth voxel, and Nd, Ns and Nv are the 
numbers of detectors, sources and voxels, respectively. There are many different discretiza-
tion schemes utilizing point sources and detectors, or phased arrays, or incident and outgoing 
plane waves, etc, but all of them result in algebraic equations of the form (2).

Matrix equations of the form AXB  =  C, where X is unknown, have been extensively studied 
in the literature [11–24]. The problem in which X is restricted to be diagonal is encountered 
less frequently [11, 13, 21]. A key insight upon which the forthcoming discussion is based was 
made in 2005 by Lev-Ari [11]. Namely it was noted that the computationally-costly operation 
of vectorization is not required to solve the equation (in the minimum L2-norm sense) and 
an alternative approach was suggested. However, numerical methods for inverse scattering 
largely rely on vectorization. In this traditional approach, (2) is re-written in the form

Kx = b,� (3)

where K  is an M × N  matrix with M = NdNs  and N = Nv, x is the vector of unknowns of 
length N and b is the vector of data of length M. The components of K  and b are given by

K(ij),n = AinBnj, b(ij) = Φij.� (4)

Here (ij) is a composite index; we can replace it with a single index using the operation of 
matrix unrolling, e.g. by writing

m = (i − 1)Ns + j, 1 � i � Nd, 1 � j � Ns.

It can be seen that m takes values from 1 to M = NdNs  and there exists a one-to-one corre-
spondence between (ij) and m. We note that K can be viewed as the Khatri–Rao product [25] 
of A and B*. From this point on, the traditional approach treats K  as a generic M × N  matrix. 
In particular, equation (2) with a generic K  has been used in diffuse optical tomography [26] 
and in diffraction tomography [27].

In this paper we make the simple observation that K  is not generic, but is given by (4). The 
number of degrees of freedom in K  is therefore (Nd + Ns)Nv, which is much smaller than the 
number of elements of K , that is, NM = NdNsNv. We can use this observation to derive inver-
sion methods that are much more computationally efficient than seeking the pseudoinverse of K .

As a first elementary example, assume that we have decided to compute K∗K instead of 
using the GR algorithm. Generically, the computational complexity of computing the matrix-
matrix product K∗K is O(MN2), the same as the complexity of the first step in the GR algo-
rithm. However, if we use the specific representation (4), we immediately notice that

(K∗K)nm = (A∗A)nm(BB∗)mn.� (5)

V A Markel et alInverse Problems 35 (2019) 124002
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The complexity of computing A*A and BB* is obviously much smaller than O(MN2). Assuming 
Ns ∼ Nd < Nv, the number of required operations to evaluate the right-hand side of (5) is 
smaller by the factor  ∼2/Nv, and if Ns ∼ Nd > Nv then it is smaller by the factor  ∼2/Ns. 
There is also no need to store the large matrix K  in memory, which in many cases is not 
feasible.

We also note that

cn ≡ (K∗b)n = (A∗ΦB∗)nn.� (6)

Computing N elements of the vector c takes O(MN) operations, which is again much smaller 
than O(MN2). Therefore, one can compute K∗K according to (5), compute c according to (6) 
and then solve the regularized equation

(K∗K + λ2I)x = c, c = K∗b,� (7)

I is the N × N  identity matrix, and λ is the regularization parameter. Since the matrix in 
(7) is symmetric and positive-definite, x can be found iteratively by the conjugate gradient 
descent method in O(JN2) operations, where J � N  is the number of iterations required for 
convergence. A related observation was also made in [11], where the traditional approach to 
solving the least squares problem is replaced by a reduced-order vector form involving the 
Khatri–Rao product.

3.  An algorithm with preconditioning by diagonal scaling

In principle, we can apply the procedure outlined in the previous section to solve highly over-
determined linear inverse problems in a way that avoids dealing directly with a generic matrix 
K  of the size M × N . Importantly, none of the numerical steps involved in this procedure 
scale as O(MN2). There is also no need to store a large matrix K  in memory. However, we now 
wish to further explore the properties of the matrices A and B. The motivation is that we expect 
the ranks of A and B can be smaller or even much smaller than Nd and Ns, respectively, where 
we have assumed that Nd, Ns < Nv for simplicity.

Let the SVDs of A and B be given by

A =

Nd∑
µ=1

σA
µf A

µgA∗
µ , B =

Ns∑
µ=1

σB
µf B

µgB∗
µ .� (8)

Here σA
µ (1 � µ � Nd) and σB

µ (1 � µ � Ns) are the singular values of A and B, and f A
µ , gA

µ, 
f B
µ , gB

µ are the corresponding singular vectors. Note that f A
µ  are of the length Nd, gB

µ are of the 
length Ns, and gA

µ, f B
µ  are of the length Nv. Star denotes transposition and complex conjugation 

of all elements. Then we have

K(ij),n =

Nd∑
µ=1

Ns∑
ν=1

σA
µσ

B
ν f A

µi gA∗
µn f B

νn gB∗
νj .� (9)

Let us now introduce a unitary matrix U with elements U(µν),(ij) = f A∗
µi gB

νj. We multiply (3) by 
U on the left to obtain

(UK)x = Ub.� (10)

V A Markel et alInverse Problems 35 (2019) 124002
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Note that multiplication of a linear set of equations by a unitary matrix does not change the 
pseudoinverse solution. However, the expressions for UK  and Ub in terms of the singular vec-
tors of A and B are of a very simple form:

(UK)(µν),n = σA
µσ

B
ν gA∗

µn f B
νn,� (11a)

(Ub)(µν) =
∑
(ij)

f A∗
µi ΦijgB

νj = ( f A
µ ,ΦgB

ν) ≡ Φ̃µν .
� (11b)

Here the scalar product of two complex vectors of the same length, x and y , is defined as 
(x, y) =

∑
n x∗n yn . Now, with the use of (11), we can re-write (10) in components as

σA
µσ

B
ν

N∑
n=1

gA∗
µn f B

νn xn = Φ̃µν .� (12)

Equation (12) is equivalent to (3). However, we now see that each line in this equation con-
tains an overall factor σA

µσ
B
ν , which can be very small or zero for some (µν). Some equa-

tions in (12) can therefore be irrelevant; they do not contain any meaningful information about 
x. This fact is not evident when the equation is written in the form (3).

We now introduce the operation of diagonal scaling. Consider the diagonal matrix D 
defined by

D(µν),(µ′ν′) = δ(µν),(µ′ν′)

{
1

σA
µσ

B
ν

, σA
µ, σB

ν > ε

0, σA
µ, σB

ν � ε
� (13)

where ε is a cut-off parameter. Then multiplication of (10) by D results in

(DUK)x = (DU)b� (14)

or, in components,

N∑
n=1

gA∗
µn f B

νn xn =
1

σA
µσ

B
ν

Φ̃µν .� (15)

The set (15) contains equations with µ and ν  such that σA
µ > ε and σB

ν > ε. If these conditions 
hold for all µ and ν  in the range 1 � µ � Nd and 1 � ν � Ns, then (15) and (12) contain the same 
number of equations M = NsNd . In this case, D is invertible. This does not mean however that (15) 
is equivalent to (12). The equivalence holds if K  is also invertible (U is unitary and therefore invert-
ible). If both D and K  are both invertible, (15) and (12) have the same unique solution. However, 
we do not generally know whether K  is invertible and, in many practical problems, it is not.

Let us assume that the inequality σA
µ > ε holds for 1 � µ � MA � Nd  and similarly the 

inequality σB
ν > ε holds for 1 � µ � MB � Ns. Then (15) contains MAMB equations. This 

number can be smaller or even much smaller than M = NdNs  but still significant and, more 
importantly, (15) is not square. However, we can compute W ≡ (DUK)∗(DUK) using the 
same approach as in section 2, i.e.

Wmn =

MA∑
µ=1

(gA
µmgA∗

µn)

MB∑
ν=1

( f B
νnf B∗

νm)� (16a)

= (A+A)mn(BB+)nm,� (16b)

where we have introduced the pseudo-inverses of A and B,

V A Markel et alInverse Problems 35 (2019) 124002
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A+ =

MA∑
µ=1

1
σA
µ

gA
µf A∗

µ , B+ =

MB∑
µ=1

1
σB
µ

gB
µf B∗

µ .� (17)

The convention here is that the singular values are arranged in descending order so that 
σA
µ > ε and σB

µ > ε holds for all terms in (17). Thus, Wmn is the direct (Hadamard) product 
of the matrices A+ A and BB+ where the pseudoinverses A+ and B+ were defined above. By 
comparing this to the expression (5) for K∗K, we see that the operation of preconditioning by 
diagonal scaling amounts to replacing the factors A*A and BB* with A+ A and BB+ . Obviously, 
W is different from K∗K. Moreover, W and K∗K can have different rank.

With these definitions and the use of Tikhonov regularization, (15) is transformed to

Nv∑
m=1

(Wnm + λ2δnm)xm = cn,� (18)

where

cn =

MA∑
µ=1

MB∑
ν=1

gA
µnΦ̃µν f B∗

νn

σA
µσ

B
ν

� (19a)

=
∑
(ij)




MA∑
µ=1

gA
µnf A∗

µi

σA
µ


Φij

(
MB∑
ν=1

gB
νjf

B∗
νn

σB
ν

)
� (19b)

= (A+ΦB+)nn .� (19c)

We could have started the derivations of this section  with (16b) and (19c), which can be 
obtained in a straightforward manner by acting with A+ on the left and B+ on the right on 
(2). However, we have outlined above a series of steps that are better suited for numerical 
implementation.

4.  Computational algorithms

We can now describe two algorithms for finding a solution to (2). Algorithm 1 yields the 
pseudoinverse of this equation; its basic steps as well as the estimates of computational com-
plexity of each step are listed in table 1. The estimates were performed for the typical case 
Nd, Ns < Nv < NdNs . We do not list the memory requirements since this depends on pro-
gramming. However, the memory bottleneck of algorithm 1 is roughly 2N2

v  words, where one 
word is 8 bytes for double-precision real arithmetic. This estimate arises from the requirement 
to have at least two matrices of size Nv × Nv allocated simultaneously at Step 4 (note that 
three matrices are not required). For example, if the medium is discretized on a 41 × 41 × 41 
grid (Nv = 68 921), the memory requirement is roughly 76 Gb. For the discretization of 
21 × 21 × 21 voxels (Nv = 9261), less than 2 Gb is required. We emphasize that these esti-
mates are independent of the numbers of sources and detectors. Also, the memory requirement 
can be halved at the cost of degrading the computational performance.

Algorithm 2 yields the pseudoinverse of (2) after preconditioning by diagonal scaling. The 
basic steps of this algorithm are listed in table 2. A few differences relative to algorithm 1 can 
be noted. First, algorithm 2 computes the matrices AA* and B*B, which are smaller than A*A 
and BB* that are required by algorithm 1. Second, the memory bottleneck of algorithm 2 is 

V A Markel et alInverse Problems 35 (2019) 124002
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(MA + MB)Nv  words, which can be significantly smaller than the respective bottleneck 2N2
v  

words of algorithm 1. Algorithm 2 is more intricate and involves more steps. One needs to pay 
close attention to memory management since algorithm 2 requires temporary storage that can 
be allocated and deallocated when needed. Overall, algorithm 2 is slightly faster than algo-
rithm 1 and can be significantly less memory intensive. The reason for this improvement is the 
useful data reduction that is involved in the operation of diagonal scaling (14). In some cases, 
algorithm 2 also provides better reconstructions, as is illustrated in the numerical examples 
below. Finally, we note that all computationally expensive steps of both algorithms are easily 
amendable to parallelization.

5.  Numerical examples with ideal data

To illustrate the algorithms described in section 4, we have performed numerical simulations 
for the inverse problem of reconstructing a three-dimensional cubic sample represented by 
an array of L × L × L  voxels. In this section, we show inversions with ideal (noiseless) data. 
Choosing the most efficient algorithm in the presence of noise in the data, and the associated 
problem of data reduction are discussed in section 6 below.

We introduce an unknown xn for each voxel where 1 � n � Nv = L3. The source and 
detector positions are shown schematically in figure 1. We emphasize that the positions of 
sources and detectors must be independent sets for the methods of this paper to be appli-
cable. In other words, we require that all elements of the data matrix Φ in (2) be known. 
In the numerical examples shown below, the sets of positions of sources and detectors are 
the same. In particular, it is assumed that measurements can be performed for a source and 
a detector located at the same point, i.e. if the physical device used for the measurements 
can function as a source and a detector concurrently. Additional details as well as the defi-
nitions of the sampling frequency F and the imaging window W are given in the caption 
to figure 1.

Further, we choose the form of the Green’s function in (1) to be

G0(r, r′) =
1

|r − r′|
e−kd|r−r′|.� (20)

This, together with the locations of the voxel centers, sources and detectors, determine the 
matrices A and B in (2). Specifically, we have

Table 1.  Steps involved in algorithm 1. Here 5a and 5b are alternative steps. Step 5a 
entails computing the pseudoinverse x+ by an iterative method such as the conjugate 
gradient descent and J is the number of iterations (typically, J � Nv). Step 5b entails 
computing the full SVD decomposition of K*K.

# Operation Complexity [O(·)]

1 Compute or read from disk A, B, Φ (Nd + Ns)Nv + NsNd

2 Compute cn by (6) NvNdNs

3 Compute A*A and BB* (Nd + Ns)N2
v

4 Compute K*K by (5) N2
v

5a Compute x+ = (λ2I + K∗K)−1c JN2
v

5b Compute full SVD of K*K N3
v

V A Markel et alInverse Problems 35 (2019) 124002
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Ain =
1

|rdi − rn|
e−kd|rdi−rn|� (21)

where rdi is the location of the ith detector and rn is the center of the nth voxel. A similar 
expression can be written for B (involving locations of the sources). However, since the sets 
of the sources and detectors are the same in the simulations performed here, we have B  =  AT. 
We emphasize that this is not a general property of A and B and, in general, these two matrices 
are independent. In the simulations shown below, this property was not used (it can be used 
to save computation time). We also note that (20) is, up to a constant, the free -space Green’s 

function of the diffusion equation, 1
4πD0|r−r′|e

−kd|r−r′|, where kd =
√

α0/D0 , and α0 and D0 
are the absorption and diffusion coefficients of the background medium. In the simulations, 
we chose the units of length so that kd  =  1 and renormalized the contrast of the medium so 
that 4πD0 = 1. Since in many applications kd ∼ 1 cm−1, one can say that the distance in (20) 
is measured in centimeters.

Thus, the problem considered here is that of linearized diffuse optical tomography with 
free boundaries [28, 29]. Methods of linearization that can be used to arrive at this mathemati-
cal formulation are summarized in the above reference. The problem is notoriously ill-posed 
and the mathematical origin of the ill-posedness is similar to that of numerical inversion of 
Laplace transform [30]. However, we can make use of the three-dimensional nature of the 
problem to try to reduce the ill-posedness as much as possible. In the spirit of [31, 32], we 
can place the planes of sources and detectors adjacent to each face of the cubic sample. It is 
known that, in transmission-type measurements, wherein there is a plane of sources on one 
side of the sample and a plane of detectors on the opposite side, the transverse resolution (in 
the directions parallel to the planes) is much better than depth resolution. In the geometri-
cal arrangement of this paper, we place the planes of sources and detectors adjacent to each 
face of the cubic sample so that any direction can be considered transverse with respect to 

Table 2.  Steps involved in algorithm 2. Same comment regarding the alternative 
steps 14a and 14b as in the caption for 1 applies. x̃+ denotes pseudo-inverse after 
preconditioning by diagonal scaling (it is in general different from the pseudo-inverse 
of (3)).

# Operation Complexity [O(·)]

1 Compute or read from disk A, B, Φ (Nd + Ns)Nv + NsNd

2 Compute AA* N2
d Nv

3 Diagonalize AA*, compute f A
µ , σA

µ, 1 � µ � Nd N3
d

4 Define MA; truncate f A according to (13) —
6 Compute gA

µ, 1 � µ � MA by gA
µ = 1

σA
µ

A∗f A
µ

MANdNv

7 Compute B*B N2
s Nv

8 Diagonalize B*B, compute gB
µ, σB

µ, 1 � µ � Ns N3
s

9 Define MB; truncate gB according to (13) —
10 Compute f B

µ , 1 � µ � MB by gB
µ = 1

σB
µ

Bf B
µ

MBNsNv

11 Compute Φ̃ by (11b) MBNd(Ns + MA)

12 Compute cn by (19a) MAMBNv
13 Compute W by (16a) (MA + MB)N2

v
14a Compute x̃+ = (λ2I + W)−1c JN2

v
14b Compute full SVD of W N3

v

V A Markel et alInverse Problems 35 (2019) 124002
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some transmission and/or reflection measurement, which are all included in the data set. This 
arrangement will indeed allow us to overcome some of the ill-posedness at the cost of having 
to deal with extremely large data sets. The size of the data sets would make it hard or impos-
sible to perform image reconstruction using conventional methods. However, the methods 
described in this paper will prove to be efficient.

In the examples shown below, the side of the cube measured from a voxel center in a sur-
face layer of a cube to the voxel center at the opposite surface layer is H  =  5. The physical 
size of the sample (surface to surface) is H  +  h where h = H/(L − 1) is the voxel size. The 
distance between opposing measurement planes is H  +  2h. In the typical setup of optical 
tomography with the diffuse wave number kd ≈ 1 cm−1, this corresponds to a physical sam-
ple being a cube with sides  ∼5 cm. The cube however will be differently discretized. We will 
be looking for geometrical features on the scale of a few millimeters.

5.1.  Effects of imaging window and sampling frequency

In figure 2, we plot the squared singular values of K (eigenvalues of K*K) for a cube of side 
L  =  21. The eigenvalues were computed by algorithm 1. The purpose of this simulation is to 
show that there is virtually no benefit in oversampling the sources and detectors relative to 
the voxels of the medium or in using imaging windows larger than the face of the cube. The 
geometrical quantities F (the sampling frequency) and W (the imaging window) are illustrated 
in figure 1 and explained in detail in the caption to that figure. We have investigated different 
combinations of parameters with F and W taking the values 1 or 2.

Figure 1.  Illustration of the measurement scheme used in the simulations. The actual 
sample is a three-dimensional cube and the measurement surfaces are planes located 
near each of the six sides of the cube. The centers of the voxels are located at the 
intersections of black lines; the sample shown is a two-dimensional projection of a 
6 × 6 × 6 three-dimensional sample. The sets of sources and detectors are the same; 
each blue point can represent either a source or a detector and all source-detector pairs 
are used in the measurements, including the cases wherein the location of the source 
and the detector is the same. Arrangements with W  =  1 correspond to the imaging 
window being the same size as the side of the cube (or square in 2D). The case W  =  2 
corresponds to the window being twice as large as the side of the cube. Sampling 
frequency F  =  1 corresponds to the inter-source (inter-detector) separations being 
equal to the voxel size. The case F  =  2 corresponds to twice larger sampling frequency. 
The case W  =  F  =  2 is considered in the paper but not shown in this sketch. Finally, 
the measurement planes are displaced from the centers of nearest voxles by a distance 
equal to the size of one voxel.
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It can be seen that there exist two distinct regions of singular values. For the indexes less 
than  ∼2800, the data points with (F = 1, W = 1) are located somewhat higher than the data 
points for (F = 2, W = 2). The data points with either (F = 1, W = 2) or (F = 2, W = 1) are 
located roughly in the middle and are visually indistinguishable from each other. Note that 
these singular values (and the corresponding singular vectors) contribute mostly to stable 
reconstructions while the smaller singular values (and the corresponding singular vectors) are 
typically ignored in computing the pseudo-inverse solution (due to regularization). We thus 
conclude that the choice (F = 1, W = 1) yields the most stable reconstructions, although the 
differences are really very minor.

In the second region where the singular value indexes are between  ∼2800 and  ∼8000 
shows a slight benefit of oversampling but not of using a larger window. However, the singu-
lar values in this region are already so small that this improvement is not expected to matter in 
any realistic reconstruction. In order for the benefit of oversampling to be noticeable, the data 
must be known with an unrealistically high precision.

We note that the data of figure 2 display no instabilities associated with diagonalization of 
K*K rather than seeking the singular values of K directly, i.e. by the GR algorithm. It is widely 
believed that diagonalization of K*K is not the preferred method since the singular values thus 
computed suffer from loss of relative precision related to computing the square root of a small 
number. In our simulations, the only points affected by this instability are those with indexes 
�8000. In this case, the singular values are already so small that they are definitely discarded 
by any regularized inversion. Note that diagonalization of K*K produces eigenvalues that are 
very small (on the order of the machine precision) and sign indefinite while it is known theor
etically that all eigenvalues of K*K are non-negative. Therefore, for such small eigenvalues 
we have a total loss of precision. The GR algorithm produces only positive singular values 
but they are limited from below by the machine precision and can not be smaller than a cer-
tain machine-defined number. The actual singular values can be many orders of magnitude 
smaller. Therefore, even in the GR algorithm computation of these small singular values is 
characterized by a total loss of precision. In figure 2, the singular values that are affected by 
this instability are seen as the data points of the order of  ∼10−20 that descend with an almost 
vertical slope, at the very end of the ‘curves’. In fact, there are also negative eigenvalues in 
that region of indexes but they can not be displayed using the vertical logarithmic scale. The 
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Figure 2.  Squared singular values of the matrix K  for a 21 × 21 × 21 cube of voxels 
and various source-detector arrangements, as labeled. The total number of singular 
values is 213  =  9261.
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conclusion is that the singular values affected by the instability are so small that they can not 
be computed reliably by any method.

Another comment needs to be made regarding the imaging windows. That taking imaging 
windows larger than the side of the cube does not provide any additional information about the 
sample is not unexpected. In the case W  =  1, the sources and detectors sample a closed surface 
enclosing the sample. Any data points outside of these closed surface are not independent. 
However, in purely transmission measurement schemes, wherein there is one plane of sources 
on one side of the sample and one plane of sources on the other side, taking larger windows 
(than the discretized region) actually makes sense. In this case, the source-detector planes do 
not form a closed surface and using data points in a large window affords additional informa-
tion by looking at the sample ‘from the side’. The effects of imaging windows and sampling 
in purely transmission measurements have been investigated by us in [28, 29].

Since we have confirmed that the source-detector arrangement with F  =  W  =  1 is optimal 
and no further image quality improvement can be obtained by over-sapling or using larger 
windows, most reconstructions below are performed for F  =  W  =  1, except for the very last 
figure below in which we compare the influence of various source-detector arrangements in 
order to illustrate the usefulness of large data sets.

5.2.  Cube with L  =  21

Reconstruction of three different targets contained within a cubic sample discretized on a 
L × L × L  grid with L  =  21 are shown in figure 3. For this arrangement, the total number of 
voxels is Nv = 213 = 9261 ans the numbers of sources and detectors are Ns = Nd = 2646. 
The total number of source-detector pairs (the leading size of K) is 7001 316. In spite of the 
relatively small discretization of the sample, this already can be viewed as a formidable com-
putational problem: the matrix K contains  ∼6.5 · 1010 elements; only storage of its elements 
in memory requires about 0.5 Tb of memory (in double precision). However, both algorithms 
1 and 2 require less than 2 Gb of memory and complete in under one minute of wall-clock 
time on a 16-thread entry-level workstation. Note that this included computation of full SVD 
of K*K (for algorithm 1) or W (for algorithm 2) and scanning over 103 different values of λ to 
determine the optimal value of this regularization parameter.

We now discuss the results of figure  3 in more detail. First, the large and small target 
consisted of three cubic shells. The cross section of these shells by the central plane is shown 
in the top row of images. The contrast was equal to 2 in the outer-most shell, to  −1 in the 
middle shell and to 1 in the inner-most shell (actually, a small cube). The sizes of the shells 
were 17, 9 and 5 for the large target, and 9, 5 and 3 for the small target. The asymmetric target 
shown in the middle column is the large target in which parts of the outer and middle shells 
were removed (more precisely, set to zero). Specifically, assuming that the XY central plane is 
shown in the reconstructions, all values to the left of the XZ central plane of voxels were set to 
zero for the outer shell and all values below the YZ central plane were set to zero for the middle 
shell; the innermost shell was unchanged.

Reconstructions were performed by both algorithms with comparable time and results, 
although the reconstructions according to algorithm 2 are slightly faster, less memory-demand-
ing and produce visibly better results for the large target. The cut-off parameter ε that is used 
in the operation of diagonal scaling (13) was set to 10−3 maxµ[σ

A
µ]. This choice was made by 

analyzing the singular values of the matrix A (identical to those of B). These singular values 
are shown in figure 4. It can be see that there exists a natural gap between the singular values. 
The singular vectors gA

µ that correspond to the singular values below the gap are non-radiating 
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states; they represent the states that do not produce any noticeable signal for any detectors 
located on a surface completely enclosing the sample; therefore, these states do not generate 
signal that is measurable by any detector or combination of detectors. These singular vectors 
can be safely discarded, and the operation of diagonal scaling achieves exactly that.

In figure 5 we plot the L2 norm of the reconstruction error (for the large target) as a function 
of the Tikhonov regularization parameter λ. Tikhonov regularization is employed at Step 5 of 
algorithm 1 or Step 14 of algorithm 2. It can be seen that algorithm 2 has indeed a slightly deeper 
minimum of the function χ(λ). The optimal value of λ was used in the reconstructions of figure 3.

We finally note that the sum of the unknowns, X =
∑

n xn, was reconstructed with very 
high precision in all cases. Apparently, the measurements are very sensitive to this integral 
characteristic. However small features buried deep inside the sample proved to be difficult to 
reconstruct. This is not a shortcoming of the algebraic method proposed here but rather the 
consequence of the intrinsic ill-posedness of the inverse problem.

Figure 3.  Reconstructions of three different targets for the medium discretized on a 
213 cube. Central slice for the cube is shown. A1 and A2 denote reconstructions by 
algorithms 1 and 2. For algorithm 2, we have used ε = 10−3 maxµ[σ

A
µ] (this small 

parameter appears in (13)). Same color scale is used in all plots with dark blue 
representing the value of  −2 and red representing  +3 (rainbow color scheme). The 
values of the contrast in the actual target are form  −1 to  +2; the extra range was used to 
depict reconstructed values that are either larger or smaller than the theoretical bounds 
(due to the imprecision of reconstructions).
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5.3.  Cube with L  =  35

We now show reconstructions for a cube of the same physical size but discretized on an L3 grid 
where L  =  35. We now have Nv = 42 875; Ns = Nd = 7350 and the total number of source-
detector pairs (the leading dimension of K) is 54 022 500. The matrix K now has  ∼2.3 · 1012 
elements, which, under normal circumstances, can not be stored in computer memory (about 
18 Tb is required). However, the reconstructions by algorithm 2 can still be performed on an 
entry-level workstation in about 90 min of wall-clock time (using 16 threads). The time is 
mostly used for the operations of complexity O(N3

v). Even though this computational time is 
longer than what one would hope for, inversion of K by standard methods is simply unfeasible 
in this case.

Reconstructions obtained by algorithm 2 are shown in figure 6. Algorithm 1 was not used 
for L  =  35 as it does not provide any improvement and requires more memory. As in the 
previous case, the total contrast X =

∑
n xn is reconstructed with very high precision, but 

small features buried deep inside the sample are difficult to resolve. We do not display the 
data similar to those shown in figures 4 and 5 as they all look similar and do not convey new 
qualitative information.

5.4.  Cube with L  =  41

We now show our most ambitious reconstructions with L  =  41. Indeed, we have in this case 
Nv = 68 921, Ns = Nd = 10 086, and the total number of source-detector pairs (the leading 
dimension of K) is 101 727 396. The matrix K has  ∼7 · 1012 elements. The computational bot-
tleneck for this sample is not the number of data points (which can easily be increased) but 
the number of voxels. Still, even for L  =  41, computational time is not a significant concern 
if modern multi-threaded computers are used. Rather, the method is limited by the avail-
able memory. An efficient numerical implementation requires simultaneous allocation of two 
matrices of the size N2

v  for algorithm 1 and of the sizes MA × Nv and Nv × NB for algorithm 
2. This means that about 76 Gb of memory are required for algorithm 1 to run in two to three 
hours of wall-clock time. The memory requirements of algorithm 2 can be significantly lower 
(see below) but are still significant. The required amount of memory is currently not typical in 
entry- to moderate-level workstations. In principle, one can program both algorithms so that 
they require much less memory, but then the implementation becomes much slower. For this 
reason, the reconstructions with L  =  41 reported here were performed on a supercomputer.
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Figure 4.  Singular values of A scaled by the maximum singular value and the cut-off 
parameter ε used in (13) and in the reconstructions of figure 3.
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Reconstructions obtained by both algorithms are shown in figure 7 and appear to be of com-
parable quality. However, we note that the reconstructions by algorithm 2 required approxi-
mately 6 times less memory. This is so because the cut-off parameter ε that was used in the 
operation of diagonal scaling (13) was set to 10−2 maxµ[σ

A
µ], which is well above the gap in 

the singular values of A (or B) as is shown in figure 8. In this case, MA = MB = 1724 ≈ Nv/6. 
We note that, in the case of a very large sample considered here, this choice is justified; reduc-
ing ε to a value inside the gap (i.e. ε ∼ 10−4), as it was done in the case of L  =  21, does not 
result in any improvement of the image quality. The first MA singular vectors of A already 

A2
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Large Target

λ
√

maxn wn

χ

10−210−410−610−810−10

104

102

1

10−2

Figure 5.  L2 norm of the reconstruction error χ for the large target as a function of the 
Tikhonov regularization parameter λ. Here maxn[wn] is the maximum eigenvalue of 
K*K for algorithm 1 and of W for algorithm 2.

Figure 6.  Same as in figure 3 but for a cubic sample discretized on a 35 × 35 × 35 
grid. Definitions of the model targets is slightly different and only reconstructions 
by algorithm 2 are shown as algorithm 1 requires in this geometry significantly more 
memory. Same value ε = 10−3 maxµ[σ

A
µ] is used as in figure 3 (it is still located in the 

gap of singular values).
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probe the target with near-optimal precision and keeping more of these singular vectors, even 
if the corresponding singular values are not too small, is not useful for solving the inverse 
problem. Therefore, the operation of diagonal scaling achieves a useful data reduction which, 
in turn, allows one to significantly reduce the memory requirements of the associated numer
ical algorithm. This does not mean that not all data were used or that one can achieve a similar 
image quality with less real-space data points, and this point is illustrated below. Rather, the 
diagonal scaling selects the linear combinations of the data points that are informative; it is not 
practically possible or at least very difficult to realize such linear combinations in a physical 
experiment directly.

It can be concluded that the use of algorithm 2 can be justified by computational efficiency 
if not by superior quality of reconstructions. However, a more systematic comparison of the 
two methods is required to understand the subtle interplay of the operation of diagonal scal-
ing, ill-posedness of the problem and round-off errors that are characteristic of any numerical 
solution of a large-scale algebraic problem. As above, the total contrast X =

∑
n xn is repro-

duced by both algorithms very well but small deep-buried features are elusive.
Finally, we provide a demonstration that very large data sets can indeed be useful for 

obtaining the best possible quality of reconstructions. To this end, we compare the reconstruc-
tions of the large target obtained in the surrounding measurement geometry shown in figure 1 
with the sampling frequencies F  =  1 and F  =  0.5 (so far we have used only the ‘perfect’ sam-
pling frequency F  =  1) with the transmission measurement geometry wherein the sources are 
located close to one face of the cube and the detectors are placed at the opposite face, again, 
for F  =  1 and F  =  0.5. To avoid making an additional choice associated with adjustable the 
cut-off parameter ε, the reconstructions in this figure  were computed by algorithm 1. The 
results are shown in figure 9 where we show XY and XZ slices. Both slices are drawn through 
the center of the cube, but the XY slices are parallel to the planes of sources and detectors in 
the case of transmission measurements while the XZ slices are perpendicular to these planes 
and, in the latter case, the direction of the Z-axis (the horizontal direction in the right column 
of images) can be regarded as ‘depth’ while the X and Y directions are lateral. In the case of 
surrounding measurements, the XY and XZ slices are equivalent, as can indeed be seen from 
the figure.

We can conclude from the data of figure 9 that reduction of the sampling frequency from 
1 to 0.5 in the surrounding measurement geometry results in a modest loss of quality. This is 
illustrated in a more quantitative way in figure 10. However, transitioning from the surround-
ing measurement scheme to the transmission scheme leads to a dramatic loss of precision. 
This can be understood by noting that the resulting resolution in the depth direction becomes 
quite poor and the lateral resolution has also deteriorated. These results are consistent with the 
theoretical predictions of optimized resolution that can be achieved by employing ‘multiple 
projection’ measurement schemes [31, 32]. In fact, the surrounding measurement geometry 
realizes these ‘multiple projections’ so that every direction inside the sample can be regarded 
as lateral with respect to some pair of source-detector planes. However, when we move to the 
transmission measurement geometry, there is virtually no difference between the F  =  1 and 
F  =  0.5 cases. The reason is that the inverse problem is now so ill-posed that the advantages 
of using the perfect sampling frequency are very insignificant. We emphasize that this is not 
a general result: for a L  =  21 cube, there is substantial difference between F  =  1 and F  =  0.5 
transmission-geometry reconstructions (results not shown). In any event, the data of figures 9 
and 10 confirms that the large data sets can be useful even in inverse problems that are as ill-
posed as the inverse problem of diffusion tomography.
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Figure 7.  Same as in figures 3 and 6 but for a cubic sample discretized on a 41 × 41 × 41 
grid. Definitions of the model targets is slightly different from the previously-considered 
cases. For reconstructions by algorithm 2, the small parameter of diagonal scaling is 
ε = 10−2 maxµ[σ

A
µ].

MA = 1724

µ

σA
µ

maxµ[σA
µ ]

1000080006000400020000

1

10−1

10−2

10−3

10−4

10−5

10−6

Figure 8.  Singular values of A scaled by the maximum singular value and the cut-off 
parameter ε used in the A2 reconstructions of figure 7.

V A Markel et alInverse Problems 35 (2019) 124002



17

6.  Reconstructions with noise and reduction of noisy data

So far, we have considered reconstruction with ideal data; the only cause of imprecision in the 
above simulations are round-off errors. In practice, however, all measurements are affected by 
noise. In this section, we will show that algorithm 2 (with preconditioning by diagonal scal-
ing) is well-suited for reconstructions of noisy data as it allows one to discard efficiently the 

Figure 9.  Reconstructions of the large target discretized on a 41 × 41 × 41 cubic grid 
for various arrangements of sources and detectors. ‘Surr’ denotes the surrounding 
arrangement as is illustrated in figure 1. ‘Tran’ denotes transmission measurements with 
the plane of sources on one side of the cube and plane of detectors on the other side. 
The sampling frequency F is defined in the caption of figure 1. Two orthogonal central 
cross sections through the cube are shown. The left column shows the cross section by 
an XY-plane, which is parallel to the planes of sources and detectors in the case of 
transmission measurements. The right column shows cross sections by the XZ plane, 
which is perpendicular to these two planes. In the case of transmission measurements, 
reconstructions in the XY and XZ cross sections  are not equivalent. Reconstructions 
obtained by algorithm 1.

Tran, F=0.5
Tran, F=1.0
Surr, F=0.5
Surr, F=1.0
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Figure 10.  L2 norm of the reconstruction error χ for the large target whose 
reconstructions are shown in figure  9 as a function of the Tikhonov regularization 
parameter λ. Here maxn[wn] is the maximum eigenvalue of K*K for algorithm 1.
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equations that are hopelessly corrupted by noise and do not carry useful information about 
the target. A similar data reduction technique can be applied in the traditional approach as 
well. One can, for example, exclude from the set (3) the equations for which the data point 
b(ij) is expected to be small and therefore overshadowed by noise [33], or is affected by some 
systematic error of the model [9]. However, these algorithms do not reduce the data set dra-
matically. In contrast, algorithm 2 allows one to reduce the number of equations well beyond 
the number of unknowns while keeping the image quality (attainable at a given noise level) 
almost unaffected. This may seem counter-intuitive since under-determined problems do not 
have unique solutions. However, we will show that the underdetermined problem obtained by 
selecting a large cut-off parameter ε in algorithm 2 contains almost the same information as 
all the original equations. Of course, some image degradation when equations are discarded 
can be expected but we will see that this degradation is modest.

The noise model we use is the following. We note that the data point Φ(rd, rs) in (1) is obtained 
by a differential measurement of some intensity, i.e, Φ(rd, rs) = C[I0(rd, rs)− I(rd, rs)], 
where I is the measurement obtained for the actual sample and I0 is obtained using a reference 
homogeneous sample, and C is some overall factor [29]. We assume that each measurement is 
affected by positive-definite shot noise. This is typical of CCD cameras that are used for detec-
tion in optical tomography [7–9]. For 16-bit cameras operating at the limit of their dynamic 
range, the average amplitude of the shot noise is approximately 100 counts, which should 
be compared to the maximum possible value of 65 536 counts. That is, the noise amplitude 
for the intensity measurements is  ∼0.15% of the maximum measurable intensity. For differ
ential measurements, the relative noise amplitude can be higher. In the below simulations, we 
assumed that each ideal data point Φij  is modified by noise as follows:

Φij −→ Φij +
γ

µ
(n1 − n2),� (22)

where n1 and n2 are two statistically independent integer random numbers selected from the 
Poisson distribution P(n) = µne−µ/n! and the overall factor γ  was varied in the simulations. 
Note that 〈n1 − n2〉 = 0 and 〈(n1 − n2)

2〉 = 2µ. Since the average number of counts in typical 
shot noise is  ∼100, we have selected µ = 100.

The sample and the measurement geometry were exactly the same as in section 5.2 (the 
large target was used). The maximum data point in this geometry is Φmax ≈ 37 and the mini-
mum is Φmin ≈ 0.026. If we take γ = 1, the maximum data point is well above the noise level. 
However, the weakest data points are completely overshadowed by noise.

Reconstructions are shown in figure 11. The left column was obtained by algorithm 1. The 
other columns were obtained by algorithm 2. Optimal regularization parameter was used at 
each noise level. In the second column, we show reconstructions with ε = 10−6. As expected, 
these reconstructions are inaccurate except in the case of noiseless data. Indeed, the opera-
tion of diagonal scaling multiplies the equations  that are most affected by noise by large 
constants and therefore makes them more significant. As we increase the cut-off parameter ε, 
the reconstructions are more clear. At the largest value of noise used, γ = 1, the reconstruc-
tions by algorithms 1 and 2 with ε = 0.1 are approximately of the same quality. The outer 
shell is clearly visible and is reconstructed more-or-less correctly, but the inner shell is not 
visible. However, the algorithm 2 reconstruction is much more efficient. Indeed, at ε = 0.1, 
we have MA = MB = 28. The total number of equations retained in this case is 282  =  784. 
This is significantly less than the total number of unknowns, which is Nv = 213 = 9261. The 
computational bottleneck is reduced by the factor (9261/784)3 ≈ 1650. This is the approxi-
mate computational speed-up that one obtains for the last (fifth) column of figure 11 relative 
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to the computations of the first column. Nevertheless, the results are approximately the same 
at γ = 1. Thus, we have obtained a useful data reduction.

We note that, when we transition from ε = 0.1 (third column) to ε = 0.5 (forth column), the 
problem becomes underdetermined. This is why the quality of the ideal data reconstruction in 
the forth column is visibly worse than that in the third column. However, in the presence of 
noise, this quality deterioration is not as pronounced.

Figure 11.  Reconstructions for the large target and the same measurement geometry 
as in section 5.2 obtained by algorithm (left column) and by algorithm 2 with different 
values of the cut-off parameter ε. Reconstructions were obtained at different levels of 
noise as quantified by the parameter γ . Areas where the reconstruction exceeds the 
maximum value used for the color map (which represents values from  −2 to 3) are 
shown as white.
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The data reduction described above can be further illustrated if we consider the curves χ(λ) 
(χ is the L2 norm of the reconstruction error and λ is the Tikhonov regularization parameter) 
for different levels of noise γ  and different cut-off parameters ε. These curves are plotted in 
figure 12. Consider first the case γ = 0.01. It can be seen that the error obtained in algorithm 
2 with ε = 10−6 is much larger than that for algorithm 1 for almost all values of λ considered. 
However, as we increase ε, the error curves for the two algorithms become similar. The curve 
with ε = 0.03 reaches almost the same minimum value as the A1 curve. A qualitatively similar 
behavior is observed at the noise level γ = 1. The curves with ε = 0.05, 0.06 and 0.1 reach a 
minimum that is only slightly above the minimum of the A1 curve. The related difference in 
the reconstruction quality mainly affects the precision of determining the boundaries of the 
outer shell, while the inner shell can not be reconstructed by either method at this noise level 
(see figure 11).

We conclude this section with a few notes. First, the reconstruction for the under-deter-
mined problem can be obtained by using algorithm 1 as described above but this is not the 
most computationally-efficient approach. Alternatively, one can start with (15) and compute 
the singular-value decomposition of the linear operator in this equation directly or by diago-
nalizing W(µ1ν1)(µ2ν2) =

∑
n

(
gA∗
µ1ngA

µ2n

) (
f B
ν1n f B∗

ν2n

)
. We have implemented both algorithms 

and, as expected, they yield the same numerical result. The second algorithm however is much 
faster since its computational bottleneck has complexity O((MAMB)3) rather than O(N3

v), and 
we have MAMB < Nv in the underdetermined case. This is how the computational speed-up 
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Figure 12.  L2 norm of the reconstruction error χ as functions of the regularization 
parameter λ for the large target discretized on a 21 × 21 × 21 cubic grid reconstructed 
using algorithm 1 (A1) and algorithm 2 (A2) for the noise level γ = 0.01 (a) and γ = 1 
(b) and for different values of the cut-off regularization parameter ε, as labeled.
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mentioned above was achieved. We emphasize that this speed-up is not limited by the number 
of data points or the number of unknowns (voxels in our case). Rather, the limiting factor is the 
number of voxels that can be reconstructed reliably given a particular level of noise.

Secondly, the above numerical illustrations utilize a specific expression for the noise term. 
In particular, the noise is additive and affects all data points in a statistically-independent man-
ner. A multiplicative noise of the form Φ → Φ(1 + n), where n is a statistically-independent 
random variable is also frequently used in the literature. Using this form of noise can yield 
very different results from what is shown above.

Finally, we note that the algorithm with diagonal preconditioning can be further modi-
fied to moderate the effects of noise on the reconstructions while still achieving a useful data 
reduction. To this end, one can define the diagonal operator in (13) as

D(µν),(µ′ν′) = δ(µν),(µ′ν′)

{
1, σA

µ, σB
ν > ε

0, σA
µ, σB

ν � ε
� (23)

that is, with a cut-off but without scaling. In this way, we can discard unreliable equations effi-
ciently but without amplifying the effects of noise. The involved algebra and the numerical 
algorithm are only trivially modified in this case, with no increases in the computational com-
plexity. Since this paper is primarily focused on fast numerical inversion of generic equa-
tions  of the form (2), we do not investigate this approach further, but we expect it to be 
efficient when reconstructing with noisy data.

7.  Summary and discussion

The purpose of this paper is not to study image reconstruction in diffuse optical tomography 
but rather to present a general method of efficiently computing the pseudo-inverse of the lin-
ear operator in inverse scattering problems. The underlying idea of the method is very simple 
and provides a dramatic improvement in computational efficiency. We note that the idea has 
appeared in the literature before [11]. Here we have explained it in detail, discussed two algo-
rithmic implementations of the method (one of them with preconditioning) and illustrated its 
power with numerical simulations involving both ideal and noisy data.

It is important to note that the methods described here are purely algebraic and not depend-
ent on any symmetry of the sample. In our previous work [28, 29] and references therein, we 
developed fast inversion methods that require some symmetry to hold, i.e. translational sym-
metry in the case of an infinite slab. These methods require large imaging windows and are 
inapplicable to the geometry with only a few discrete symmetries that has been considered in 
the above numerical examples.

In fact, it can be shown that the methods of [28, 29] are related to the method described 
here, when the SVD decomposition of A and B can be computed analytically. The mathemati-
cal connection between the two methods will be explained elsewhere.

We finally note that the efficiency of the proposed methods make them suitable for use 
in iterative solvers of nonlinear inverse problems, wherein linearized inversion is required at 
each step. This includes, for example, the Newton-type methods.
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